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We let q be a power of some prime p and for all n 2 N , we let U

n

(q)

be the set of n � n matri
es over F

q

whi
h are lower-triangular

and have every diagonal entry equal to 1. U

n

(q) is 
alled the

unitriangular group of degree n over F

q

. U

n

(q) is a Sylow p{

subgroup of GL

n

(q), the general linear group of invertible n � n

matri
es over F

q

. For any �nite group G, we will write Irr(G)

for the set of irredu
ible 
omplex 
hara
ters of G. Isaa
s [2℄ has

shown that every element of Irr

�

U

n

(q)

�

has degree a power of q.

Using this result of Isaa
s, a theorem of Huppert [1℄ for the 
ase

where q = p 
an be extended to prove that

n

�(1) : � 2 Irr

�

U

n

(q)

�

o

=

�

q

a

: 0 � a �

n(n� 1)

2

�

:

In [4℄, the author enumerated the irredu
ible 
omplex 
hara
ters

of U

2m

(q) having ea
h of the three highest degrees, as well as the

irredu
ible 
omplex 
hara
ters of U

2m�1

(q) of highest degree. In

this paper, we 
onsider the elements of Irr

�

U

n

(q)

�

having ea
h of

the three lowest degrees, namely 1, q, and q

2

. As the underlying

�eld will remain �xed throughout, we will write U

n

in pla
e of

U

n

(q).

It is easy to see that the 
ommutator subgroup U

0

n

of U

n

is

given by

U

0

n

= f(a

ij

) 2 U

n

: a

i;i�1

= 0 for 2 � i � ng:

We let V

n;1

= U

n

=U

0

n

. Then the elements of Irr(U

n

) of degree 1

are obtained by extending the irredu
ible 
hara
ters of V

n;1

to U

n

.
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As V

n;1

is an (elementary) abelian group of order q

n�1

, this means

that there are pre
isely q

n�1

irredu
ible 
hara
ters of U

n

of degree

1. We will show that the irredu
ible 
hara
ters of U

n

of degrees

q and q

2

may be obtained by extending 
hara
ters of analogous

fa
tor groups and we will 
ount the number having ea
h degree.

For 0 � t � n� 1, we de�ne

W

n;t

= f(a

ij

) 2 U

n

: a

ij

= 0 if 1 < i� j � tg:

Thus, for example, W

n;0

= U

n

, W

n;1

= U

0

n

, W

n;3

= U

00

n

, and

W

n;n�1

= I . Ea
h W

n;t

is a normal subgroup of U

n

. For 0 � t �

n� 1 we de�ne

V

n;t

= U

n

=W

n;t

:

Thus the elements of V

n;t

may be identi�ed with lower-triangular

n�nmatri
es over F

q

with 1's along the diagonal and for whi
h we

only 
onsider the entries on the main diagonal and on the t diag-

onals below the main diagonal. We will write

~

A for the elements

AW

n;t

of V

n;t

.

For 1 � s � n, we de�ne

N

n;s

= f(a

ij

) 2 U

n

: a

ij

= 0 for i > j if either i � s or j > sg

=

��

I

s

0

C I

n�s

�

: C 2M

n�s;s

(F

q

)

�

and

H

n;s

= f(a

ij

) 2 U

n

: a

ij

= 0 for i > j where i > s and j � sg

=

��

A 0

0 B

�

: A 2 U

s

; B 2 U

n�s

�

:

For all s, N

n;s

is a normal abelian subgroup of U

n

and H

n;s

is a

subgroup of U

n

whi
h 
omplements N

n;s

, i.e. N

n;s

\H

n;s

= I and

U = N

n;s

H

n;s

. Usually we write the elements of H

n;s

as (A; B)

instead of

�

A 0

0 B

�

.
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We will make extensive use of the following lemma. It fol-

lows partly from a theorem of Gallagher, while the rest 
an be

dedu
ed from standard Cli�ord Theory. (See Corollary 6.17 and

Problem 6.18 of [3℄.) The proof is straightforward and we omit it.

Lemma 1. We let G be a �nite group, N a normal abelian sub-

group of G, and H a subgroup of G whi
h 
omplements N . We

let � be an element of Irr(N) and we let T

G

(�) be the stabilizer of

� in G, i.e.

T

G

(�) = fg 2 G : �

g

= �g;

where �

g

2 Irr(N), �

g

(n) = �(g

�1

ng) for all n 2 N . We let

S

G

(�) = T

G

(�)\H

�

=

T

G

(�)=N . Note that T

G

(�) = S

G

(�)N . We

de�ne a 
hara
ter

�

� of T

G

(�) by

�

�(hn) = �(n) for all h in S

G

(�)

and all n in N . Then for ea
h irredu
ible 
hara
ter 	 of S

G

(�),

�

�

�	

�

G

is an element of Irr(G), distin
t for distin
t 	's, and

�

G

=

X

	2Irr(S

G

(�))

	(1)

�

�

�	

�

G

:

Starting instead with an irredu
ible 
hara
ter � of G, if � lies over

� 2 Irr(N), then there exists an irredu
ible 
hara
ter 	 of S

G

(�)

su
h that � o

urs with multipli
ity 	(1) in �j

N

and

�(1) = 	(1)

jH j

jS

G

(�)j

:

For 1 � s � n and for every s� (n� s) matrix D over F

q

,

we de�ne �

D

: N

n;s

! C by

�

D

 

�

I

s

0

C I

n�s

�

!

= !

T

(

tr (CD)

)

;

where ! is a primitive p

th

root of unity in C , T : F

q

! F

p

is

the usual tra
e mapping from an extension �eld into the ground

�eld, tr denotes the tra
e of a square matrix, and we identify the

elements of F

p

with the integers 0, 1,: : : , p� 1.
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Lemma 2. For 1 � s � n, Irr(N

n;s

) = f�

D

: D 2 M

s;n�s

g and

�

D

1

= �

D

2

if and only if D

1

= D

2

.

Proof: It is easy to 
he
k that �

D

is a degree 1 representation,

and so an irredu
ible 
hara
ter, of N

n;s

. N

n;s

is abelian with

q

s(n�s)

elements, so the number of �

D

's is equal to the number of

irredu
ible 
hara
ters of N

n;s

. The proof will be 
omplete if we

show that �

D

1

= �

D

2

implies that D

1

= D

2

. Now,

�

D

1

= �

D

2

) !

T

(

tr (CD

1

)

)

= !

T

(

tr (CD

2

)

)

for all C 2M

n�s;s

(F

q

)

) T

�

tr (C(D

1

�D

2

))

�

= 0 for all C 2M

n�s;s

(F

q

)

) tr (C(D

1

�D

2

)) = 0 for all C 2M

n�s;s

(F

q

)

where the last impli
ation follows from the well-known fa
t that

T :F

q

! F

p

is non-zero.

But the last 
ondition above implies that D

1

� D

2

= 0.

For suppose the (i; j){entry of D

1

� D

2

is non{zero. Then we


an let C = E

ji

, the (n � s) � s matrix with 1 in the (j; i){

position and zeros elsewhere. It is 
lear that for this 
hoi
e of C,

tr

�

C(D

1

�D

2

)

�

is equal to the (i; j){entry of D

1

�D

2

, and so is

not equal to zero, a 
ontradi
tion. Thus �

D

1

= �

D

2

implies that

D

1

= D

2

and the proof is 
omplete.

For 1 � s � n, we 
an now apply the result from Lemma 1

to the normal abelian subgroup N

n;s

of U

n

and its 
omplement

H

n;s

. For all elements D of M

s;n�s

, we let S(D) = S

U

n

(�

D

).

Lemma 3. Let �

D

be an element of Irr (N

n;s

) for some value of

s. Then

S(D) = f(A; B) 2 H

n;s

: ADB

�1

= Dg:
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Proof: Let (A; B) be any element of H

n;s

. Then

�

(A;B)

D

 

�

I 0

C I

�

!

= �

D

 

�

A 0

0 B

�

�1

�

I 0

C I

��

A 0

0 B

�

!

= �

D

 

�

I 0

B

�1

CA I

�

!

= !

T

(

tr

(

B

�1

CAD

))

= !

T

(

tr

(

CADB

�1

))

= �

ADB

�1

 

�

I 0

C I

�

!

for all elements

�

I 0

C I

�

of N

n;s

. Thus �

(A;B)

D

= �

ADB

�1
and

S(D) =

n

(A; B) 2 H

n;s

: �

(A;B)

D

= �

D

o

=

n

(A; B) 2 H

n;s

: �

ADB

�1
= �

D

o

=

n

(A; B) 2 H

n;s

: ADB

�1

= D

o

:

It follows from the proof above that H

n;s

a
ts on Irr(N

n;s

)

via the a
tion (A; B) : �

D

7! �

ADB

�1
. We let O(�

D

) be the

orbit of �

D

under this a
tion. Of 
ourse every element �

D

0

of

O(�

D

) lies under pre
isely the same irredu
ible 
hara
ters of U

n

as �

D

while S(D

0

)

�

=

S(D).

Lemma 4. Let � 2 Irr(U

n

) and 
hoose t maximal su
h that

W

n;t+1

� ker (�) but W

n;t

6� ker (�). Then there exists Y 2 W

n;t

su
h that Y 62 ker (�) and Y has pre
isely one non-zero entry

below the main diagonal.

Proof: Let X = (x

ij

) be an element of W

n;t

� ker (�). We de�ne

Z = I

n

�

n

X

l=t+2

x

l;l�t�1

E

l;l�t�1

:
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We 
laim that Z 62 ker (�). For if f is the representation of U

whi
h a�ords �, then f(ZX) = I be
ause ZX 2 W

n;t+1

. Thus

f(Z) = f(X)

�1

6= I . We note that

Z =(I � x

t+2;1

E

t+2;1

)(I � x

t+3;2

E

t+3;2

) : : :

(I � x

n;n�t�1

E

n;n�t�1

):

If every term in this produ
t were an element of ker (f), then Z

would also be an element of ker (f). Thus for at least one 
hoi
e

of k satisfying t+ 2 � k � n,

I � x

k;k�t�1

E

k;k�t�1

62 ker (�);

as required.

Theorem 5. Take � 2 Irr(U

n

) and 
hoose t maximal su
h that

W

n;t+1

� ker (�) but W

n;t

6� ker (�). Then �(1) � q

t

.

Proof: We 
hoose Y = I + �E

k;k�t�1

not in ker (�). We note

that Y is an element of N

n;k�1

. Thus there is at least one element

�

D

of Irr(N

n;k�1

) for whi
h Y is not an element of ker (�

D

), i.e.

tr�E

1;k�t�1

D 6= 0, where D is a (k� 1)� (n� k+1) matrix over

F

q

. If D = (d

ij

), then it follows that d

k�t�1;1

6= 0. We let � = d

b1

be the �rst non{zero entry in 
olumn 1 of D. Then b � k � t� 1.

(In fa
t it must be the 
ase that b = k� t� 1, but we do not need

to prove this.) We let

A = I �

n

X

l=b+1

d

l1

�

E

lb

:

We set D

0

= AD. Then �

D

0

is an element of O(�

D

) and

D

0

= AD

=

 

I �

n

X

l=b+1

d

l1

�

E

lb

! 

�E

b1

+

n

X

l=b+1

d

l1

E

l1

+

X

1�i�k�1

2�j�n�k+1

d

ij

E

ij

!

= �E

b1

+

X

1�i�k�1

2�j�n�k+1

d

0

ij

E

ij

;
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for some d

0

ij

's in F

q

. Thus D

0

has pre
isely one non{zero entry in


olumn 1, namely � in the (b; 1){position.

Now we have

S(D)

�

=

S(D

0

) = f(A; B) 2 H

n;k�1

: AD

0

B

�1

= D

0

g:

Writing A = (a

ij

), the equation AD

0

= D

0

B gives us relations

whi
h the k� 1� b entries a

b+1;b

, a

b+2;b

, : : : , a

k�1;b

must satisfy.

Thus

jS(D)j = jS(D

0

)j �

jH

n;k�1

j

q

k�1�b

�

jH

n;k�1

j

q

k�1�(k�t�1)

=

jH

n;k�1

j

q

t

:

By Lemma 1, there exists 	 2 Irr

�

S(D)

�

su
h that

�(1) = 	(1)

jH

n;k�1

j

jS(D)j

�

jH

n;k�1

j

jH

n;k�1

j=q

t

= q

t

:

De�nition: For a �nite group G and a positive integer l, we

de�ne C(G; l) to be the number of irredu
ible 
hara
ters of G

having degree l.

Corollary 6. Choose t su
h that 1 � t � n � 1. Then for

0 � a � t� 1, we have

C(U

n

; q

a

) = C(V

n;t

; q

a

):

Proof: If � is an element of Irr(U

n

) su
h that �(1) � q

t�1

, then

by Theorem 5 W

n;t

� ker (�). Thus � is an element of Irr(V

n;t

).

Conversely, given any element � of Irr(V

n;t

), we 
an extend � to
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an element of Irr(U

n

) by letting �(A) = �(I) for all elements A

of W

n;t

.

To �nd the number of irredu
ible 
hara
ters of U

n

of degrees

q and q

2

, we need only 
al
ulate C(V

n;2

; q) and C(V

n;3

; q

2

). While

our main interest in V

n;2

is in the degree q 
hara
ters, it turns out

that for this group there is a simple 
losed formula des
ribing the

number of irredu
ible 
hara
ters having any degree. The formulas

we derive involve binomial 
oeÆ
ients. We adopt the 
onventions

that

�

0

0

�

= 1 and

�

s

t

�

= 0 whenever s < t.

Theorem 7. f�(1) : � 2 Irr(V

n;2

)g = fq

a

: 0 � a �

n�1

2

g and,

for all values of a in this range,

C(V

n;2

; q

a

) =

�

n�a�1

a

�

q

n�a�2

(q � 1)

a

+

�

n�a�2

a

�

q

n�a�2

(q � 1)

a+1

:

Proof: We pro
eed by indu
tion on n. V

2;2

= U

2

has q irredu
ible


hara
ters, all of degree 1, as the theorem states. V

3;2

= U

3

has

q

2


hara
ters of degree 1 while every other 
hara
ter degree is a

power of q. Re
all that the squares of the degrees of the irredu
ible


hara
ters of a �nite group G add up to the order of G. It follows

that f�(1) : � 2 Irr(V

3;2

)g = f1; qg and that C(V

3;2

; q) = q � 1,

whi
h again is in agreement with the statement of the theorem.

For n > 3, we let

J

n

=

n

(a

ij

) +W

n;2

2 V

n;2

: a

n;n�2

= a

n;n�1

= 0

o

and

K

n

=

n

(b

ij

) +W

n;2

2 V

n;2

: b

ij

= 0 for i 6= n

o

:

Now K

n

is a normal abelian subgroup of V

n;2

, having J

n

as 
om-

plement. For all � and � in F

q

, we de�ne �

�;�

: K

n

! C by

�

�;�

�

(b

ij

) +W

n;2

�

= !

�b

n;n�2

+�b

n;n�1

:

It is easy to prove that Irr(K

n

) = f�

�;�

: �; � 2 F

q

g and

�

�

0

;�

0

= �

�;�

if and only if �

0

= � and �

0

= �. Furthermore, for



� The unitriangular group 29

any elements

~

A = (a

ij

) +W

n;2

of J

n

and

~

B = (b

ij

) +W

n;2

of K

n

,

�

~

A

�;�

(

~

B) = �

~

A

�;�

�

(b

ij

) +W

n;2

�

= �

�;�

�

A

�1

(b

ij

)A+W

n;2

�

= �

�;�

�

I + (b

n;n�2

+ b

n; n�1

a

n�1;n�2

)E

n;n�2

+

b

n;n�1

E

n;n�1

+W

n;2

�

= !

T (�(b

n;n�2

+b

n;n�1

a

n�1;n�2

)+�b

n;n�1

)

= !

T (�b

n;n�2

+(�+�a

n�1;n�2

)b

n;n�1

)

= �

�;(�+�a

n�1;n�2

)

(

~

B);

i.e. �

~

A

�;�

= �

�;(�+�")

, where " = a

n�1;n�2

.

We de�ne S(�; �) = S

V

n;2

(�

�;�

). Then for all non-zero

elements � of F

q

and all elements � of F

q

,

S(0; �) = J

n

�

=

V

n�1;2

and

S(�; �)

�

=

S(�; 0)

=

n

(a

ij

) +W

n;2

2 J

n

: a

n�1;n�2

= 0

o

=

n

(a

ij

) +W

n;2

2 V

n;2

: a

n�1;n�2

= a

n;n�1

= a

n;n�2

= 0

o

�

=

V

n�2;2

� (F

q

; +):

For all non-zero elements � of F

q

and all elements � of F

q

,

Lemma 1 tells us that

n

� 2 Irr(V

n;2

) :




�j

N

; �

0;�

�

N

6= 0

o

=

n

�

�

�

0;�

	

�

V

n;2

: 	 2 Irr

�

S(0; �)

�

o

and
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n

� 2 Irr(V

n;2

) :




�j

N

; �

�;�

�

N

6= 0

o

=

n

� 2 Irr(V

n;2

) :




�j

N

; �

�;0

�

N

6= 0

o

=

n

�

�

�

�;0

	

�

V

n;2

: 	 2 Irr

�

S(�; 0)

�

o

:

Lemma 1 also implies that, with the same notation as in the sets

above,

�

�

�

0;�

	

�

V

n;2

(1) = 	(1)

and

�

�

�

�;0

	

�

V

n;2

(1) = q	(1):

Thus for 0 � a �

n�2�1

2

+ 1,

C(V

n;2

; q

a

) =qC(V

n�1;2

; q

a

) + q(q � 1)C(V

n�2;2

; q

a�1

)

=q

�

n�1�a�1

a

�

q

n�1�a�2

(q � 1)

a

+

q

�

n�1�a�2

a

�

q

n�1�a�2

(q � 1)

a+1

+

q(q � 1)

�

n�2�(a�1)�1

a�1

�

q

n�2�(a�1)�2

(q � 1)

a�1

+

q(q � 1)

�

n�2�(a�1)�2

a�1

�

q

n�2�(a�1)�2

(q � 1)

a

=

�

n�a�2

a

�

q

n�a�2

(q � 1)

a

+

�

n�a�3

a

�

q

n�a�2

(q � 1)

a+1

+

�

n�a�2

a�1

�

q

n�a�2

(q � 1)

a

+

�

n�a�3

a�1

�

q

n�a�2

(q � 1)

a+1

=

�

n�a�1

a

�

q

n�a�2

(q � 1)

a

+

�

n�a�2

a

�

q

n�a�2

(q � 1)

a+1

:

It seems to be mu
h more diÆ
ult to �nd a formula for

C(V

n;3

; q

a

) whi
h holds for all relevant values of a. In this 
ase,

we will 
on�ne our attention to the 
hara
ters of degree q

2

and

state without proof our �ndings in this 
ase.

Theorem 8. We have C(V

4; 3

; q

2

) = q(q � 1) and for n � 5,

C(V

n; 3

; q

2

) =

�

n�3

2

�

q

n�4

(q � 1)

2

+

�

n�4

2

�

q

n�4

(q � 1)

3

+

(n� 3)q

n�2

(q � 1) + (n� 5)q

n�2

(q � 1)

2

:
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We 
an now provide formulae for the number of irredu
ible


hara
ters of U

n

having the degrees 1, q and q

2

.

Theorem 9. For n � 2, U

n

has q

n�1

irredu
ible 
hara
ters of

degree 1. For n � 3, U

n

has (n�2)q

n�3

(q�1)+(n�3)q

n�3

(q�1)

2

irredu
ible 
hara
ters of degree q. U

4

has q(q � 1) irredu
ible


hara
ters of degree q

2

; for n � 5, U

n

has

�

n�3

2

�

q

n�4

(q � 1)

2

+

�

n�4

2

�

q

n�4

(q � 1)

3

+ (n � 3)q

n�2

(q � 1) + (n � 5)q

n�2

(q � 1)

2

irredu
ible 
hara
ters of degree q

2

.

Proof: This follows from Corollary 6, Theorem 7, and Theorem 8.
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