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It is well known that the manipulation of divergent series an give

peuliar results. The series S(a) =
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X
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n! is learly horribly

divergent for a 6= 0, yet we will show by using some elementary

integrals involving the Bessel funtion K

0

(x) that it an be viewed

as an expansion in powers of a of a funtion whih diverges for

a < 0.
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Let us onsider expanding e

�at

in the argument of (2) so that
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integration of this term by term using (1) yields
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Thus the divergent series S(�a) an be onsidered as a repres-

entation of the funtion f(a), whih from its de�nition in (2), is

learly singular for a < 0! (We note that f(a) ! 1 as a ! 0

+

in

both (2) and (4).) This may alternatively be viewed as a way of

inserting a \onvergene" fator of 1=(n!)

2

into eah term of the

series for S(�a).

These manipulations are akin to the insertion of a fator of

1

n!

in Borel series. To see this, onsider the integrals
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Expanding e

�at

in powers of at in (6) we obtain
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whih beomes, if we integrate term-by-term using (5)
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By omparing (6) with (8), we see that

1

1 + a

is formally repres-

ented by the series

1

X
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(�a)

n

for all a > �1 even though this

geometri series diverges for jaj > 1.

We hene see that, one again, a divergent series whih at

�rst glane is \meaningless" may in fat be given a \meaning",
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provided we are willing to indulge in interhanging the order of

summation and integration, as we have done in going from (2) to

(4) or (6) to (8). (As

1

X
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(�at)

n

n!

uniformly onverges to e

�at

for

�nite at, term-by-term integration of the series in (3) and (7) is

justi�ed over any �nite range.)

A more formal approah that is learly related to the usual

disussion of Borel Summation is now skethed. If one has a series
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whih onverges for jaj < R, then
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onverges everywhere. It is easily shown now, using the integral

of eq. (1), that

F (a) = 2

Z

1

0

dt �(ta)K

0

(2

p

t) (11)

is an analyti ontinuation of f(a) aross jaj = R wherever F (a)

is analyti. We have essentially onsidered an example of this

general result for the ase b

n

= (�1)

n

and R = 0 where the usual

arguments are invalid.
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