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Introdu
tion

The usual 
onstru
tion of the Fourier transform involves working

on L

1

(R) (eg. [1℄) or the S
hwartz Class S of rapidly de
reasing

C

1

fun
tions (eg. [2℄). The Fourier transform is then extended

onto L

2

(R) by taking limits as both L

1

(R)\L

2

(R) and S are dense

in L

2

(R).

I'd like to present an unusual 
onstru
tion of the Fourier

transform in whi
h we use its translation and dilation properties:

� if g(x) = f(x+ �) then ĝ(!) = e

i�!

^

f(!),

� if g(x) = f(�x) then ĝ(!) = 1=j�j

^

f(!=�).

This 
onstru
tion is in the spirit of the \multiresolution analysis"

stru
ture [3℄ whi
h is used to build dis
rete wavelet bases [4℄.

However, if you don't know anything about this stru
ture the 
on-

stru
tion is still surprisingly straightforward.

The De�nition

I'll be using both

^

f and Ff to denote the Fourier transform of f .

For translation and dilation I'll write:

� (T

�

f)(x) := f(x+ �) for any � 2 R,

� (D�f)(x) := f(�x) for any � 2 R n f0g,

� (R�f)(x) := e

i�x

f(x) for any � 2 R.

This allows me to write the translation and dilation properties as

FT

�

f = R

�

Ff

and

15
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FD

�

f =

1

j�j

D

1

�

Ff:

Now to de�ne F , we do the following:

1. for the 
hara
teristi
 fun
tion of [0; 1) we de�ne

F(�

[0;1)

) =

1� e

�i!

i!

;

2. we extend F to any �

[n;n+1)

by using the translation rule

FT

n

f = R

n

Ff

for all n 2 Z,

3. we further extend F to fun
tions of the form �

[�

�1

n;�

�1

(n+1))

by using the dilation rule

FD

�

f =

1

j�j

D

1

�

Ff

for all � 2 2

Z

,

4. �nally we extend F to the linear span of these by assuming

that F is linear.

If this pro
ess works, we have de�ned F on D, the set of dyadi


step fun
tions. These are just the simple fun
tions whose jumps

o

ur at n=2

m

where n;m 2 Z. It is easy to 
onstru
t a well

de�ned fun
tion whi
h has these properties. In fa
t the de�nition

spells out a formula:

f(x) =

R

X

r=�R

a

r

�

[0;1)

(2

j

x� r))

Ff(!) =

1� e

�i!=2

j

i!

R

X

r=�R

a

r

e

�ir!=2

j

:

Our aim was to produ
e F on L

2

(R). Given that the set of simple

fun
tions is dense in L

2

(R) it is 
lear that D is also dense in
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L

2

(R). So, if we 
an show that this fun
tion F we have de�ned

is 
ontinuous in the L

2

(R) norm then we 
an extend F to all of

L

2

(R).

This turns out to be surprisingly straight forward. Taking

f(x) =

R

X

r=�R

a

r

�

[0;1)

(2

j

x� r)

we see that kfk

2

2

=

P

R

r=�R

ja

r

j

2

=2

j

.

Now we have to �nd kFfk

2

2

. Using our formula above and the

de�nition of the norm:

kF(f)k

2

2

=

Z

1

�1

�

�

�

�

1� e

�i

!

2

j

i!

�

�

�

�

2

 

N

X

k=�N

a

k

e

�ik

!

2

j

! 

N

X

l=�N

a

l

e

il

!

2

j

!

d! =

Z

1

�1

2(1 � 
os

!

2

j

)

!

2

" 

N

X

k=�N

ja

k

j

2

!

+

 

X

k 6=l

a

k

a

l

e

�i(k�l)

!

2

j

!#

d!:

So we need to evaluate:

Z

1

�1

2(1� 
os!)

!

2

e

ir!

d!;

for r 2 Z. This is an easy pie
e of 
ontour integration, giving 2�

if r = 0 and zero otherwise. Filling this in we see:

kFfk

2

2

=

R

X

r=�R

ja

r

j

2

=2

j

2� = 2�kfk

2

2

:

So, not only is F 
ontinuous but it just s
ales the norm. This

means that we may extend F to a 
ontinuous map from L

2

(R)!

L

2

(R) whi
h preserves the inner produ
t:

(f; g) = 2�(Ff;Fg):



18 IMS Bulletin 42, 1999 �

What now?

Note that we 
ould show that F as de�ned on D also extends to

a 
ontinuous map F : L

1

(R) ! L

1

(R) by examining the L

1

(R)

norm of f and the L

1

(R) norm of of Ff . This might motivate us

to try to get the usual integral formula for the Fourier transform

ba
k again.

This 
an be done for f 2 D by �rst 
onsidering f as a

fun
tion with steps of width 2

�j

, and then splitting ea
h step in

half to get the same fun
tion written in terms of steps of width

2

�(j+1)

. This turns our formula for F into a Riemann sum for the

integral:

(Ff)(!) =

Z

f(x)e

�i!x

dx f 2 D:

This 
an naturally be extended to suitable sets larger than D.

By looking at the dilation and translation relations 
arefully

(or by using the integral formula) we get extended translation and

dilation, this time for all f 2 L

2

(R), � 2 R and � 2 R n f0g:

� FT

�

f = R

�

Ff ,

� FD

�

f =

1

j�j

D

1

�

Ff ,

� FR

�

f = T

��

Ff .

This provides us with a neat way to show that F is invertible on

L

2

(R). Suppose we de�ned G with the translation and dilation

properties we expe
t of F

�1

. Then by pro
eeding as we did for

F , we arrive at an integral formula and the following properties

for G:

� GT

�

f = R

��

Gf ,

� GD

�

f =

1

j�j

D

1

�

Gf ,

� GR

�

f = T

�

Gf .

We examine I = FG and how it intera
ts with T

n

, D

�

and �

[0;1)

.

Using the algebrai
 properties of F and G:

IT

n

f = FGT

n

f = FR

�n

Gf = T

n

FGf = T

n

If

ID

�

f = FGD

�

f =

1

j�j

FD

1

�

Gf =

j�j

j�j

D

�

FGf = D

�

If:
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Thus I 
ommutes with T

n

and D

�

, so if we 
an determine the

image of �

[0;1)

we 
an determine the image ofD. Using the integral

formula and a little 
ontour integration we see:

(I�

[0;1)

)(x) = (FG�

[0;1)

)(x)

= F(

e

i!

� 1

i!

)

=

Z

e

i!

� 1

i!

e

�i!x

d! = 2��

[0;1)

(x)

for almost every x. So I a
ts on D by multiplying by 2�. Using

the fa
t that I is 
ontinuous we see that I a
ts on all of L

2

(R)

in this way, and so (2�)

�1

G is a right inverse for F . Naturally a

similar argument shows that it is also a left inverse.

To �nish up

This is a 
urious 
onstru
tion of the Fourier transform. It is even

quite easy to extend it to L

2

(R

n

). One interesting point I didn't

tou
h on is that we may 
hange the �rst rule with whi
h we de�ned

F from:

� for the 
hara
teristi
 fun
tion of [0; 1) we de�ne

F(�

[0;1)

) =

1� e

�i!

i!

;

to the seemingly weaker:

� F(�

[0;1)

) is 
ontinuous at zero and has value 1 at zero.

This is be
ause �

[0;1)

satis�es the dilation equation:

�

[0;1)

(x) = �

[0;1)

(2x) + �

[0;1)

(2x� 1);

but that is another story, [5℄.
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