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It is well known that the manipulation of divergent series 
an give

pe
uliar results. The series S(a) =

1

X

n=0

a

n

n! is 
learly horribly

divergent for a 6= 0, yet we will show by using some elementary

integrals involving the Bessel fun
tion K

0

(x) that it 
an be viewed

as an expansion in powers of a of a fun
tion whi
h diverges for

a < 0.
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Let us 
onsider expanding e
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in the argument of (2) so that
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integration of this term by term using (1) yields
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Thus the divergent series S(�a) 
an be 
onsidered as a repres-

entation of the fun
tion f(a), whi
h from its de�nition in (2), is


learly singular for a < 0! (We note that f(a) ! 1 as a ! 0

+

in

both (2) and (4).) This may alternatively be viewed as a way of

inserting a \
onvergen
e" fa
tor of 1=(n!)

2

into ea
h term of the

series for S(�a).

These manipulations are akin to the insertion of a fa
tor of

1

n!

in Borel series. To see this, 
onsider the integrals
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Expanding e

�at

in powers of at in (6) we obtain

g(a) =

Z

1

0

dt

1

X

n=0

(�at)

n

n!

e

�t

(7)

whi
h be
omes, if we integrate term-by-term using (5)

g(a) =

1

X

n=0

(�a)

n

n!

(n!) (8)

=

1

X

n=0

(�a)

n

:

By 
omparing (6) with (8), we see that

1

1 + a

is formally repres-

ented by the series

1

X

n=0

(�a)

n

for all a > �1 even though this

geometri
 series diverges for jaj > 1.

We hen
e see that, on
e again, a divergent series whi
h at

�rst glan
e is \meaningless" may in fa
t be given a \meaning",
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provided we are willing to indulge in inter
hanging the order of

summation and integration, as we have done in going from (2) to

(4) or (6) to (8). (As

1

X

n=0

(�at)

n

n!

uniformly 
onverges to e

�at

for

�nite at, term-by-term integration of the series in (3) and (7) is

justi�ed over any �nite range.)

A more formal approa
h that is 
learly related to the usual

dis
ussion of Borel Summation is now sket
hed. If one has a series
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whi
h 
onverges for jaj < R, then
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onverges everywhere. It is easily shown now, using the integral

of eq. (1), that

F (a) = 2
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dt �(ta)K
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is an analyti
 
ontinuation of f(a) a
ross jaj = R wherever F (a)

is analyti
. We have essentially 
onsidered an example of this

general result for the 
ase b

n

= (�1)

n

and R = 0 where the usual

arguments are invalid.
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