TRANSFINITE INDUCTION
AND THE REAL LINE

A. E. McCluskey & T. B. M. McMaster

Abstract This is a largely expository article, aimed at introducing
the technique of transfinite induction to those who are familiar only
with the ‘positive integers’ aspect of the concept. It targets the real
continuum as the most intuitively accessible non-denumerable field of
exploration for this, reviewing a handful of results from both ends of the
present century. A version of this article was presented at the Eleventh
September Meeting of the IMS at the University of Ulster at Coleraine,
7-8 September 1998.

1. Introduction

Those of us who learned induction in the context of a first—year
undergraduate mathematics course usually emerged knowing two
things about it: its main purpose was to prove things that we
could already see were correct, and it only worked for positive
integers. Fortunately, both of these “well-known facts” turn out
to be remote from the truth. Inductive arguments are at least as
useful when employed as engines of construction, they will serve
to build up the profoundly unobvious as well as to consolidate the
self-evident and—far from being limited to “plodding up the end-
less staircase of the natural numbers”—they are capable of ranging
across the equally familiar, if far more mysterious, continuum of
the real line. These are the general points at which this essay is
directed.

Perhaps ironically, the first-year computer science under-
graduate is generally more aware of the first of these issues than
his/her mathematics contemporary through greater exposure to
recursive definitions, such as those of the Fibonacci numbers:
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Example 1

h=fa=1

fn = fa—1 + fn—2 whenever n >3

or of the factorials:
Example 2

ol=1
(n+ 1)!'=(n+1)-n! whenever n > 0.

It is this ‘constructive’ face of induction, in which functions or
other artefacts are built up layer by layer from preceding layers,
that we wish to exploit. The first step in this exploitation is to free
the process from its apparent dependency on the positive (or non-
negative) integers, and the following two examples indicate how to
do this.

Example 3

We define a function on the positive rational numbers. Begin by
listing these numbers in some methodical fashion, such as the ‘diag-
onal counting’ that harks back to Cantor:

Now, whenever x is such a number, define

z71 if x is an integer;
f(x) =19 3 f(y) where y ranges over all the predecessors

of = in the list, if not.

Example 4
Consider the set of numbers

E = {n—2'""™:n,m are positive integers},
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which can (in some sense) be listed in the natural order, thus:
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For each number z in this list, define

(2) = x!, if  is an integer;
g\x (g(the predecessor of z))2, if not.

In all of these examples the definitions are valid: intuitively this is
because, given time and patience, we could build up a numerical
calculation to tell us the value of the function at any particular
permitted input number. However, the more precise reason for
their validity is that the domain of each proposed function-N, NU
{0}, Q" and E in the above illustrations-had been given a well-
order: that is, its elements had been ordered in such a way that
every non-empty sub-collection contained a least element.

It is important to appreciate that this simple requirement,
that the underlying set be well-ordered in this sense, is the only
thing that is needed to power the induction machine. The exact
nature or composition of the underlying set is irrelevant, as is
its ‘size’, as is its ‘natural order’ if any. It is not necessary that
each of its elements shall have an immediate predecessor in the
ordering, nor that each element can be reached in a finite number
of ‘moves’ from the very first one. Well-ordering is the sole rocket
fuel required to propel this Explorer to the stars and beyond!

2. The nature of induction

Now let us formulate what, essentially, induction is:
(i) Lay out a well-ordered ‘scale’ suitable to the problem.

(ii) Identify a ‘desirable circumstance’ concerning a typical scale
point.

(iii) Establish it as a consequence of its validity at earlier scale
points (if any).

Then the circumstance (e.g. that a statement be true, that a func-
tion be assigned a value, that a construct be defined) must prevail
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everywhere: because if not, the well-ordering tells us that there
would be an earliest point at which it fails; yet then it would be
valid at all earlier points, so (iii) implies its validity also at the
first failure point: a contradiction. (It is implicit in (iii), and very
often stated explicitly also, that validity at the least point of the
whole scale has to be established unconditionally.)

Disappointingly few of the canonical scales and number sys-
tems come pre-equipped with a natural well-ordering, but once
again this is not really the point. For instance, the positive rational
system QT has a built-in ordering by magnitude under which it
is not well-ordered, but as Example 3 illustrates, we can still run
induction over QT by imposing a different order that is a well-
ordering. The question we should, therefore, be asking at this
stage is ‘which sets can be given a well-ordering?’ And the reply
provided by standard set theories is more encouraging: they all
can. (As the reader may well be aware, the assertion just made
is far from being a simple truth. Its status is more like that of
the ‘parallel postulate’ in Euclidean geometry: a working assump-
tion built into the structure of the discipline, whose logical con-
sequences are explored therein. But it is no intention of the present
article to agonize over such issues, critically important though they
be. Most practitioners in this area, for most of the time, take it
that every set can be well-ordered; we shall go along with that.)

In particular, the real number system R can be well-ordered,
and this is what validates the use of induction as an exploratory
tool for investigating it. Before employing it, we need to sketch in
a few details concerning the size of infinite sets.

(i) Sets A and B have the same size (the same number of ele-
ments) if there is a way of pairing off all of the elements of
A with all of the elements of B in a one-to-one fashion.

(ii) A is smaller than (has fewer elements than) B if (i) is not
the case and A is the same size as some part or subset of B.

(iii) B is bigger than (has more elements than) A is a re-wording
of (ii).

(iv) A is countably infinite if it has the same size as N, the set
of positive integers.

(v) A is uncountable if it is bigger than N.
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(vi)

(vii)

Well-order R so that it has a bottom element r, and a top
element ;. Use interval notation in this ordered set with
the obvious meaning, e.g.

[ro,2) = {2z : 7, < z < z in the particular well-ordering}.

Choose the earliest point y in R for which [r,,y) has the
same size as R. Then the well-ordered set [r,,y) is denoted
by c; effectively, it is the ‘smallest’ well-ordered set that has
as many points as R. In summary:

¢ has the same number of elements as R, but for any z
belonging to ¢, [r,,z) has fewer points than R.

3. Applications

We begin with an old (1908) result, due essentially to Bernstein [1]
which is still one of the clearest and cleanest illustrations extant
of transfinite induction in action. Recall that a subset of the real
line is bounded if it all lies within some fixed distance from the
origin, and closed if it contains all of its boundary points.

Theorem. There is a set which meets every uncountable bounded
closed set in R but does not contain any such set.

Construction

(a)

(b)

How many uncountable bounded closed sets are there?
It is fairly easy to show that there are exactly c—many of
them. That is, there are as many as there are point of c.
How many points are there in each?
By first confirming that every such set contains a copy of the
“Cantor middle-thirds set”, it is then routine to show that
each uncountable bounded closed set has exactly c-many
points.
So c is the ‘right’ well-ordered scale for this problem. Use
its elements to label the collection of all the uncountable
bounded closed sets as

{K, : a belonging to c}.
In each K pick two points—let us call them red, and green,—
different from all previous choices.
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Now this is the heart of the construction. The labelling by points
from c has effectively strung out all the K, in a transfinite list
within which (compare Example 4) each of them has a clearly
defined collection of predecessors (the “previous K,” in the list)
but many of them have infinitely many predecessors. The special
characteristic of ¢, pointed out in (vii), is that each K, has fewer
than c predecessors, and this is what makes the selection of red,
and green,, possible: because the previous choices amount to fewer
than c—many pairs of points and, since the K, currently in our
sights has c—many points, there is still room to choose from it two
points that were not picked in any previous selection.

(e) By induction, the choice runs for all « in c.

(f) The set G consisting of all the ‘green’ points meets the typ-
ical K, in at least the one point green,, but also excludes
from K the point labelled red, . It is therefore a set with the
desired characteristic that was enunciated in the statement
of this theorem: whose demonstration is thus concluded.

Sets that have this peculiar property of ‘sampling, but not
consuming’ each and every uncountable bounded closed set in
R are called Bernstein sets. They feature largely in our second
application, which concerns ‘incomparable’ sets in R, and which
needs some preliminary discussion of ‘comparable’ ones. If A and
B are two subsets of the real line, and if it is possible to find a
real function from A onto B that is one-to-one (for which reason
it will have an inverse from B onto A) and such that both the
function and its inverse are continuous (at each point of A and of
B respectively) we shall call B a copy of A. For instance, R itself
and (—%,%) are copies of one another since tan() and arctan()
map continuously between them. We call sets C' and D compar-
able if one of them contains a copy of the other, and incomparable
if this is not the case. Thus (0,1) and QQ are comparable because,
with some effort, one may show that the set Q N (0,1) of those
rationals that lie inside (0,1) is a copy of the whole of Q. Again,
[0,1] and (0,1) are comparable in a double sense since the first
contains not merely a copy but the original of the second and the

second contains [%, 2] which is easily seen to be a copy of the first.
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Now it is a common experience that if two subsets of R are chosen
‘at random’ without a good deal of malice aforethought, they are
virtually always comparable. Nevertheless, incomparable pairs of
sets do exist in profusion, and the Bernstein sets will help us to
detect them in this sense at least: for any given Bernstein set A,
we can construct another one, B, that is incomparable with it.

The underlying idea of this construction is very similar to
that of the previous one. We shall inspect the list of uncountable
bounded closed sets K, and, within each, select a point to include
in B and a point to ezclude from B: all these choices to be distinct.
In parallel with this, we should like to scan through a full list of
all the mappings 7 that ‘might’ copy A into B or B into A, and
sabotage each of them: for example, by excluding from B a point
of the form 7(a) for some a in A, and including in B a point b
for which 7 (b) lies outside A; or perhaps by including in B two
points at which the values of © were equal (thus preventing 7 from
being one-to—one on B), or some combination of such actions.
Unfortunately there are too many mappings for this strategy to
succeed unmodified: the set of potential copying maps is bigger
than ¢, so we should run out of K, to choose within, long before we
had spiked every possible 7. Luckily, a continuous real function
that is defined on a set which contains the rationals Q is fully
determined by what it does on Q; and there are only c—many
functions from Q to R. These two observations allow us to use the
continuous one—to—one maps from Q to R in place of the exhaustive
list of copying maps, secure in the knowledge that neither the list
of K, nor the shortened list of maps will terminate before the other
does.

Here now is a detailed look at the first step in the transfinite

sabotaging process.
Lemma. Suppose that A is a Bernstein set containing Q, and w
is a continuous one-to-one function from Q to R. There are two
disjoint sets In,, Out,, containing no more than two points each,
such that if B is any set containing In, and disjoint from Out,,
then no extension of m can copy A into B nor B into A.
Proof: Exactly one of the following statements must be true:

(i) there is a number = at which m does not have a limit;
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or
(ii) there are two distinct numbers zy and z» at which 7 has the
same limit;
or
(iii) we can continuously extend 7 to a one—to—one mapping 7*
on the whole of R.

In cases (i) and (ii), put In, = {z} and {z1, 22} respectively, and
this will already prevent any continuous, one-to—one extension of
7 from copying into A a set that contains In,. In case (iii), choose
any uncountable bounded closed set K, observe that 7*(K) is
another such set and therefore cannot be entirely contained in A,
so choose k in K with 7*(k) not in A and declare In, to be {k}.
This again blocks 7 from extending to a copying map that could
take a superset of In, to A.
Continuing, exactly one of the next two statements is true:

(iv) the limit of 7 at each point of A at which such a limit exists

belongs to In,;

or

(v) there is a point of A at which 7 has a limit y lying outside

In,.

Now in case (iv), either the limit of = at some point of A fails
to exist or, bearing in mind the comparative sizes of A and In,!
there are two points of A at which = has the same limit. In either
eventuality, no continuous one—to—one extension of = over A can
exist and we can take Out, to be empty. In case (v) let Out, = {y}
and we see that a continuous extension of 7w over A could not map
into a set disjoint from Out, since it will be compelled to take y
as one of its values. This completes the proof.

The next step requires the iteration of this lemma so as to
sabotage not merely one mapping 7 but a transfinite sequence
of such mappings. As this iteration runs, the ‘In’ sets arising
from each stage are accumulated, and eventually become infinite.
However, as long as no stage is reached before which we shall have
already examined c—many maps, the accumulating sets will each
contain fewer than c—many numbers and will therefore represent
only a ‘small proportion’ of R itself. The revised version of the
lemma, thus necessitated says:
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Lemma. Given A and 7 as before, and given two disjoint sets In
and Out, each containing fewer than c—many points, it is possible
to augment them by at most two points each to create new disjoint
sets In(+), Out(+) such that no extension of ™ can copy A into a
set that contains In(+) and is disjoint from Out(+), nor vice versa.
(The proof, though identical in strategy with the preceding, is more
technical in detail and will be omitted. The interested reader is
referred to [6].)

Now we are ready to demonstrate the existence of incom-
parable pairs of Bernstein sets (see [2], [3] for classical, ground—
breaking explorations of this idea, and [5], [8] for associated con-
temporary developments).

Theorem. Given a Bernstein set A containing the set QQ of ration-
als, there is another that is incomparable with it.

Construction
(a) There are c-many uncountable bounded closed sets (each of
which contains c—many elements). There are also c-many con-
tinuous one—to—one mappings from Q to R. It follows that there
are c—many pairs

(K, )

that combine an uncountable bounded closed set (K') with a con-
tinuous one—to—one map (7) from Q to R. Therefore the collection
of all such pairs can be listed and labelled as

{(K4,7q) : a belonging to c}.

Clearly, c is the ‘right’” well-ordered scale for the problem.

(b) Now consider the ‘desirable circumstance’ about a typical scale
point 3 in ¢, that:

(i) there should be defined, for each v < f in ¢, two
disjoint sets In,, Out, of real numbers each containing
fewer than c—many points;

(ii) as vy increases, both In, and Out, expand,;

(iii) K, has at least one point in common with In,, and
at least one point in common with Out,;
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(iv) no extension of m, can copy A into any set which
contains In, and is disjoint from Out,, nor vice versa.

(c) Kick-start the process by putting all the rational numbers into
the ‘In-box’ before beginning.

(d) At stage 3, if everything has been implemented at all stages
before 3, then the unions of the accumulated sets In,, Out, still
have fewer than c—many points each. Use the ‘enhanced’ Lemma
to augment these unions in such a way as to block mg from having
an extension that could copy between A and any set that contained
the augmented ‘In’ set but avoided the augmented ‘ Out’ set. Also
select from Kg any two points that have not been so far chosen,
and put one into In and the other into Out. Declare Ing and Outg
to mean the newly augmented ‘In’ and ‘Out’ sets. Observe that the
‘desirable circumstance’ now also prevails at the stage immediately
following f.

(e) By induction, the process runs for all 8 in c.

(f) The union B of all the sets Ing (for § in ¢), according to (iii),
both chooses and rejects a point from each and every Kpg: that is,
it is a Bernstein set. On the other hand, (iv) shows that none of
the maps mg can extend to copy A into B, nor B into A; bearing
in mind that A and B both contain QQ, and that therefore every
continuous one—to—one map defined on A or B is an extension of
one of these maps, that shows that A and B are incomparable in
the present sense of the word. Thus, the construction is complete
and the theorem established.

Notes (i) Purely routine modifications of this argument will show
that, given a finite list of Bernstein sets (each, for convenience,
containing Q), we can build another that is incomparable with
each of them.

(ii) With a little more care, the construction can be tweaked to
show that, given a list of c-many Bernstein sets (or fewer), another
can be constructed that is incomparable with every one in the list.

(iii) This observation, in its turn, can be used as the key step in
another induction process that will generate a collection of more
than c—many Bernstein sets, every two of which are incomparable.
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(iv) An argument similar in spirit (though different in detail) to
this discourse will produce a collection of more than c—many Bern-
steins such that, for each two chosen from the collection, one can
be copied into the other but not wvice versa.

4. Towards the frontier

The end-products of the above discussion (the results in (iii) and
(iv) of the last Note) were known to the great Polish mathem-
aticians Banach, Kuratowski and Sierpiniski by the mid 1920’s (see
for example, [2] and [3]) although they derived them by somewhat
different methods. So also was the style of argument we have out-
lined here. Let us conclude the present article by referring to some
more recent developments in the same vein.

An (abstract) ordered set is a collection of ‘nodes’ between

pairs of which a ‘precedence’ may be specified subject to two rules:
e every node precedes itself
e if node 1 precedes node 2, and node 2 precedes node
3, then node 1 precedes node 3.

For example, the collection of nonzero integers can be made into an
interesting ordered set by declaring that m precedes n whenever
m is an exact divisor of n. (Notice that neither of 6, 10 precedes
the other. Also note that 3 precedes —3 and —3 precedes 3.)

Any collection of subsets of R can be turned into an ordered
set by declaring that ‘A precedes B’ shall mean that B contains a
copy of A. The question that can now be perceived as lying behind
much of this discussion is: which ordered sets arise like this? That
is, given an abstract ordered set E, how can we determine whether
there exists a collection of subsets of R whose precedence relation
under ‘contains a copy of’ precisely matches E? Such a collection
is called a realization of E. In this language, the partial answers
referred to in (iii) and (iv) above assert that a realization can be
found for:
(iii*) a certain ordered set having more than c-many nodes and
no precedence relations other than those that are forced by the
requirement that ‘every node precedes itself’, and for
(iv*) a certain ordered set having more than c—many nodes, every
two of which are related by a precedence.
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"Trisha Matthews, as part of her doctoral thesis [4], was able
to prove that every ordered set on c—many nodes that satisfies an
additional and natural rule (that two nodes, each of which precedes
the other, are actually one and the same node) does have a real-
ization [5]. The present authors have recently shown [6] that this
conclusion remains valid without the additional rule. For ordered
sets having more than c-many nodes, the problem is much less
tractable. It is known that the family of all subsets of R, ordered
by set—inclusion, does have a realization [8]; this is one of very
few extant positive results (concerning more than c-many nodes),
excluding those closely related to (iii*) and (iv*) in which the
precedence relations are either as sparse or as abundant as pos-
sible. On the negative side, apart from the obvious impossibility
of realizing an ordered set that has more nodes than R has subsets,
no unrealizible example has ever been exhibited: and this has in
recent years fuelled the conjecture that none exist. However, evid-
ence has been obtained in the last few months that this conjecture
is unprovable: that is, there is a logical ‘model’ of set theory within
which at least one ordered set (having no more nodes than R has
subsets) possesses no realization. (Remarkably, it is also pos-
sible to devise, for any given ordered set E of this size, another
set—theoretic model in which E does have a realization!) The fun-
damental problem of recognizing which ones have consequently
remains open (and, moreover, has a major logical dimension in
being model-sensitive).
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