
TRANSFINITE INDUCTION

AND THE REAL LINE

A. E. MCluskey & T. B. M. MMaster

Abstrat This is a largely expository artile, aimed at introduing

the tehnique of trans�nite indution to those who are familiar only

with the `positive integers' aspet of the onept. It targets the real

ontinuum as the most intuitively aessible non-denumerable �eld of

exploration for this, reviewing a handful of results from both ends of the

present entury. A version of this artile was presented at the Eleventh

September Meeting of the IMS at the University of Ulster at Coleraine,

7-8 September 1998.

1. Introdution

Those of us who learned indution in the ontext of a �rst{year

undergraduate mathematis ourse usually emerged knowing two

things about it: its main purpose was to prove things that we

ould already see were orret, and it only worked for positive

integers. Fortunately, both of these \well-known fats" turn out

to be remote from the truth. Indutive arguments are at least as

useful when employed as engines of onstrution, they will serve

to build up the profoundly unobvious as well as to onsolidate the

self-evident and{far from being limited to \plodding up the end-

less stairase of the natural numbers"{they are apable of ranging

aross the equally familiar, if far more mysterious, ontinuum of

the real line. These are the general points at whih this essay is

direted.

Perhaps ironially, the �rst-year omputer siene under-

graduate is generally more aware of the �rst of these issues than

his/her mathematis ontemporary through greater exposure to

reursive de�nitions, suh as those of the Fibonai numbers:
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Example 1

f

1

= f

2

= 1

f

n

= f

n�1

+ f

n�2

whenever n � 3

or of the fatorials:

Example 2

0! = 1

(n+ 1)! = (n+ 1) � n! whenever n � 0:

It is this `onstrutive' fae of indution, in whih funtions or

other artefats are built up layer by layer from preeding layers,

that we wish to exploit. The �rst step in this exploitation is to free

the proess from its apparent dependeny on the positive (or non-

negative) integers, and the following two examples indiate how to

do this.

Example 3

We de�ne a funtion on the positive rational numbers. Begin by

listing these numbers in some methodial fashion, suh as the `diag-

onal ounting' that harks bak to Cantor:

Q

+

= f

1

1

;

2

1

;

1

2

;

3

1

;

1

3

;

4

1

;

3

2

;

2

3

;

1

4

;

5

1

; : : :g:

Now, whenever x is suh a number, de�ne

f(x) =

8

<

:

x

�1

; if x is an integer;

P

f(y) where y ranges over all the predeessors

of x in the list, if not.

Example 4

Consider the set of numbers

E = fn� 2

1�m

: n;m are positive integersg;
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whih an (in some sense) be listed in the natural order, thus:

f0;

1

2

;

3

4

;

7

8

;

15

16

; : : : ; 1; 1

1

2

; 1

3

4

; 1

7

8

; : : : ; 2; 2

1

2

; 2

3

4

; 2

7

8

; : : :g:

For eah number x in this list, de�ne

g(x) =

�

x!; if x is an integer;

(g(the predeessor of x))

2

; if not.

In all of these examples the de�nitions are valid: intuitively this is

beause, given time and patiene, we ould build up a numerial

alulation to tell us the value of the funtion at any partiular

permitted input number. However, the more preise reason for

their validity is that the domain of eah proposed funtion{N , N [

f0g, Q

+

and E in the above illustrations{had been given a well-

order : that is, its elements had been ordered in suh a way that

every non-empty sub-olletion ontained a least element.

It is important to appreiate that this simple requirement,

that the underlying set be well-ordered in this sense, is the only

thing that is needed to power the indution mahine. The exat

nature or omposition of the underlying set is irrelevant, as is

its `size', as is its `natural order' if any. It is not neessary that

eah of its elements shall have an immediate predeessor in the

ordering, nor that eah element an be reahed in a �nite number

of `moves' from the very �rst one. Well-ordering is the sole roket

fuel required to propel this Explorer to the stars and beyond!

2. The nature of indution

Now let us formulate what, essentially, indution is:

(i) Lay out a well-ordered `sale' suitable to the problem.

(ii) Identify a `desirable irumstane' onerning a typial sale

point.

(iii) Establish it as a onsequene of its validity at earlier sale

points (if any).

Then the irumstane (e.g. that a statement be true, that a fun-

tion be assigned a value, that a onstrut be de�ned) must prevail
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everywhere: beause if not, the well-ordering tells us that there

would be an earliest point at whih it fails; yet then it would be

valid at all earlier points, so (iii) implies its validity also at the

�rst failure point: a ontradition. (It is impliit in (iii), and very

often stated expliitly also, that validity at the least point of the

whole sale has to be established unonditionally.)

Disappointingly few of the anonial sales and number sys-

tems ome pre-equipped with a natural well-ordering, but one

again this is not really the point. For instane, the positive rational

system Q

+

has a built-in ordering by magnitude under whih it

is not well-ordered, but as Example 3 illustrates, we an still run

indution over Q

+

by imposing a di�erent order that is a well-

ordering. The question we should, therefore, be asking at this

stage is `whih sets an be given a well-ordering?' And the reply

provided by standard set theories is more enouraging: they all

an. (As the reader may well be aware, the assertion just made

is far from being a simple truth. Its status is more like that of

the `parallel postulate' in Eulidean geometry: a working assump-

tion built into the struture of the disipline, whose logial on-

sequenes are explored therein. But it is no intention of the present

artile to agonize over suh issues, ritially important though they

be. Most pratitioners in this area, for most of the time, take it

that every set an be well-ordered; we shall go along with that.)

In partiular, the real number system R an be well-ordered,

and this is what validates the use of indution as an exploratory

tool for investigating it. Before employing it, we need to sketh in

a few details onerning the size of in�nite sets.

(i) Sets A and B have the same size (the same number of ele-

ments) if there is a way of pairing o� all of the elements of

A with all of the elements of B in a one-to-one fashion.

(ii) A is smaller than (has fewer elements than) B if (i) is not

the ase and A is the same size as some part or subset of B.

(iii) B is bigger than (has more elements than) A is a re-wording

of (ii).

(iv) A is ountably in�nite if it has the same size as N , the set

of positive integers.

(v) A is unountable if it is bigger than N .
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(vi) Well-order R so that it has a bottom element r

o

and a top

element r

t

. Use interval notation in this ordered set with

the obvious meaning, e.g.

[r

o

; x) = fz : r

o

� z < x in the partiular well{orderingg:

Choose the earliest point y in R for whih [r

o

; y) has the

same size as R. Then the well-ordered set [r

o

; y) is denoted

by ; e�etively, it is the `smallest' well{ordered set that has

as many points as R. In summary:

(vii)  has the same number of elements as R, but for any x

belonging to , [r

o

; x) has fewer points than R.

3. Appliations

We begin with an old (1908) result, due essentially to Bernstein [1℄

whih is still one of the learest and leanest illustrations extant

of trans�nite indution in ation. Reall that a subset of the real

line is bounded if it all lies within some �xed distane from the

origin, and losed if it ontains all of its boundary points.

Theorem. There is a set whih meets every unountable bounded

losed set in R but does not ontain any suh set.

Constrution

(a) How many unountable bounded losed sets are there?

It is fairly easy to show that there are exatly {many of

them. That is, there are as many as there are point of .

(b) How many points are there in eah?

By �rst on�rming that every suh set ontains a opy of the

\Cantor middle-thirds set", it is then routine to show that

eah unountable bounded losed set has exatly -many

points.

() So  is the `right' well{ordered sale for this problem. Use

its elements to label the olletion of all the unountable

bounded losed sets as

fK

�

: � belonging to g.

(d) In eahK

�

pik two points{let us all them red

�

and green

�

{

di�erent from all previous hoies.
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Now this is the heart of the onstrution. The labelling by points

from  has e�etively strung out all the K

�

in a trans�nite list

within whih (ompare Example 4) eah of them has a learly

de�ned olletion of predeessors (the \previous K

�

" in the list)

but many of them have in�nitely many predeessors. The speial

harateristi of , pointed out in (vii), is that eah K

�

has fewer

than  predeessors, and this is what makes the seletion of red

�

and green

�

possible: beause the previous hoies amount to fewer

than {many pairs of points and, sine the K

�

urrently in our

sights has {many points, there is still room to hoose from it two

points that were not piked in any previous seletion.

(e) By indution, the hoie runs for all � in .

(f) The set G onsisting of all the `green' points meets the typ-

ial K

�

in at least the one point green

�

, but also exludes

fromK

�

the point labelled red

�

. It is therefore a set with the

desired harateristi that was enuniated in the statement

of this theorem: whose demonstration is thus onluded.

Sets that have this peuliar property of `sampling, but not

onsuming' eah and every unountable bounded losed set in

R are alled Bernstein sets. They feature largely in our seond

appliation, whih onerns `inomparable' sets in R, and whih

needs some preliminary disussion of `omparable' ones. If A and

B are two subsets of the real line, and if it is possible to �nd a

real funtion from A onto B that is one-to-one (for whih reason

it will have an inverse from B onto A) and suh that both the

funtion and its inverse are ontinuous (at eah point of A and of

B respetively) we shall all B a opy of A. For instane, R itself

and (�

�

2

;

�

2

) are opies of one another sine tan() and artan()

map ontinuously between them. We all sets C and D ompar-

able if one of them ontains a opy of the other, and inomparable

if this is not the ase. Thus (0,1) and Q are omparable beause,

with some e�ort, one may show that the set Q \ (0; 1) of those

rationals that lie inside (0,1) is a opy of the whole of Q . Again,

[0,1℄ and (0,1) are omparable in a double sense sine the �rst

ontains not merely a opy but the original of the seond and the

seond ontains [

1

3

;

2

3

℄ whih is easily seen to be a opy of the �rst.
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Now it is a ommon experiene that if two subsets of R are hosen

`at random' without a good deal of malie aforethought, they are

virtually always omparable. Nevertheless, inomparable pairs of

sets do exist in profusion, and the Bernstein sets will help us to

detet them in this sense at least : for any given Bernstein set A,

we an onstrut another one, B, that is inomparable with it.

The underlying idea of this onstrution is very similar to

that of the previous one. We shall inspet the list of unountable

bounded losed sets K

�

and, within eah, selet a point to inlude

in B and a point to exlude from B: all these hoies to be distint.

In parallel with this, we should like to san through a full list of

all the mappings � that `might' opy A into B or B into A, and

sabotage eah of them: for example, by exluding from B a point

of the form �(a) for some a in A, and inluding in B a point b

for whih �(b) lies outside A; or perhaps by inluding in B two

points at whih the values of � were equal (thus preventing � from

being one{to{one on B), or some ombination of suh ations.

Unfortunately there are too many mappings for this strategy to

sueed unmodi�ed: the set of potential opying maps is bigger

than , so we should run out ofK

�

to hoose within, long before we

had spiked every possible �. Lukily, a ontinuous real funtion

that is de�ned on a set whih ontains the rationals Q is fully

determined by what it does on Q ; and there are only {many

funtions from Q to R. These two observations allow us to use the

ontinuous one{to{one maps from Q to R in plae of the exhaustive

list of opying maps, seure in the knowledge that neither the list

ofK

�

nor the shortened list of maps will terminate before the other

does.

Here now is a detailed look at the �rst step in the trans�nite

sabotaging proess.

Lemma. Suppose that A is a Bernstein set ontaining Q , and �

is a ontinuous one-to-one funtion from Q to R. There are two

disjoint sets In

o

, Out

o

, ontaining no more than two points eah,

suh that if B is any set ontaining In

o

and disjoint from Out

o

,

then no extension of � an opy A into B nor B into A.

Proof: Exatly one of the following statements must be true:

(i) there is a number x at whih � does not have a limit;
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or

(ii) there are two distint numbers x

1

and x

2

at whih � has the

same limit;

or

(iii) we an ontinuously extend � to a one{to{one mapping �

�

on the whole of R.

In ases (i) and (ii), put In

o

= fxg and fx

1

; x

2

g respetively, and

this will already prevent any ontinuous, one{to{one extension of

� from opying into A a set that ontains In

o

. In ase (iii), hoose

any unountable bounded losed set K, observe that �

�

(K) is

another suh set and therefore annot be entirely ontained in A,

so hoose k in K with �

�

(k) not in A and delare In

o

to be fkg.

This again bloks � from extending to a opying map that ould

take a superset of In

o

to A.

Continuing, exatly one of the next two statements is true:

(iv) the limit of � at eah point of A at whih suh a limit exists

belongs to In

o

;

or

(v) there is a point of A at whih � has a limit y lying outside

In

o

.

Now in ase (iv), either the limit of � at some point of A fails

to exist or, bearing in mind the omparative sizes of A and In

o

!

there are two points of A at whih � has the same limit. In either

eventuality, no ontinuous one{to{one extension of � over A an

exist and we an take Out

o

to be empty. In ase (v) let Out

o

= fyg

and we see that a ontinuous extension of � over A ould not map

into a set disjoint from Out

o

sine it will be ompelled to take y

as one of its values. This ompletes the proof.

The next step requires the iteration of this lemma so as to

sabotage not merely one mapping � but a trans�nite sequene

of suh mappings. As this iteration runs, the `In' sets arising

from eah stage are aumulated, and eventually beome in�nite.

However, as long as no stage is reahed before whih we shall have

already examined {many maps, the aumulating sets will eah

ontain fewer than {many numbers and will therefore represent

only a `small proportion' of R itself. The revised version of the

lemma thus neessitated says:
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Lemma. Given A and � as before, and given two disjoint sets In

and Out, eah ontaining fewer than {many points, it is possible

to augment them by at most two points eah to reate new disjoint

sets In(+), Out(+) suh that no extension of � an opy A into a

set that ontains In(+) and is disjoint from Out(+), nor vie versa.

(The proof, though idential in strategy with the preeding, is more

tehnial in detail and will be omitted. The interested reader is

referred to [6℄.)

Now we are ready to demonstrate the existene of inom-

parable pairs of Bernstein sets (see [2℄, [3℄ for lassial, ground{

breaking explorations of this idea, and [5℄, [8℄ for assoiated on-

temporary developments).

Theorem. Given a Bernstein set A ontaining the set Q of ration-

als, there is another that is inomparable with it.

Constrution

(a) There are {many unountable bounded losed sets (eah of

whih ontains {many elements). There are also {many on-

tinuous one{to{one mappings from Q to R. It follows that there

are {many pairs

(K;�)

that ombine an unountable bounded losed set (K) with a on-

tinuous one{to{one map (�) from Q to R. Therefore the olletion

of all suh pairs an be listed and labelled as

f(K

�

; �

�

) : � belonging to g:

Clearly,  is the `right' well{ordered sale for the problem.

(b) Now onsider the `desirable irumstane' about a typial sale

point � in , that:

(i) there should be de�ned, for eah  < � in , two

disjoint sets In



, Out



of real numbers eah ontaining

fewer than {many points;

(ii) as  inreases, both In



and Out



expand;

(iii) K



has at least one point in ommon with In



, and

at least one point in ommon with Out



;
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(iv) no extension of �



an opy A into any set whih

ontains In



and is disjoint from Out



, nor vie versa.

() Kik{start the proess by putting all the rational numbers into

the `In-box' before beginning.

(d) At stage �, if everything has been implemented at all stages 

before �, then the unions of the aumulated sets In



, Out



still

have fewer than {many points eah. Use the `enhaned' Lemma

to augment these unions in suh a way as to blok �

�

from having

an extension that ould opy between A and any set that ontained

the augmented `In' set but avoided the augmented `Out' set. Also

selet from K

�

any two points that have not been so far hosen,

and put one into In and the other into Out. Delare In

�

and Out

�

to mean the newly augmented `In' and `Out' sets. Observe that the

`desirable irumstane' now also prevails at the stage immediately

following �.

(e) By indution, the proess runs for all � in .

(f) The union B of all the sets In

�

(for � in ), aording to (iii),

both hooses and rejets a point from eah and every K

�

: that is,

it is a Bernstein set. On the other hand, (iv) shows that none of

the maps �

�

an extend to opy A into B, nor B into A; bearing

in mind that A and B both ontain Q , and that therefore every

ontinuous one{to{one map de�ned on A or B is an extension of

one of these maps, that shows that A and B are inomparable in

the present sense of the word. Thus, the onstrution is omplete

and the theorem established.

Notes (i) Purely routine modi�ations of this argument will show

that, given a �nite list of Bernstein sets (eah, for onveniene,

ontaining Q ), we an build another that is inomparable with

eah of them.

(ii) With a little more are, the onstrution an be tweaked to

show that, given a list of {many Bernstein sets (or fewer), another

an be onstruted that is inomparable with every one in the list.

(iii) This observation, in its turn, an be used as the key step in

another indution proess that will generate a olletion of more

than {many Bernstein sets, every two of whih are inomparable.
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(iv) An argument similar in spirit (though di�erent in detail) to

this disourse will produe a olletion of more than {many Bern-

steins suh that, for eah two hosen from the olletion, one an

be opied into the other but not vie versa.

4. Towards the frontier

The end{produts of the above disussion (the results in (iii) and

(iv) of the last Note) were known to the great Polish mathem-

atiians Banah, Kuratowski and Sierpi�nski by the mid 1920's (see

for example, [2℄ and [3℄) although they derived them by somewhat

di�erent methods. So also was the style of argument we have out-

lined here. Let us onlude the present artile by referring to some

more reent developments in the same vein.

An (abstrat) ordered set is a olletion of `nodes' between

pairs of whih a `preedene' may be spei�ed subjet to two rules:

� every node preedes itself

� if node 1 preedes node 2, and node 2 preedes node

3, then node 1 preedes node 3.

For example, the olletion of nonzero integers an be made into an

interesting ordered set by delaring that m preedes n whenever

m is an exat divisor of n. (Notie that neither of 6, 10 preedes

the other. Also note that 3 preedes �3 and �3 preedes 3.)

Any olletion of subsets of R an be turned into an ordered

set by delaring that `A preedes B' shall mean that B ontains a

opy of A. The question that an now be pereived as lying behind

muh of this disussion is: whih ordered sets arise like this? That

is, given an abstrat ordered set E, how an we determine whether

there exists a olletion of subsets of R whose preedene relation

under `ontains a opy of' preisely mathes E? Suh a olletion

is alled a realization of E. In this language, the partial answers

referred to in (iii) and (iv) above assert that a realization an be

found for:

(iii

�

) a ertain ordered set having more than {many nodes and

no preedene relations other than those that are fored by the

requirement that `every node preedes itself', and for

(iv

�

) a ertain ordered set having more than {many nodes, every

two of whih are related by a preedene.
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'Trisha Matthews, as part of her dotoral thesis [4℄, was able

to prove that every ordered set on {many nodes that satis�es an

additional and natural rule (that two nodes, eah of whih preedes

the other, are atually one and the same node) does have a real-

ization [5℄. The present authors have reently shown [6℄ that this

onlusion remains valid without the additional rule. For ordered

sets having more than {many nodes, the problem is muh less

tratable. It is known that the family of all subsets of R, ordered

by set{inlusion, does have a realization [8℄; this is one of very

few extant positive results (onerning more than {many nodes),

exluding those losely related to (iii

�

) and (iv

�

) in whih the

preedene relations are either as sparse or as abundant as pos-

sible. On the negative side, apart from the obvious impossibility

of realizing an ordered set that has more nodes than R has subsets,

no unrealizible example has ever been exhibited: and this has in

reent years fuelled the onjeture that none exist. However, evid-

ene has been obtained in the last few months that this onjeture

is unprovable: that is, there is a logial `model' of set theory within

whih at least one ordered set (having no more nodes than R has

subsets) possesses no realization. (Remarkably, it is also pos-

sible to devise, for any given ordered set E of this size, another

set{theoreti model in whih E does have a realization!) The fun-

damental problem of reognizing whih ones have onsequently

remains open (and, moreover, has a major logial dimension in

being model-sensitive).
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