A SPECTRAL PROPERTY FOR THE SYMBOLIC DYNAMICAL SYSTEM

K. Abodayeh & A. Pokrovskii

Let (X, ϕ) be a topological dynamical system, that is, X is a compact Hausdorff space and $\phi : X \to X$ is a homeomorphism. Recently, a great deal of attention has been paid to topological dynamical systems with the so called chaotic behaviour, see [4, 6] and the bibliography therein for a comprehensive discussion about what the chaotic behaviour means mathematically.

We can consider the linear operator T_{ϕ} defined by $T_{\phi}(f) = f \circ \phi$, where f is a function on X. If (X, ϕ) and (Y, ψ) are topological dynamical systems, then they are *isomorphic*, and we write $\phi \cong \psi$, if there exists a homeomorphism $h : X \to Y$ such that $\phi = h^{-1}\psi h$. Clearly, $T_{\phi} = T_h T_{\psi} T_{h^{-1}}$ and therefore the spectral properties of T_{ϕ} are natural invariants with respect to the isomorphism relationship. In particular, if the spectral properties of T_{ϕ} are distinct from those of T_{ψ} , then we have $\phi \ncong \psi$. It is interesting to investigate spectral properties of the operators T_{ϕ} that are typical for the dynamical systems (X, ϕ) with chaotic behaviour and this is the principal topic of the paper.

Consider the two-element group $\mathbf{Z}_2 = \{0,1\}$ under addition modulo 2 and define the set $\Omega = \mathbf{Z}_2^{\mathbf{Z}}$; that is, Ω is the set of all doubly infinite sequences $\omega = (\omega_n)_{n \in \mathbf{Z}}$ with $\omega_n \in \mathbf{Z}_2$. Obviously Ω is compact when endowed with the product topology and operation. Define the *shift transformation* $\phi : \Omega \to \Omega$ by setting $\phi(\omega) = (\omega')$, where $\omega'_n = \omega_{n+1}$ for all $n \in \mathbf{Z}$. The dynamical system (Ω, ϕ) is called the *symbolic dynamical system*. This is a traditional first choice for the system exemplifying chaotic behaviour [3]. Moreover, sometimes a dynamical system (X, ψ) is said to have chaotic behavior if there exists an invariant subset

11

 $Y \subseteq X$ such that the dynamical system $(Y, \psi|_Y)$ is isomorphic to the dynamical system (Ω, ϕ) [4].

Theorem 1.

(a) There exists a continuous function $g_0 \in C(\Omega)$ such that for each complex λ , $|\lambda| = 1$ the open ball $B(g_0, 1/8)$ does not intersect the range of $T_{\phi} - \lambda I$.

(b) 1 is the only eigenvalue of T_{ϕ} .

The property (a) of the operator T_{ϕ} from Theorem 1 contrasts with the properties of the operator T_{ϕ} in $L_2(\mu)$ with the Bernoulli invariant measure μ , [5]: for each $\lambda \in \mathbf{T}$ the range of the operator $\lambda I - T_{\phi}$ is dense in $L_2(\mu)$. Note also that the property mentioned in the theorem is invariant with respect to isomorphism:

Corollary 2. Let (Y, ψ) be a topological dynamical system that is isomorphic to (Ω, ϕ) . Then the following spectral properties are valid:

(a) there exists a continuous function $\tilde{g}_0 \in C(Y)$ such that for each $\lambda \in \mathbf{T}$, the open ball $B(\tilde{g}_0, 1/8)$ does not intersect the range of $T_{\psi} - \lambda I$;

(b) 1 is the only eigenvalue of T_{ψ} .

The *combination* of spectral properties mentioned in Theorem 1 looks rather peculiar and may be typical only for dynamical systems which behave in a similar way to the hyperbolic homeomorphisms, [3]. This suggests that the following definition could be useful.

Definition. A topological dynamical systems (X, ψ) is said to be *s*-chaotic if the operator $T_{\psi} : C(X) \to C(X)$ has no eigenvalues apart from 1 and, on the other hand, there exists an open ball $B(g_0, \varepsilon) \subset C(X)$ satisfying

$$B(g_0,\varepsilon)\bigcap(\bigcup_{\lambda\in\mathbf{T}}(T_{\psi}-\lambda I)(C(X)))=\emptyset.$$

Note that by Corollary 2 this definition is in line with the definition of chaotic behaviour as suggested in [4]. The tentative analysis shows that this definition does not apply to the dynamical systems

13

 (Y,ψ) which are traditionally considered as 'non-chaotic' or have a non-chaotic component.

Example 3. As an example consider the irrational rotation ψ_{α} of a circle:

$$e^{i\theta} \mapsto e^{i(\theta + 2\pi\alpha)}$$

where $0 \leq \theta < 2\pi$ and α is a fixed irrational real number. This mapping is a typical example of an ergodic but not chaotic mapping. The spectrum of the operator $T_{\psi_{\alpha}}$ coincides with the unit circle of the complex plane, but its further properties contrast sharply with those mentioned in the definition of *s*-chaotic behaviour: the operator $T_{\psi_{\alpha}}$ has a countable number of eigenvalues $\lambda_k = e^{i2\pi\alpha k}, \ k = 0, \pm 1, \pm 2, \ldots$ and for any $\lambda \neq \lambda_k, \ k = 0, \pm 1, \pm 2, \ldots$ the range of the operator $T_{\psi_{\alpha}} - \lambda I$ is dense in $C(\mathbf{T})$.

On the other hand, the chaotic homeomorphisms different from the symbolic dynamical system are likely to be *s*-chaotic.

Problem. Prove that an algebraic toral automorphism [4] is *s*-chaotic.

This article is an extended abstract of a talk given in the 11th IMS meeting. More details, in particular the proof of Theorem 1, are given in [1].

The authors are grateful to Prof. P. E. Kloeden and Prof. G. J. Murphy for useful discussions.

References

- K. Abodayeh and A. Pokrovskii, Topological chaos: A spectral property for the shift on a sequence space, to appear, Nonlinear Functional Analysis, Theory, Methods, Applications,
- [2] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge University Press: Cambridge, 1995.
- [3] R. Mane, Ergodic Theory and Differentiable Dynamics. Springer-Verlag: Berlin, 1987.
- [4] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press: Boston, 1989.

- [5] Y. Sinai, Introduction to Ergodic Theory. Princeton University Press: New Jersey, 1976.
- [6] P. Touhey, Chaos: the evolution of a definition, Irish Math. Soc. Bull. 40 (1998), 60-70.

K. Abodayeh Department of Mathematics University College Cork Cork, Ireland email: kamal@ucc.ie

A. Pokrovskii Institute for Nonlinear Science Department of Physics University College Cork Cork, Ireland email: alexei@peterhead.ucc.ie