SUMMING A DIVERGENT SERIES
D. G. C. McKeon

It is well known that the manipulation of divergent series can give
o0
peculiar results. The series S(a) = Z a™n! is clearly horribly

n=0
divergent for a # 0, yet we will show by using some elementary
integrals involving the Bessel function Ko (z) that it can be viewed
as an expansion in powers of a of a function which diverges for
a <0.
The two integrals we need are [1]

/ODO dt 1" Ko(2VT) = %(n!)2 (1)

and

t

fla) = 2/000 dt e~ Ko(2V/t) = er 7 dt% (a>0). (2)

a Jija

Let us consider expanding e~% in the argument of (2) so that

f(a) = 2/0@ dty ﬂﬂ%(zﬂ); (3)
0 ~ nl
integration of this term by term using (1) yields
f@ =23 S [ Jay] (@)
= Z (—a)™n!
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Thus the divergent series S(—a) can be considered as a repres-
entation of the function f(a), which from its definition in (2), is
clearly singular for a < 0! (We note that f(a) - 1 asa — 07 in
both (2) and (4).) This may alternatively be viewed as a way of
inserting a “convergence” factor of 1/(n!)? into each term of the
series for S(—a).

These manipulations are akin to the insertion of a factor of
% in Borel series. To see this, consider the integrals

/ dtt"e™t = n! (5)
0

and
1
_ —at _—t __ _
g(a)—/o dte e =174 (a > —1). (6)

a

Expanding e~ in powers of at in (6) we obtain

g(a) = /000 aty %e*t (7)

n=0

which becomes, if we integrate term-by-term using (5)

gy =3Y L () ®)

n!
=Y (0"
n=0

By comparing (6) with (8), we see that Tta is formally repres-
o0
ented by the series Z (—a)” for all @ > —1 even though this
n=0
geometric series diverges for |a| > 1.
We hence see that, once again, a divergent series which at
first glance is “meaningless” may in fact be given a “meaning”,
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provided we are willing to indulge in interchanging the order of
summation and integration, as we have done in going from (2) to

o0
—at n
(4) or (6) to (8). (As Z ( s') uniformly converges to e~% for
n=0 ’

finite at, term-by-term integration of the series in (3) and (7) is
justified over any finite range.)

A more formal approach that is clearly related to the usual
discussion of Borel Summation is now sketched. If one has a series

fla) = Z bpa” n! 9)
n=0

which converges for |a| < R, then

(10)

converges everywhere. It is easily shown now, using the integral
of eq. (1), that

F(a) =2 /0 h dt (ta) Ko(2V/t) (11)

is an analytic continuation of f(a) across |a| = R wherever F(a)
is analytic. We have essentially considered an example of this
general result for the case b, = (—1)" and R = 0 where the usual
arguments are invalid.
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