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Abstra
t This is a largely expository arti
le, aimed at introdu
ing

the te
hnique of trans�nite indu
tion to those who are familiar only

with the `positive integers' aspe
t of the 
on
ept. It targets the real


ontinuum as the most intuitively a

essible non-denumerable �eld of

exploration for this, reviewing a handful of results from both ends of the

present 
entury. A version of this arti
le was presented at the Eleventh

September Meeting of the IMS at the University of Ulster at Coleraine,

7-8 September 1998.

1. Introdu
tion

Those of us who learned indu
tion in the 
ontext of a �rst{year

undergraduate mathemati
s 
ourse usually emerged knowing two

things about it: its main purpose was to prove things that we


ould already see were 
orre
t, and it only worked for positive

integers. Fortunately, both of these \well-known fa
ts" turn out

to be remote from the truth. Indu
tive arguments are at least as

useful when employed as engines of 
onstru
tion, they will serve

to build up the profoundly unobvious as well as to 
onsolidate the

self-evident and{far from being limited to \plodding up the end-

less stair
ase of the natural numbers"{they are 
apable of ranging

a
ross the equally familiar, if far more mysterious, 
ontinuum of

the real line. These are the general points at whi
h this essay is

dire
ted.

Perhaps ironi
ally, the �rst-year 
omputer s
ien
e under-

graduate is generally more aware of the �rst of these issues than

his/her mathemati
s 
ontemporary through greater exposure to

re
ursive de�nitions, su
h as those of the Fibona

i numbers:

32
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Example 1

f

1

= f

2

= 1

f

n

= f

n�1

+ f

n�2

whenever n � 3

or of the fa
torials:

Example 2

0! = 1

(n+ 1)! = (n+ 1) � n! whenever n � 0:

It is this `
onstru
tive' fa
e of indu
tion, in whi
h fun
tions or

other artefa
ts are built up layer by layer from pre
eding layers,

that we wish to exploit. The �rst step in this exploitation is to free

the pro
ess from its apparent dependen
y on the positive (or non-

negative) integers, and the following two examples indi
ate how to

do this.

Example 3

We de�ne a fun
tion on the positive rational numbers. Begin by

listing these numbers in some methodi
al fashion, su
h as the `diag-

onal 
ounting' that harks ba
k to Cantor:

Q

+

= f

1

1

;

2

1

;

1

2

;

3

1

;

1

3

;

4

1

;

3

2

;

2

3

;

1

4

;

5

1

; : : :g:

Now, whenever x is su
h a number, de�ne

f(x) =

8

<

:

x

�1

; if x is an integer;

P

f(y) where y ranges over all the prede
essors

of x in the list, if not.

Example 4

Consider the set of numbers

E = fn� 2

1�m

: n;m are positive integersg;
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whi
h 
an (in some sense) be listed in the natural order, thus:

f0;

1

2

;

3

4

;

7

8

;

15

16

; : : : ; 1; 1

1

2

; 1

3

4

; 1

7

8

; : : : ; 2; 2

1

2

; 2

3

4

; 2

7

8

; : : :g:

For ea
h number x in this list, de�ne

g(x) =

�

x!; if x is an integer;

(g(the prede
essor of x))

2

; if not.

In all of these examples the de�nitions are valid: intuitively this is

be
ause, given time and patien
e, we 
ould build up a numeri
al


al
ulation to tell us the value of the fun
tion at any parti
ular

permitted input number. However, the more pre
ise reason for

their validity is that the domain of ea
h proposed fun
tion{N , N [

f0g, Q

+

and E in the above illustrations{had been given a well-

order : that is, its elements had been ordered in su
h a way that

every non-empty sub-
olle
tion 
ontained a least element.

It is important to appre
iate that this simple requirement,

that the underlying set be well-ordered in this sense, is the only

thing that is needed to power the indu
tion ma
hine. The exa
t

nature or 
omposition of the underlying set is irrelevant, as is

its `size', as is its `natural order' if any. It is not ne
essary that

ea
h of its elements shall have an immediate prede
essor in the

ordering, nor that ea
h element 
an be rea
hed in a �nite number

of `moves' from the very �rst one. Well-ordering is the sole ro
ket

fuel required to propel this Explorer to the stars and beyond!

2. The nature of indu
tion

Now let us formulate what, essentially, indu
tion is:

(i) Lay out a well-ordered `s
ale' suitable to the problem.

(ii) Identify a `desirable 
ir
umstan
e' 
on
erning a typi
al s
ale

point.

(iii) Establish it as a 
onsequen
e of its validity at earlier s
ale

points (if any).

Then the 
ir
umstan
e (e.g. that a statement be true, that a fun
-

tion be assigned a value, that a 
onstru
t be de�ned) must prevail
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everywhere: be
ause if not, the well-ordering tells us that there

would be an earliest point at whi
h it fails; yet then it would be

valid at all earlier points, so (iii) implies its validity also at the

�rst failure point: a 
ontradi
tion. (It is impli
it in (iii), and very

often stated expli
itly also, that validity at the least point of the

whole s
ale has to be established un
onditionally.)

Disappointingly few of the 
anoni
al s
ales and number sys-

tems 
ome pre-equipped with a natural well-ordering, but on
e

again this is not really the point. For instan
e, the positive rational

system Q

+

has a built-in ordering by magnitude under whi
h it

is not well-ordered, but as Example 3 illustrates, we 
an still run

indu
tion over Q

+

by imposing a di�erent order that is a well-

ordering. The question we should, therefore, be asking at this

stage is `whi
h sets 
an be given a well-ordering?' And the reply

provided by standard set theories is more en
ouraging: they all


an. (As the reader may well be aware, the assertion just made

is far from being a simple truth. Its status is more like that of

the `parallel postulate' in Eu
lidean geometry: a working assump-

tion built into the stru
ture of the dis
ipline, whose logi
al 
on-

sequen
es are explored therein. But it is no intention of the present

arti
le to agonize over su
h issues, 
riti
ally important though they

be. Most pra
titioners in this area, for most of the time, take it

that every set 
an be well-ordered; we shall go along with that.)

In parti
ular, the real number system R 
an be well-ordered,

and this is what validates the use of indu
tion as an exploratory

tool for investigating it. Before employing it, we need to sket
h in

a few details 
on
erning the size of in�nite sets.

(i) Sets A and B have the same size (the same number of ele-

ments) if there is a way of pairing o� all of the elements of

A with all of the elements of B in a one-to-one fashion.

(ii) A is smaller than (has fewer elements than) B if (i) is not

the 
ase and A is the same size as some part or subset of B.

(iii) B is bigger than (has more elements than) A is a re-wording

of (ii).

(iv) A is 
ountably in�nite if it has the same size as N , the set

of positive integers.

(v) A is un
ountable if it is bigger than N .
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(vi) Well-order R so that it has a bottom element r

o

and a top

element r

t

. Use interval notation in this ordered set with

the obvious meaning, e.g.

[r

o

; x) = fz : r

o

� z < x in the parti
ular well{orderingg:

Choose the earliest point y in R for whi
h [r

o

; y) has the

same size as R. Then the well-ordered set [r

o

; y) is denoted

by 
; e�e
tively, it is the `smallest' well{ordered set that has

as many points as R. In summary:

(vii) 
 has the same number of elements as R, but for any x

belonging to 
, [r

o

; x) has fewer points than R.

3. Appli
ations

We begin with an old (1908) result, due essentially to Bernstein [1℄

whi
h is still one of the 
learest and 
leanest illustrations extant

of trans�nite indu
tion in a
tion. Re
all that a subset of the real

line is bounded if it all lies within some �xed distan
e from the

origin, and 
losed if it 
ontains all of its boundary points.

Theorem. There is a set whi
h meets every un
ountable bounded


losed set in R but does not 
ontain any su
h set.

Constru
tion

(a) How many un
ountable bounded 
losed sets are there?

It is fairly easy to show that there are exa
tly 
{many of

them. That is, there are as many as there are point of 
.

(b) How many points are there in ea
h?

By �rst 
on�rming that every su
h set 
ontains a 
opy of the

\Cantor middle-thirds set", it is then routine to show that

ea
h un
ountable bounded 
losed set has exa
tly 
-many

points.

(
) So 
 is the `right' well{ordered s
ale for this problem. Use

its elements to label the 
olle
tion of all the un
ountable

bounded 
losed sets as

fK

�

: � belonging to 
g.

(d) In ea
hK

�

pi
k two points{let us 
all them red

�

and green

�

{

di�erent from all previous 
hoi
es.
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Now this is the heart of the 
onstru
tion. The labelling by points

from 
 has e�e
tively strung out all the K

�

in a trans�nite list

within whi
h (
ompare Example 4) ea
h of them has a 
learly

de�ned 
olle
tion of prede
essors (the \previous K

�

" in the list)

but many of them have in�nitely many prede
essors. The spe
ial


hara
teristi
 of 
, pointed out in (vii), is that ea
h K

�

has fewer

than 
 prede
essors, and this is what makes the sele
tion of red

�

and green

�

possible: be
ause the previous 
hoi
es amount to fewer

than 
{many pairs of points and, sin
e the K

�


urrently in our

sights has 
{many points, there is still room to 
hoose from it two

points that were not pi
ked in any previous sele
tion.

(e) By indu
tion, the 
hoi
e runs for all � in 
.

(f) The set G 
onsisting of all the `green' points meets the typ-

i
al K

�

in at least the one point green

�

, but also ex
ludes

fromK

�

the point labelled red

�

. It is therefore a set with the

desired 
hara
teristi
 that was enun
iated in the statement

of this theorem: whose demonstration is thus 
on
luded.

Sets that have this pe
uliar property of `sampling, but not


onsuming' ea
h and every un
ountable bounded 
losed set in

R are 
alled Bernstein sets. They feature largely in our se
ond

appli
ation, whi
h 
on
erns `in
omparable' sets in R, and whi
h

needs some preliminary dis
ussion of `
omparable' ones. If A and

B are two subsets of the real line, and if it is possible to �nd a

real fun
tion from A onto B that is one-to-one (for whi
h reason

it will have an inverse from B onto A) and su
h that both the

fun
tion and its inverse are 
ontinuous (at ea
h point of A and of

B respe
tively) we shall 
all B a 
opy of A. For instan
e, R itself

and (�

�

2

;

�

2

) are 
opies of one another sin
e tan() and ar
tan()

map 
ontinuously between them. We 
all sets C and D 
ompar-

able if one of them 
ontains a 
opy of the other, and in
omparable

if this is not the 
ase. Thus (0,1) and Q are 
omparable be
ause,

with some e�ort, one may show that the set Q \ (0; 1) of those

rationals that lie inside (0,1) is a 
opy of the whole of Q . Again,

[0,1℄ and (0,1) are 
omparable in a double sense sin
e the �rst


ontains not merely a 
opy but the original of the se
ond and the

se
ond 
ontains [

1

3

;

2

3

℄ whi
h is easily seen to be a 
opy of the �rst.
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Now it is a 
ommon experien
e that if two subsets of R are 
hosen

`at random' without a good deal of mali
e aforethought, they are

virtually always 
omparable. Nevertheless, in
omparable pairs of

sets do exist in profusion, and the Bernstein sets will help us to

dete
t them in this sense at least : for any given Bernstein set A,

we 
an 
onstru
t another one, B, that is in
omparable with it.

The underlying idea of this 
onstru
tion is very similar to

that of the previous one. We shall inspe
t the list of un
ountable

bounded 
losed sets K

�

and, within ea
h, sele
t a point to in
lude

in B and a point to ex
lude from B: all these 
hoi
es to be distin
t.

In parallel with this, we should like to s
an through a full list of

all the mappings � that `might' 
opy A into B or B into A, and

sabotage ea
h of them: for example, by ex
luding from B a point

of the form �(a) for some a in A, and in
luding in B a point b

for whi
h �(b) lies outside A; or perhaps by in
luding in B two

points at whi
h the values of � were equal (thus preventing � from

being one{to{one on B), or some 
ombination of su
h a
tions.

Unfortunately there are too many mappings for this strategy to

su

eed unmodi�ed: the set of potential 
opying maps is bigger

than 
, so we should run out ofK

�

to 
hoose within, long before we

had spiked every possible �. Lu
kily, a 
ontinuous real fun
tion

that is de�ned on a set whi
h 
ontains the rationals Q is fully

determined by what it does on Q ; and there are only 
{many

fun
tions from Q to R. These two observations allow us to use the


ontinuous one{to{one maps from Q to R in pla
e of the exhaustive

list of 
opying maps, se
ure in the knowledge that neither the list

ofK

�

nor the shortened list of maps will terminate before the other

does.

Here now is a detailed look at the �rst step in the trans�nite

sabotaging pro
ess.

Lemma. Suppose that A is a Bernstein set 
ontaining Q , and �

is a 
ontinuous one-to-one fun
tion from Q to R. There are two

disjoint sets In

o

, Out

o

, 
ontaining no more than two points ea
h,

su
h that if B is any set 
ontaining In

o

and disjoint from Out

o

,

then no extension of � 
an 
opy A into B nor B into A.

Proof: Exa
tly one of the following statements must be true:

(i) there is a number x at whi
h � does not have a limit;
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or

(ii) there are two distin
t numbers x

1

and x

2

at whi
h � has the

same limit;

or

(iii) we 
an 
ontinuously extend � to a one{to{one mapping �

�

on the whole of R.

In 
ases (i) and (ii), put In

o

= fxg and fx

1

; x

2

g respe
tively, and

this will already prevent any 
ontinuous, one{to{one extension of

� from 
opying into A a set that 
ontains In

o

. In 
ase (iii), 
hoose

any un
ountable bounded 
losed set K, observe that �

�

(K) is

another su
h set and therefore 
annot be entirely 
ontained in A,

so 
hoose k in K with �

�

(k) not in A and de
lare In

o

to be fkg.

This again blo
ks � from extending to a 
opying map that 
ould

take a superset of In

o

to A.

Continuing, exa
tly one of the next two statements is true:

(iv) the limit of � at ea
h point of A at whi
h su
h a limit exists

belongs to In

o

;

or

(v) there is a point of A at whi
h � has a limit y lying outside

In

o

.

Now in 
ase (iv), either the limit of � at some point of A fails

to exist or, bearing in mind the 
omparative sizes of A and In

o

!

there are two points of A at whi
h � has the same limit. In either

eventuality, no 
ontinuous one{to{one extension of � over A 
an

exist and we 
an take Out

o

to be empty. In 
ase (v) let Out

o

= fyg

and we see that a 
ontinuous extension of � over A 
ould not map

into a set disjoint from Out

o

sin
e it will be 
ompelled to take y

as one of its values. This 
ompletes the proof.

The next step requires the iteration of this lemma so as to

sabotage not merely one mapping � but a trans�nite sequen
e

of su
h mappings. As this iteration runs, the `In' sets arising

from ea
h stage are a

umulated, and eventually be
ome in�nite.

However, as long as no stage is rea
hed before whi
h we shall have

already examined 
{many maps, the a

umulating sets will ea
h


ontain fewer than 
{many numbers and will therefore represent

only a `small proportion' of R itself. The revised version of the

lemma thus ne
essitated says:
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Lemma. Given A and � as before, and given two disjoint sets In

and Out, ea
h 
ontaining fewer than 
{many points, it is possible

to augment them by at most two points ea
h to 
reate new disjoint

sets In(+), Out(+) su
h that no extension of � 
an 
opy A into a

set that 
ontains In(+) and is disjoint from Out(+), nor vi
e versa.

(The proof, though identi
al in strategy with the pre
eding, is more

te
hni
al in detail and will be omitted. The interested reader is

referred to [6℄.)

Now we are ready to demonstrate the existen
e of in
om-

parable pairs of Bernstein sets (see [2℄, [3℄ for 
lassi
al, ground{

breaking explorations of this idea, and [5℄, [8℄ for asso
iated 
on-

temporary developments).

Theorem. Given a Bernstein set A 
ontaining the set Q of ration-

als, there is another that is in
omparable with it.

Constru
tion

(a) There are 
{many un
ountable bounded 
losed sets (ea
h of

whi
h 
ontains 
{many elements). There are also 
{many 
on-

tinuous one{to{one mappings from Q to R. It follows that there

are 
{many pairs

(K;�)

that 
ombine an un
ountable bounded 
losed set (K) with a 
on-

tinuous one{to{one map (�) from Q to R. Therefore the 
olle
tion

of all su
h pairs 
an be listed and labelled as

f(K

�

; �

�

) : � belonging to 
g:

Clearly, 
 is the `right' well{ordered s
ale for the problem.

(b) Now 
onsider the `desirable 
ir
umstan
e' about a typi
al s
ale

point � in 
, that:

(i) there should be de�ned, for ea
h 
 < � in 
, two

disjoint sets In




, Out




of real numbers ea
h 
ontaining

fewer than 
{many points;

(ii) as 
 in
reases, both In




and Out




expand;

(iii) K




has at least one point in 
ommon with In




, and

at least one point in 
ommon with Out




;
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(iv) no extension of �





an 
opy A into any set whi
h


ontains In




and is disjoint from Out




, nor vi
e versa.

(
) Ki
k{start the pro
ess by putting all the rational numbers into

the `In-box' before beginning.

(d) At stage �, if everything has been implemented at all stages 


before �, then the unions of the a

umulated sets In




, Out




still

have fewer than 
{many points ea
h. Use the `enhan
ed' Lemma

to augment these unions in su
h a way as to blo
k �

�

from having

an extension that 
ould 
opy between A and any set that 
ontained

the augmented `In' set but avoided the augmented `Out' set. Also

sele
t from K

�

any two points that have not been so far 
hosen,

and put one into In and the other into Out. De
lare In

�

and Out

�

to mean the newly augmented `In' and `Out' sets. Observe that the

`desirable 
ir
umstan
e' now also prevails at the stage immediately

following �.

(e) By indu
tion, the pro
ess runs for all � in 
.

(f) The union B of all the sets In

�

(for � in 
), a

ording to (iii),

both 
hooses and reje
ts a point from ea
h and every K

�

: that is,

it is a Bernstein set. On the other hand, (iv) shows that none of

the maps �

�


an extend to 
opy A into B, nor B into A; bearing

in mind that A and B both 
ontain Q , and that therefore every


ontinuous one{to{one map de�ned on A or B is an extension of

one of these maps, that shows that A and B are in
omparable in

the present sense of the word. Thus, the 
onstru
tion is 
omplete

and the theorem established.

Notes (i) Purely routine modi�
ations of this argument will show

that, given a �nite list of Bernstein sets (ea
h, for 
onvenien
e,


ontaining Q ), we 
an build another that is in
omparable with

ea
h of them.

(ii) With a little more 
are, the 
onstru
tion 
an be tweaked to

show that, given a list of 
{many Bernstein sets (or fewer), another


an be 
onstru
ted that is in
omparable with every one in the list.

(iii) This observation, in its turn, 
an be used as the key step in

another indu
tion pro
ess that will generate a 
olle
tion of more

than 
{many Bernstein sets, every two of whi
h are in
omparable.
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(iv) An argument similar in spirit (though di�erent in detail) to

this dis
ourse will produ
e a 
olle
tion of more than 
{many Bern-

steins su
h that, for ea
h two 
hosen from the 
olle
tion, one 
an

be 
opied into the other but not vi
e versa.

4. Towards the frontier

The end{produ
ts of the above dis
ussion (the results in (iii) and

(iv) of the last Note) were known to the great Polish mathem-

ati
ians Bana
h, Kuratowski and Sierpi�nski by the mid 1920's (see

for example, [2℄ and [3℄) although they derived them by somewhat

di�erent methods. So also was the style of argument we have out-

lined here. Let us 
on
lude the present arti
le by referring to some

more re
ent developments in the same vein.

An (abstra
t) ordered set is a 
olle
tion of `nodes' between

pairs of whi
h a `pre
eden
e' may be spe
i�ed subje
t to two rules:

� every node pre
edes itself

� if node 1 pre
edes node 2, and node 2 pre
edes node

3, then node 1 pre
edes node 3.

For example, the 
olle
tion of nonzero integers 
an be made into an

interesting ordered set by de
laring that m pre
edes n whenever

m is an exa
t divisor of n. (Noti
e that neither of 6, 10 pre
edes

the other. Also note that 3 pre
edes �3 and �3 pre
edes 3.)

Any 
olle
tion of subsets of R 
an be turned into an ordered

set by de
laring that `A pre
edes B' shall mean that B 
ontains a


opy of A. The question that 
an now be per
eived as lying behind

mu
h of this dis
ussion is: whi
h ordered sets arise like this? That

is, given an abstra
t ordered set E, how 
an we determine whether

there exists a 
olle
tion of subsets of R whose pre
eden
e relation

under `
ontains a 
opy of' pre
isely mat
hes E? Su
h a 
olle
tion

is 
alled a realization of E. In this language, the partial answers

referred to in (iii) and (iv) above assert that a realization 
an be

found for:

(iii

�

) a 
ertain ordered set having more than 
{many nodes and

no pre
eden
e relations other than those that are for
ed by the

requirement that `every node pre
edes itself', and for

(iv

�

) a 
ertain ordered set having more than 
{many nodes, every

two of whi
h are related by a pre
eden
e.
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'Trisha Matthews, as part of her do
toral thesis [4℄, was able

to prove that every ordered set on 
{many nodes that satis�es an

additional and natural rule (that two nodes, ea
h of whi
h pre
edes

the other, are a
tually one and the same node) does have a real-

ization [5℄. The present authors have re
ently shown [6℄ that this


on
lusion remains valid without the additional rule. For ordered

sets having more than 
{many nodes, the problem is mu
h less

tra
table. It is known that the family of all subsets of R, ordered

by set{in
lusion, does have a realization [8℄; this is one of very

few extant positive results (
on
erning more than 
{many nodes),

ex
luding those 
losely related to (iii

�

) and (iv

�

) in whi
h the

pre
eden
e relations are either as sparse or as abundant as pos-

sible. On the negative side, apart from the obvious impossibility

of realizing an ordered set that has more nodes than R has subsets,

no unrealizible example has ever been exhibited: and this has in

re
ent years fuelled the 
onje
ture that none exist. However, evid-

en
e has been obtained in the last few months that this 
onje
ture

is unprovable: that is, there is a logi
al `model' of set theory within

whi
h at least one ordered set (having no more nodes than R has

subsets) possesses no realization. (Remarkably, it is also pos-

sible to devise, for any given ordered set E of this size, another

set{theoreti
 model in whi
h E does have a realization!) The fun-

damental problem of re
ognizing whi
h ones have 
onsequently

remains open (and, moreover, has a major logi
al dimension in

being model-sensitive).
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