IRREDUCIBLE CHARACTERS
OF SMALL DEGREE OF THE
UNITRIANGULAR GROUP

Martin Marjoram

We let ¢ be a power of some prime p and for all n € N, we let Uy, (q)
be the set of n x n matrices over F; which are lower-triangular
and have every diagonal entry equal to 1. U,(q) is called the
unitriangular group of degree n over F,. U,(q) is a Sylow p-
subgroup of GL,(q), the general linear group of invertible n x n
matrices over F,. For any finite group G, we will write Irr(G)
for the set of irreducible complex characters of G. Isaacs [2] has
shown that every element of Irr (Un(q)) has degree a power of q.
Using this result of Isaacs, a theorem of Huppert [1] for the case
where ¢ = p can be extended to prove that

{I‘(l) : T eIrr(Un(q))} = {qa :0<a< M}

2

In [4], the author enumerated the irreducible complex characters
of Usy,(q) having each of the three highest degrees, as well as the
irreducible complex characters of Us,,—1(q) of highest degree. In
this paper, we consider the elements of Irr(Un(q)) having each of
the three lowest degrees, namely 1, ¢, and ¢®>. As the underlying
field will remain fixed throughout, we will write U, in place of
Un(q)-

It is easy to see that the commutator subgroup U}, of U, is
given by

U, ={(aij) €Uy : a;;—1 =0 for 2 <i<n}.

We let V,,1 = U, /U,. Then the elements of Irr(U,) of degree 1
are obtained by extending the irreducible characters of V;, 1 to U,.
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As V1 is an (elementary) abelian group of order ¢" !, this means

that there are precisely ¢" ! irreducible characters of U,, of degree

1. We will show that the irreducible characters of U,, of degrees

g and ¢> may be obtained by extending characters of analogous

factor groups and we will count the number having each degree.
For 0 <t <n —1, we define

Wit ={(aij) €Up:a;j=0if 1 <i—j <t}

Thus, for example, Wy o = U,, Wp1 = U}, Wy 3 = U/, and
Whp.n-1 = 1. Each W, ; is a normal subgroup of U,,. For 0 <t <
n — 1 we define

Vn,t = Un/Wn,t-

Thus the elements of V,, ; may be identified with lower-triangular
n xn matrices over F, with 1’s along the diagonal and for which we
only consider the entries on the main diagonal and on the ¢ diag-
onals below the main diagonal. We will write A for the elements
AWn’t of Vn,t-

For 1 < s < n, we define

Ny,s = {(a;j) € Up :a;; =0 for i > j if either i < s or j > s}

(5 0) eemm)

and

Hy,s ={(aij) €Uy : a;; =0 for i >j where i >s and j < s}
0
B

A
0
For all s, N, is a normal abelian subgroup of U,, and H, ; is a

subgroup of U,, which complements N,, 5, i.e. N,, ;N H, s =1 and
U = N, sHys. Usually we write the elements of H, ; as (A4, B)

. A 0
instead of (0 B)'

) :AGUS,BGUHS}.
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We will make extensive use of the following lemma. It fol-
lows partly from a theorem of Gallagher, while the rest can be
deduced from standard Clifford Theory. (See Corollary 6.17 and
Problem 6.18 of [3].) The proof is straightforward and we omit it.

Lemma 1. We let G be a finite group, N a normal abelian sub-
group of G, and H a subgroup of G which complements N. We
let X\ be an element of Irr(N') and we let Tz (\) be the stabilizer of
Ain G, ie.
Ta(A) ={ge G: N =]},

where N9 € Irr(N), M (n) = Xg 'ng) for alln € N. We let
Sa(A) =Ta(A)NH = Te(A)/N. Note that Tg(X) = Sa(A)N. We
define a character A of Tg()\) by A(hn) = X(n) for all h in Sg())
and all n in N. Then for each irreducible character ¥ of Sg(A),

(S\\II)G is an element of Irr(G), distinct for distinct ¥’s, and

A= Y v (a)©.

Yelrr(Sa (N))

Starting instead with an irreducible character I of G, if T lies over
A € Trr(N), then there exists an irreducible character ¥ of Sg(\)
such that A occurs with multiplicity ¥(1) in T'|x and

For 1 < s < n and for every s x (n — s) matrix D over F,,
we define Ap: N,, s = C by

AD((% 107 )) :wT(tr(CD))7

where w is a primitive p" root of unity in C, T: F, — F, is
the usual trace mapping from an extension field into the ground
field, tr denotes the trace of a square matrix, and we identify the
elements of F,, with the integers 0, 1,..., p—1.
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Lemma 2. For1 < s <n, Irr(N, ;) ={Ap : D € M s} and
Ap, = Ap, if and only if Dy = Ds.

Proof: Tt is easy to check that Ap is a degree 1 representation,
and so an irreducible character, of N, ;. Ny is abelian with

¢*("=%) elements, so the number of Ap’s is equal to the number of
irreducible characters of NV, ;. The proof will be complete if we
show that Ap, = Ap, implies that D; = D5. Now,

Ap, =Ap, = WT(Er(©D) _ T(tT(CD2) o a1 CeM, .:(F,)
= T(tr (C(D: — Dg))) =0forall C € Mp_;(Fy)

= tr (C(D1 — D2)) =0 for all C € M, s(Fy)

where the last implication follows from the well-known fact that
T:F, — F, is non-zero.

But the last condition above implies that D; — Dy = 0.
For suppose the (i,j)-entry of Dy — D5 is non-zero. Then we
can let C = Ej;, the (n — s) X s matrix with 1 in the (j, i)—
position and zeros elsewhere. It is clear that for this choice of C',
tr (C(D1 — D»)) is equal to the (i, j)-entry of Dy — D5, and so is
not equal to zero, a contradiction. Thus Ap, = Ap, implies that
D1 = D> and the proof is complete. =

For 1 < s < n, we can now apply the result from Lemma 1
to the normal abelian subgroup N, s of U, and its complement
H, ;. For all elements D of M; ,_s, we let S(D) = Sy, (Ap).

Lemma 3. Let Ap be an element of Irr (N, s) for some value of
s. Then

S(D)={(A, B)€e H,,: ADB™" = D}.
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Proof: Let (A, B) be any element of H,, ;. Then

wo((ED)-w((2 5 (D6 D)
) << 104 1>>

T(tr (B~*CAD))

(tr CADB™'))

zAADBl((g D)

for all elements < r0

c I> of N,, s. Thus A([’;"B) = A pp-1 and

S(D) = {(A, B) € H,, : AP :AD}
- {(A, B)€ Hy, : Ayppr = AD}
={(4,B)eH,, : ADB' =D} =

It follows from the proof above that H,, s acts on Irr(N, s)
via the action (A, B) : Ap — A pp-1. We let O(Ap) be the
orbit of Ap under this action. Of course every element Apr of
O(Ap) lies under precisely the same irreducible characters of U,
as Ap while S(D") =2 S(D).

Lemma 4. Let I' € Irr(U,) and choose t maximal such that
Wi t+1 < ker (I') but W, ¢ £ ker (I'). Then there exists Y € Wy +
such that Y ¢ ker (I') and Y has precisely one non-zero entry
below the main diagonal.

Proof: Let X = (z;;) be an element of W, ; — ker (I'). We define

n
Z=1I,— E xpi—t—1 Bt

I=t+2
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We claim that Z ¢ ker(T"). For if f is the representation of U
which affords T, then f(ZX) = I because ZX € W, 44+1. Thus
f(Z) = f(X)~! # I. We note that

Z =1 —x421F401)(I — 443 2F432) -

(I - xn,nftflEn,nftfl)-

If every term in this product were an element of ker (f), then Z
would also be an element of ker (f). Thus for at least one choice
of k satisfying t + 2 < k < n,

I—app—t—1Ekp—t—1 & ker (),

as required. m

Theorem 5. Take I' € Irr(U,,) and choose t maximal such that
Wht+1 < ker (T) but W, ; £ ker (T'). Then T'(1) > ¢'.

Proof: We choose Y = I + AEj _¢—1 not in ker (I'). We note
that Y is an element of N,, 1. Thus there is at least one element
Ap of Irr(Ny, 1) for which Y is not an element of ker (Ap), i.e.
tr AEy g—t—1D # 0, where D is a (k— 1) x (n — k + 1) matrix over
F,. If D = (d;;), then it follows that dy—¢—1,1 7 0. We let a = dy
be the first non—zero entry in column 1 of D. Then b < k —¢ — 1.
(In fact it must be the case that b =k —t — 1, but we do not need
to prove this.) We let

“ d
A=1-Y 2B,
[=b+1

We set D' = AD. Then Ap: is an element of O(Ap) and

D' = AD
n d n
= (I— Z fElb> (OZEM + Z din Ey + Z dijEij>
I=b+1 I=b+1 1<i<k—1
2<<n—k+1

!
= aFEy + E d;; Eij,
1<i<k—1
9<j<n—k+1



=
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for some d};’s in F,. Thus D' has precisely one non-zero entry in
column 1, namely « in the (b, 1)—position.
Now we have

S(D) 2= S(D') = {(A, B) € Hyy_1: AD'B~' = D'}.

Writing A = (ai;), the equation AD' = D'B gives us relations

which the k — 1 — b entries ap11,5, @Gp12,p, - -, Q1,5 Must satisfy.
Thus
_ ; |Hn,k—1|
IS(D)| = |S(D)| < it
| Hnk—1]
= m
_ |Hn,k—1|
= T

By Lemma 1, there exists ¥ € Irr(S(D)) such that

|Hn k71|
') =v(1)———+—
(1) =¥(1) S(D)]
|Hn,k71|
= |Huk—1l/q

= ¢’ n

Definition: For a finite group G and a positive integer [, we
define C(G, I) to be the number of irreducible characters of G
having degree [.

Corollary 6. Choose t such that 1 < t < n — 1. Then for
0<a<t-—1, we have

O(Un7 qa) = C(Vnﬂf: qa)-
Proof: If T is an element of Irr(U,) such that T'(1) < ¢'=', then

by Theorem 5 W, ; < ker (I'). Thus I is an element of Irr(V}, ;).
Conversely, given any element O of Irr(V,,;), we can extend © to



28 IMS Bulletin 42, 1999 i

an element of Irr(U,,) by letting @(A) = O(I) for all elements A
of Wn,t- ]

To find the number of irreducible characters of U,, of degrees
q and ¢*, we need only calculate C(V,, 2, q) and C(V,, 3, ¢°). While
our main interest in V,, » is in the degree g characters, it turns out
that for this group there is a simple closed formula describing the
number of irreducible characters having any degree. The formulas
we derive involve binomial coefficients. We adopt the conventions
that ()) =1 and ({) = 0 whenever s < ¢.

Theorem 7. {O(1) : © € Irr(V,,2)} = {¢* : 0 < a < 271} and,
for all values of a in this range,

C(Vn,27 qa) — (nfafl)qn—a—2(q _ 1)0. + (n7a72)qnfa72(q _ 1)a+1.

a a

Proof: We proceed by induction on n. V5 5 = Us has ¢ irreducible
characters, all of degree 1, as the theorem states. V35 = Us has
q? characters of degree 1 while every other character degree is a
power of ¢q. Recall that the squares of the degrees of the irreducible
characters of a finite group G add up to the order of G. It follows
that {©(1) : ©® € Irr(V32)} = {1, q} and that C(V39, q) = ¢ —1,
which again is in agreement with the statement of the theorem.
For n > 3, we let

Jn = {(a’ij) + Wn72 € Vn72 L Opn—2 = Ann-1 = 0}
and
Ky = {(bij) +Wpo € Vo : by =0 for i # n}

Now K, is a normal abelian subgroup of V,, 2, having .J,, as com-
plement. For all @ and 3 in F,, we define A, g: K,, = C by

Ao ((big) + W) = wnn=2tflmn,

It is easy to prove that Irr(K,) = {Ayps : a,8 € F;} and
Ay g = Ay g if and only if o = « and ' = 8. Furthermore, for
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any elements A = (aij) + Wh2 of J, and B= (bij) + Wy of Ky,

AL 5(B) = AL 5((bij) + W)
= D (A7 (bij) A+ W)
=Ayp ([ + (bn,n—Q + bn,n—lan—17n—2)En7n_2+

bn,nflEn,nfl + Wn,2)
— wT(a(bn,n72+bn,nflan71,n72)+/an,n71)

— wT(abn,n—2+(,6+aan—1,n—2)bn,n—1)

= Aa7(5+aan—1,n_2) (B)a

ie. Aéﬂ = Ay, (B+ae), Where € = ap 1,0 2.
We define S(a, 8) = Sv, ,(Aa,g). Then for all non-zero
elements a of F, and all elements 3 of F,

S(0,8) =Jn = Vi1
and
S(a,B) = S(a, 0)
= {(aij) +Wana € Jn t Gnotm_s = 0}
- {(a”-) e 0}

2 Vo229 (Fy, +).

For all non-zero elements o of F,; and all elements 8 of F,
Lemma 1 tells us that

{r € Trr(Vis) : (T, Do)y # 0}

{(20p9)"™ ¥ e Tr(S(0, )}

and
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{1" € Irr(V,2) : (T, Aa7ﬁ>N 7 0}
= {F er(Vy2) : (Tln, Do)y # 0}

_ {(Am\p)v"’z LT € Trr(S(a, 0))}.

Lemma 1 also implies that, with the same notation as in the sets
above,

(Ro,pT) ™2 (1) = T(1)

and ~ v
(Ba0®) (1) = q¥(1).

Thus for OSGS”_TH-I-I,

C(Va,2, ¢*) =qC(Va-12, ") + q(q — 1)C(V—2,2, ¢" )

=¢("7 )T T @ - )+
a(" T (g - )
gg— 1) ("l D) (g - )t
alg—1) (") g T2 (g — 1)t
="t T (g - D)+ ()T (g - D)+
i I (e D (e A Sl VA
S G U Rl VAR S (i VA (RS VS

It seems to be much more difficult to find a formula for
C(Va,3, ¢*) which holds for all relevant values of a. In this case,
we will confine our attention to the characters of degree ¢ and
state without proof our findings in this case.

Theorem 8. We have C(Vy, 3, ¢°) = q(¢ — 1) and for n > 5,

C(Vns, @) =("2)" " (a— 1)+ (") " *(a— 1)*+
(n—3)""*(g— 1)+ (n—5)¢""*(¢g—1).



2]
3]
[4]
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We can now provide formulae for the number of irreducible
characters of U,, having the degrees 1, ¢ and ¢°.

Theorem 9. For n > 2, U, has ¢"~! irreducible characters of
degree 1. Forn > 3, U, has (n—2)q"3(q—1)+(n—3)¢"3(q—1)2
irreducible characters of degree q. U, has q(q — 1) irreducible
characters of degree q*; for n > 5, U, has (",")¢"™*(q — 1)® +
("M@ = 1)° + (n = 3)¢" (¢ — 1) + (n — 5)¢" (¢ — 1)’
irreducible characters of degree ¢>.

Proof: This follows from Corollary 6, Theorem 7, and Theorem 8.
|
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