IRREDUCIBLE CHARACTERS OF SMALL DEGREE OF THE UNITRIANGULAR GROUP

Martin Marjoram

We let q be a power of some prime p and for all $n \in \mathbb{N}$, we let $U_n(q)$ be the set of $n \times n$ matrices over \mathbf{F}_q which are lower-triangular and have every diagonal entry equal to 1. $U_n(q)$ is called the *unitriangular group* of degree n over \mathbf{F}_q . $U_n(q)$ is a Sylow p-subgroup of $\operatorname{GL}_n(q)$, the general linear group of invertible $n \times n$ matrices over \mathbf{F}_q . For any finite group G, we will write $\operatorname{Irr}(G)$ for the set of irreducible complex characters of G. Isaacs [2] has shown that every element of $\operatorname{Irr}(U_n(q))$ has degree a power of q. Using this result of Isaacs, a theorem of Huppert [1] for the case where q = p can be extended to prove that

$$\left\{\Gamma(1) : \Gamma \in \operatorname{Irr}(U_n(q))\right\} = \left\{q^a : 0 \le a \le \frac{n(n-1)}{2}\right\}$$

In [4], the author enumerated the irreducible complex characters of $U_{2m}(q)$ having each of the three highest degrees, as well as the irreducible complex characters of $U_{2m-1}(q)$ of highest degree. In this paper, we consider the elements of $Irr(U_n(q))$ having each of the three lowest degrees, namely 1, q, and q^2 . As the underlying field will remain fixed throughout, we will write U_n in place of $U_n(q)$.

It is easy to see that the commutator subgroup U'_n of U_n is given by

$$U'_n = \{(a_{ij}) \in U_n : a_{i,i-1} = 0 \text{ for } 2 \le i \le n\}.$$

We let $V_{n,1} = U_n/U'_n$. Then the elements of $Irr(U_n)$ of degree 1 are obtained by extending the irreducible characters of $V_{n,1}$ to U_n .

21

As $V_{n,1}$ is an (elementary) abelian group of order q^{n-1} , this means that there are precisely q^{n-1} irreducible characters of U_n of degree 1. We will show that the irreducible characters of U_n of degrees q and q^2 may be obtained by extending characters of analogous factor groups and we will count the number having each degree.

For $0 \le t \le n-1$, we define

$$W_{n,t} = \{(a_{ij}) \in U_n : a_{ij} = 0 \text{ if } 1 < i - j \le t\}.$$

Thus, for example, $W_{n,0} = U_n$, $W_{n,1} = U'_n$, $W_{n,3} = U''_n$, and $W_{n,n-1} = I$. Each $W_{n,t}$ is a normal subgroup of U_n . For $0 \le t \le n-1$ we define

$$V_{n,t} = U_n / W_{n,t}$$

Thus the elements of $V_{n,t}$ may be identified with lower-triangular $n \times n$ matrices over \mathbf{F}_q with 1's along the diagonal and for which we only consider the entries on the main diagonal and on the t diagonals below the main diagonal. We will write \tilde{A} for the elements $AW_{n,t}$ of $V_{n,t}$.

For $1 \leq s \leq n$, we define

$$N_{n,s} = \{(a_{ij}) \in U_n : a_{ij} = 0 \text{ for } i > j \text{ if either } i \le s \text{ or } j > s\}$$
$$= \left\{ \begin{pmatrix} I_s & 0 \\ C & I_{n-s} \end{pmatrix} : C \in M_{n-s,s}(\mathbf{F}_q) \right\}$$

 and

$$H_{n,s} = \{(a_{ij}) \in U_n : a_{ij} = 0 \text{ for } i > j \text{ where } i > s \text{ and } j \le s\}$$
$$= \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} : A \in U_s, B \in U_{n-s} \right\}.$$

For all s, $N_{n,s}$ is a normal abelian subgroup of U_n and $H_{n,s}$ is a subgroup of U_n which complements $N_{n,s}$, i.e. $N_{n,s} \cap H_{n,s} = I$ and $U = N_{n,s}H_{n,s}$. Usually we write the elements of $H_{n,s}$ as (A, B) instead of $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

roup 23
1

We will make extensive use of the following lemma. It follows partly from a theorem of Gallagher, while the rest can be deduced from standard Clifford Theory. (See Corollary 6.17 and Problem 6.18 of [3].) The proof is straightforward and we omit it.

Lemma 1. We let G be a finite group, N a normal abelian subgroup of G, and H a subgroup of G which complements N. We let λ be an element of Irr(N) and we let $T_G(\lambda)$ be the stabilizer of λ in G, i.e.

$$T_G(\lambda) = \{ g \in G : \lambda^g = \lambda \},\$$

where $\lambda^g \in \operatorname{Irr}(N)$, $\lambda^g(n) = \lambda(g^{-1}ng)$ for all $n \in N$. We let $S_G(\lambda) = T_G(\lambda) \cap H \cong T_G(\lambda)/N$. Note that $T_G(\lambda) = S_G(\lambda)N$. We define a character $\bar{\lambda}$ of $T_G(\lambda)$ by $\bar{\lambda}(hn) = \lambda(n)$ for all h in $S_G(\lambda)$ and all n in N. Then for each irreducible character Ψ of $S_G(\lambda)$, $(\bar{\lambda}\Psi)^G$ is an element of $\operatorname{Irr}(G)$, distinct for distinct Ψ 's, and

$$\lambda^{G} = \sum_{\Psi \in \operatorname{Irr}(S_{G}(\lambda))} \Psi(1) \left(\bar{\lambda}\Psi\right)^{G}$$

Starting instead with an irreducible character Γ of G, if Γ lies over $\lambda \in \operatorname{Irr}(N)$, then there exists an irreducible character Ψ of $S_G(\lambda)$ such that λ occurs with multiplicity $\Psi(1)$ in $\Gamma|_N$ and

$$\Gamma(1) = \Psi(1) \frac{|H|}{|S_G(\lambda)|}. \quad \blacksquare$$

For $1 \le s \le n$ and for every $s \times (n-s)$ matrix D over \mathbf{F}_q , we define $\Lambda_D : N_{n,s} \to \mathbb{C}$ by

$$\Lambda_D\left(\begin{pmatrix}I_s & 0\\ C & I_{n-s}\end{pmatrix}\right) = \omega^{T\left(\operatorname{tr}\left(CD\right)\right)},$$

where ω is a primitive p^{th} root of unity in \mathbb{C} , $T: \mathbf{F}_q \to \mathbf{F}_p$ is the usual trace mapping from an extension field into the ground field, tr denotes the trace of a square matrix, and we identify the elements of \mathbf{F}_p with the integers $0, 1, \ldots, p-1$.

Lemma 2. For $1 \leq s \leq n$, $Irr(N_{n,s}) = \{\Lambda_D : D \in M_{s,n-s}\}$ and $\Lambda_{D_1} = \Lambda_{D_2}$ if and only if $D_1 = D_2$.

Proof: It is easy to check that Λ_D is a degree 1 representation, and so an irreducible character, of $N_{n,s}$. $N_{n,s}$ is abelian with $q^{s(n-s)}$ elements, so the number of Λ_D 's is equal to the number of irreducible characters of $N_{n,s}$. The proof will be complete if we show that $\Lambda_{D_1} = \Lambda_{D_2}$ implies that $D_1 = D_2$. Now,

$$\Lambda_{D_1} = \Lambda_{D_2} \Rightarrow \omega^{T(\operatorname{tr}(CD_1))} = \omega^{T(\operatorname{tr}(CD_2))} \text{ for all } C \in M_{n-s,s}(\mathbf{F}_q)$$

$$\Rightarrow T\left(\operatorname{tr}\left(C(D_1 - D_2)\right)\right) = 0 \text{ for all } C \in M_{n-s,s}(\mathbf{F}_q)$$

$$\Rightarrow \operatorname{tr}\left(C(D_1 - D_2)\right) = 0 \text{ for all } C \in M_{n-s,s}(\mathbf{F}_q)$$

where the last implication follows from the well-known fact that $T: \mathbf{F}_q \to \mathbf{F}_p$ is non-zero.

But the last condition above implies that $D_1 - D_2 = 0$. For suppose the (i, j)-entry of $D_1 - D_2$ is non-zero. Then we can let $C = E_{ji}$, the $(n - s) \times s$ matrix with 1 in the (j, i)-position and zeros elsewhere. It is clear that for this choice of C, tr $(C(D_1 - D_2))$ is equal to the (i, j)-entry of $D_1 - D_2$, and so is not equal to zero, a contradiction. Thus $\Lambda_{D_1} = \Lambda_{D_2}$ implies that $D_1 = D_2$ and the proof is complete.

For $1 \leq s \leq n$, we can now apply the result from Lemma 1 to the normal abelian subgroup $N_{n,s}$ of U_n and its complement $H_{n,s}$. For all elements D of $M_{s,n-s}$, we let $S(D) = S_{U_n}(\Lambda_D)$.

Lemma 3. Let Λ_D be an element of Irr $(N_{n,s})$ for some value of s. Then

$$S(D) = \{ (A, B) \in H_{n,s} : ADB^{-1} = D \}.$$

Proof: Let (A, B) be any element of $H_{n,s}$. Then

$$\begin{split} \Lambda_D^{(A,B)} \left(\begin{pmatrix} I & 0 \\ C & I \end{pmatrix} \right) &= \Lambda_D \left(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^{-1} \begin{pmatrix} I & 0 \\ C & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \right) \\ &= \Lambda_D \left(\begin{pmatrix} I & 0 \\ B^{-1}CA & I \end{pmatrix} \right) \\ &= \omega^T (\operatorname{tr} (B^{-1}CAD)) \\ &= \omega^T (\operatorname{tr} (CADB^{-1})) \\ &= \Lambda_{ADB^{-1}} \left(\begin{pmatrix} I & 0 \\ C & I \end{pmatrix} \right) \end{split}$$

for all elements $\begin{pmatrix} I & 0 \\ C & I \end{pmatrix}$ of $N_{n,s}$. Thus $\Lambda_D^{(A,B)} = \Lambda_{ADB^{-1}}$ and

$$\begin{split} S(D) &= \left\{ (A, B) \in H_{n,s} : \Lambda_D^{(A, B)} = \Lambda_D \right\} \\ &= \left\{ (A, B) \in H_{n,s} : \Lambda_{ADB^{-1}} = \Lambda_D \right\} \\ &= \left\{ (A, B) \in H_{n,s} : ADB^{-1} = D \right\}. \quad \blacksquare \end{split}$$

It follows from the proof above that $H_{n,s}$ acts on $\operatorname{Irr}(N_{n,s})$ via the action $(A, B) : \Lambda_D \to \Lambda_{ADB^{-1}}$. We let $\mathcal{O}(\Lambda_D)$ be the orbit of Λ_D under this action. Of course every element $\Lambda_{D'}$ of $\mathcal{O}(\Lambda_D)$ lies under precisely the same irreducible characters of U_n as Λ_D while $S(D') \cong S(D)$.

Lemma 4. Let $\Gamma \in \operatorname{Irr}(U_n)$ and choose t maximal such that $W_{n,t+1} \leq \ker(\Gamma)$ but $W_{n,t} \not\leq \ker(\Gamma)$. Then there exists $Y \in W_{n,t}$ such that $Y \notin \ker(\Gamma)$ and Y has precisely one non-zero entry below the main diagonal.

Proof: Let $X = (x_{ij})$ be an element of $W_{n,t} - \ker(\Gamma)$. We define

$$Z = I_n - \sum_{l=t+2}^n x_{l,l-t-1} E_{l,l-t-1}.$$

We claim that $Z \notin \text{ker}(\Gamma)$. For if f is the representation of U which affords Γ , then f(ZX) = I because $ZX \in W_{n,t+1}$. Thus $f(Z) = f(X)^{-1} \neq I$. We note that

$$Z = (I - x_{t+2,1}E_{t+2,1})(I - x_{t+3,2}E_{t+3,2})\dots$$
$$(I - x_{n,n-t-1}E_{n,n-t-1}).$$

If every term in this product were an element of ker (f), then Z would also be an element of ker (f). Thus for at least one choice of k satisfying $t + 2 \le k \le n$,

$$I - x_{k,k-t-1} E_{k,k-t-1} \not\in \ker\left(\Gamma\right),$$

as required. \blacksquare

Theorem 5. Take $\Gamma \in \operatorname{Irr}(U_n)$ and choose t maximal such that $W_{n,t+1} \leq \ker(\Gamma)$ but $W_{n,t} \not\leq \ker(\Gamma)$. Then $\Gamma(1) \geq q^t$.

Proof: We choose $Y = I + \lambda E_{k,k-t-1}$ not in ker (Γ). We note that Y is an element of $N_{n,k-1}$. Thus there is at least one element Λ_D of $\operatorname{Irr}(N_{n,k-1})$ for which Y is not an element of ker (Λ_D), i.e. tr $\lambda E_{1,k-t-1}D \neq 0$, where D is a $(k-1) \times (n-k+1)$ matrix over \mathbf{F}_q . If $D = (d_{ij})$, then it follows that $d_{k-t-1,1} \neq 0$. We let $\alpha = d_{b1}$ be the first non-zero entry in column 1 of D. Then $b \leq k-t-1$. (In fact it must be the case that b = k-t-1, but we do not need to prove this.) We let

$$A = I - \sum_{l=b+1}^{n} \frac{d_{l1}}{\alpha} E_{lb}.$$

We set D' = AD. Then $\Lambda_{D'}$ is an element of $\mathcal{O}(\Lambda_D)$ and

$$D' = AD$$

= $\left(I - \sum_{l=b+1}^{n} \frac{d_{l1}}{\alpha} E_{lb}\right) \left(\alpha E_{b1} + \sum_{l=b+1}^{n} d_{l1} E_{l1} + \sum_{\substack{1 \le i \le k-1 \\ 2 \le j \le n-k+1}} d_{ij} E_{ij}\right)$
= $\alpha E_{b1} + \sum_{\substack{1 \le i \le k-1 \\ 2 \le j \le n-k+1}} d'_{ij} E_{ij},$

27

for some d'_{ij} 's in \mathbf{F}_q . Thus D' has precisely one non-zero entry in column 1, namely α in the (b, 1)-position.

Now we have

$$S(D) \cong S(D') = \{(A, B) \in H_{n,k-1} : AD'B^{-1} = D'\}.$$

Writing $A = (a_{ij})$, the equation AD' = D'B gives us relations which the k - 1 - b entries $a_{b+1,b}, a_{b+2,b}, \ldots, a_{k-1,b}$ must satisfy. Thus

$$S(D)| = |S(D')| \le \frac{|H_{n,k-1}|}{q^{k-1-b}}$$
$$\le \frac{|H_{n,k-1}|}{q^{k-1-(k-t-1)}}$$
$$= \frac{|H_{n,k-1}|}{q^t}.$$

By Lemma 1, there exists $\Psi \in \operatorname{Irr}(S(D))$ such that

$$\Gamma(1) = \Psi(1) \frac{|H_{n,k-1}|}{|S(D)|}$$
$$\geq \frac{|H_{n,k-1}|}{|H_{n,k-1}|/q^t}$$
$$= q^t.$$

Definition: For a finite group G and a positive integer l, we define C(G, l) to be the number of irreducible characters of G having degree l.

Corollary 6. Choose t such that $1 \le t \le n-1$. Then for $0 \le a \le t-1$, we have

$$C(U_n, q^a) = C(V_{n,t}, q^a).$$

Proof: If Γ is an element of $\operatorname{Irr}(U_n)$ such that $\Gamma(1) \leq q^{t-1}$, then by Theorem 5 $W_{n,t} \leq \ker(\Gamma)$. Thus Γ is an element of $\operatorname{Irr}(V_{n,t})$. Conversely, given any element Θ of $\operatorname{Irr}(V_{n,t})$, we can extend Θ to

an element of $\operatorname{Irr}(U_n)$ by letting $\Theta(A) = \Theta(I)$ for all elements A of $W_{n,t}$.

To find the number of irreducible characters of U_n of degrees q and q^2 , we need only calculate $C(V_{n,2}, q)$ and $C(V_{n,3}, q^2)$. While our main interest in $V_{n,2}$ is in the degree q characters, it turns out that for this group there is a simple closed formula describing the number of irreducible characters having any degree. The formulas we derive involve binomial coefficients. We adopt the conventions that $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$ and $\begin{pmatrix} s \\ t \end{pmatrix} = 0$ whenever s < t.

Theorem 7. $\{\Theta(1) : \Theta \in \operatorname{Irr}(V_{n,2})\} = \{q^a : 0 \le a \le \frac{n-1}{2}\}$ and, for all values of a in this range,

$$C(V_{n,2}, q^{a}) = {\binom{n-a-1}{a}}q^{n-a-2}(q-1)^{a} + {\binom{n-a-2}{a}}q^{n-a-2}(q-1)^{a+1}.$$

Proof: We proceed by induction on n. $V_{2,2} = U_2$ has q irreducible characters, all of degree 1, as the theorem states. $V_{3,2} = U_3$ has q^2 characters of degree 1 while every other character degree is a power of q. Recall that the squares of the degrees of the irreducible characters of a finite group G add up to the order of G. It follows that $\{\Theta(1) : \Theta \in \operatorname{Irr}(V_{3,2})\} = \{1, q\}$ and that $C(V_{3,2}, q) = q - 1$, which again is in agreement with the statement of the theorem.

For n > 3, we let

$$J_n = \left\{ (a_{ij}) + W_{n,2} \in V_{n,2} : a_{n,n-2} = a_{n,n-1} = 0 \right\}$$

and

$$K_n = \left\{ (b_{ij}) + W_{n,2} \in V_{n,2} : b_{ij} = 0 \text{ for } i \neq n \right\}.$$

Now K_n is a normal abelian subgroup of $V_{n,2}$, having J_n as complement. For all α and β in \mathbf{F}_q , we define $\Delta_{\alpha,\beta} : K_n \to \mathbb{C}$ by

$$\Delta_{\alpha,\beta}((b_{ij}) + W_{n,2}) = \omega^{\alpha b_{n,n-2} + \beta b_{n,n-1}}$$

It is easy to prove that $\operatorname{Irr}(K_n) = \{\Delta_{\alpha,\beta} : \alpha, \beta \in \mathbf{F}_q\}$ and $\Delta_{\alpha',\beta'} = \Delta_{\alpha,\beta}$ if and only if $\alpha' = \alpha$ and $\beta' = \beta$. Furthermore, for

29

any elements $\tilde{A} = (a_{ij}) + W_{n,2}$ of J_n and $\tilde{B} = (b_{ij}) + W_{n,2}$ of K_n ,

$$\begin{split} \Delta^{A}_{\alpha,\beta}(\tilde{B}) &= \Delta^{A}_{\alpha,\beta}\left((b_{ij}) + W_{n,2}\right) \\ &= \Delta_{\alpha,\beta}\left(A^{-1}(b_{ij})A + W_{n,2}\right) \\ &= \Delta_{\alpha,\beta}\left(I + (b_{n,n-2} + b_{n,n-1}a_{n-1,n-2})E_{n,n-2} + b_{n,n-1}E_{n,n-1} + W_{n,2}\right) \\ &= \omega^{T(\alpha(b_{n,n-2} + b_{n,n-1}a_{n-1,n-2}) + \beta b_{n,n-1})} \\ &= \omega^{T(\alpha b_{n,n-2} + (\beta + \alpha a_{n-1,n-2})b_{n,n-1})} \\ &= \Delta_{\alpha,(\beta + \alpha a_{n-1,n-2})}(\tilde{B}), \end{split}$$

i.e. $\Delta_{\alpha,\beta}^{\bar{A}} = \Delta_{\alpha,(\beta+\alpha\varepsilon)}$, where $\varepsilon = a_{n-1,n-2}$. We define $S(\alpha, \beta) = S_{V_{n,2}}(\Delta_{\alpha,\beta})$. Then for all non-zero elements α of \mathbf{F}_q and all elements β of \mathbf{F}_q ,

$$S(0, \beta) = J_n \cong V_{n-1,2}$$

 and

$$S(\alpha, \beta) \cong S(\alpha, 0)$$

= $\left\{ (a_{ij}) + W_{n,2} \in J_n : a_{n-1,n-2} = 0 \right\}$
= $\left\{ (a_{ij}) + W_{n,2} \in V_{n,2} : a_{n-1,n-2} = a_{n,n-1} = a_{n,n-2} = 0 \right\}$
 $\cong V_{n-2,2} \oplus (\mathbf{F}_q, +).$

For all non-zero elements α of \mathbf{F}_q and all elements β of $\mathbf{F}_q,$ Lemma 1 tells us that

$$\left\{ \Gamma \in \operatorname{Irr}(V_{n,2}) : \left\langle \Gamma|_{N}, \Delta_{0,\beta} \right\rangle_{N} \neq 0 \right\}$$
$$= \left\{ \left(\bar{\Delta}_{0,\beta} \Psi \right)^{V_{n,2}} : \Psi \in \operatorname{Irr}\left(S(0,\beta) \right) \right\}$$

 and

$$\left\{ \Gamma \in \operatorname{Irr}(V_{n,2}) : \left\langle \Gamma |_{N}, \Delta_{\alpha,\beta} \right\rangle_{N} \neq 0 \right\}$$
$$= \left\{ \Gamma \in \operatorname{Irr}(V_{n,2}) : \left\langle \Gamma |_{N}, \Delta_{\alpha,0} \right\rangle_{N} \neq 0 \right\}$$
$$= \left\{ \left(\bar{\Delta}_{\alpha,0} \Psi \right)^{V_{n,2}} : \Psi \in \operatorname{Irr}\left(S(\alpha, 0) \right) \right\}.$$

Lemma 1 also implies that, with the same notation as in the sets above, V = V

$$\left(\bar{\Delta}_{0,\beta}\Psi\right)^{V_{n,2}}(1) = \Psi(1)$$

 and

$$\left(\bar{\Delta}_{\alpha,0}\Psi\right)^{V_{n,2}}(1) = q\Psi(1).$$

Thus for $0 \le a \le \frac{n-2-1}{2} + 1$,

$$C(V_{n,2}, q^{a}) = qC(V_{n-1,2}, q^{a}) + q(q-1)C(V_{n-2,2}, q^{a-1})$$

$$= q\binom{n-1-a-1}{a}q^{n-1-a-2}(q-1)^{a} + q\binom{n-1-a-2}{a}q^{n-1-a-2}(q-1)^{a+1} + q(q-1)\binom{n-2-(a-1)-1}{a-1}q^{n-2-(a-1)-2}(q-1)^{a-1} + q(q-1)\binom{n-2-(a-1)-2}{a-1}q^{n-2-(a-1)-2}(q-1)^{a}$$

$$= \binom{n-a-2}{a}q^{n-a-2}(q-1)^{a} + \binom{n-a-3}{a}q^{n-a-2}(q-1)^{a+1} + \binom{n-a-3}{a-1}q^{n-a-2}(q-1)^{a+1} + \binom{n-a-3}{a-1}q^{n-a-2}(q-1)^{a} + \binom{n-a-3}{a-1}q^{n-a-2}(q-1)^{a+1}.$$

It seems to be much more difficult to find a formula for $C(V_{n,3}, q^a)$ which holds for all relevant values of a. In this case, we will confine our attention to the characters of degree q^2 and state without proof our findings in this case.

Theorem 8. We have $C(V_{4,3}, q^2) = q(q-1)$ and for $n \ge 5$,

$$C(V_{n,3}, q^2) = {\binom{n-3}{2}} q^{n-4} (q-1)^2 + {\binom{n-4}{2}} q^{n-4} (q-1)^3 + (n-3) q^{n-2} (q-1) + (n-5) q^{n-2} (q-1)^2.$$

31

We can now provide formulae for the number of irreducible characters of U_n having the degrees 1, q and q^2 .

Theorem 9. For $n \geq 2$, U_n has q^{n-1} irreducible characters of degree 1. For $n \geq 3$, U_n has $(n-2)q^{n-3}(q-1)+(n-3)q^{n-3}(q-1)^2$ irreducible characters of degree q. U_4 has q(q-1) irreducible characters of degree q^2 ; for $n \geq 5$, U_n has $\binom{n-3}{2}q^{n-4}(q-1)^2 + \binom{n-4}{2}q^{n-4}(q-1)^3 + (n-3)q^{n-2}(q-1) + (n-5)q^{n-2}(q-1)^2$ irreducible characters of degree q^2 .

Proof: This follows from Corollary 6, Theorem 7, and Theorem 8. ■

References

- B. Huppert, A remark on character degrees of some p-groups, Archiv der Math. 59 (1992), 313-318.
- [2] I. M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), 708-730.
- [3] I. M. Isaacs, Character Theory of Finite Groups. Dover: New York, 1994.
- [4] M. Marjoram, Irreducible characters of Sylow p-subgroups of classical groups, Ph. D. thesis (1997), National University of Ireland, Dublin.

Martin Marjoram Department of Mathematics University College Belfield Dublin 4