GROUPS WITH A SUBLINEAR
ISOPERIMETRIC INEQUALITY

Michael Batty

Abstract We give a proof that if a finitely presented group G admits a
presentation with a sublinear isoperimetric inequality, then G is either
free or finite.

1. Introduction

Let G = (S|R) be a finitely generated group. Then a word
in F(S), the free group on S, is equal to the identity in G if and
only if there exist words u; in S for 1 < ¢ < n such that

n
w = H uiriui_l as reduced words,
=1

where for all ¢ with 1 <4 < n either r; € R or r;l € R.

Definition 1.1 With G as above, let w be a word in S which is
equal to the identity in G. Then the area of w, A(w) is defined
to be

min{n € N|3 an equality w = H wiriu; tin F(S)}.

i=1

We do not work with this definition of area but rather with a more
geometric formulation.

Definition 1.2 A map is a finite, planar, oriented, connected and
simply connected combinatorial 2-complex.

Let M be a map with edge set E(M). If e = (v1,v2) € E(M) then
we write € for the edge (va, v1).
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Definition 1.3 A paired alphabet is a finite set S together with
an involution f : S — S. We usually write f(s) = s~ 1.

For example, an inverse closed set of generators of a group is a
paired alphabet, where the involution is the group inverse.

Definition A diagram over a paired alphabet S is a triple
(M, S,1) where M is a map, S is a paired alphabet and [ : E(M) —
S satisfies [(€) = (I(e))~"! for all e € E(M). If e € E(M) then I(e)
is called the label of e.

When we refer to a path in a graph X we mean a finite sequence
of adjacent edges. If the sequence of terminal vertices of edges
consists of distinct vertices then we call the path simple. A loop
is a path such that the terminal vertex of the final edge equals the
initial vertex of the first. Thus a simple loop is a loop which is
simple as a path. If X is the 1-skeleton of a diagram (M, S,[) and
p=ei,..., ey is a path in X we define its label I(e) to be the word
I(e1)--1l(ey) in S. If f is a face of M we denote its boundary loop
by 0f and write I(f) for [(Of).

Definition 1.5 Let G = (S, R) be a finitely presented group where
S is an inverse closed generating set for G. A van Kampen
diagram over G is a diagram M over S such that for all faces
f of M, I(f) = r*! for some relator 7 € R. The area of such a
diagram is the number of its faces.

The hypotheses on a map M ensure that its boundary OM is
a loop. We write [(M) for [(OM). If G = (S|R) is a group
presentation and w is a word in S then we write w for the element
of G represented by w.

Lemma 1.6 (van Kampen) Let G = (S|R) be a finitely presen-
ted group and let w be a word in S. Then w = 14 if and only if
there exists a Van Kampen diagram M over G with [(M) = w.
Moreover A(w) is equal to the least area of a van Kampen diagram
for w.

Proof: See [7]. m

Definition 1.7 Let G = (S|R) be a finitely presented group.
Then the Dehn function D of G with respect to S and R is the
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function D : N — N given by

D(n) = max{A(w)| w = 1¢ and I(w) < n}.

We say that G = (S|R) satisfies a linear isoperimetric inequal-
ity if its Dehn function is O(n), i.e. there exists C' > 0 such that
foralln € N, D(n) < Cn. If

i (Z) =0

then we say that G satisfies a sublinear isoperimetric inequal-
ity and if
D
lim < (;l)> =0
n—oo n

then we say that G satisfies a subquadratic isoperimetric
inequality. If G is a finitely presented group then it is well
known that the following are equivalent.

1. G is hyperbolic in the sense of Gromov [3].
2. @ satisfies a linear isoperimetric inequality.
3. G satisfies a subquadratic isoperimetric inequality.

The proof that the first statement is equivalent to the second can
be found in [6]. The second clearly implies the third. The fact
that a subquadratic isoperimetric inequality implies a linear one is
originally due to Gromov [3] and can be found in [2], [4] and [5]. In
particular we see that the satisfaction of a sublinear isoperimetric
inequality is invariant under quasi—isometry.

Quasi-Trees

A graph X is said to be of bounded valency if there exists an
integer IV such that the valency of every vertex of X is at most V.

Definition 2.1 Let ) be a connected graph of bounded valency.
We call Q a K—quasi-tree if every simple loop in @) has length
at most K. If there exists a non-negative integer K for which @
is a K—quasi-tree then we call () a quasi-tree.
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Theorem 2.2 A finitely generated group G acts freely on a quasi—
tree if and only if G is isomorphic to a free product of free groups
and finite groups.

A proof is given in [1].

The Main Result

Let G be a group with a finite generating set S. We write I's(G)
for the Cayley graph of G with respect to S. Suppose that we have
a sublinear isoperimetric inequality amongst the simple loops in
I's(G) (i.e. in formation of the Dehn function we only consider
simple loops). In this situation we say that G satisfies a sublinear
simple isoperimetric inequality.

Proposition 3.1 If a finitely presented group G satisfies a sub-
linear simple isoperimetric inequality, then there is a bound on the
length of simple loops in its Cayley graph.

Proof: Suppose that in the Cayley graph I's(G) of G with respect
to some finite presentation (S|R) there is satisfied a sublinear
simple isoperimetric inequality. Let K be the maximum length
of the relators. Assume that R is not empty (if it is then the the-
orem follows easily), so that K > 1. If a simple loop A in I's(G)
has length [ then the number of relators we require to fill A is
at least the next integer after % So unless there is a bound on
the length of simple loops in I's(G), the best bound below for the

isoperimetric inequality of G is at least a linear function. m

Corollary 3.2 A finitely presented group G admits a sublinear
simple isoperimetric inequality for some finite presentation if and
only if G is quasi-free.

Proof: If G is a quasi—free group, then with respect to the stand-
ard generating set there is a bound on the length of simple loops
in its Cayley graph. So G clearly satisfies a sublinear simple iso-
perimetric inequality.

Conversely, by Proposition 3.1, the sublinear simple isoperi-
metric inequality gives us a bound on the length of simple loops
in Pg(@). Hence I's(G) is a quasi-tree upon which G acts freely.
Now the result follows by Theorem 2.2. m
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Note that the property of whether or not a group admits a sublinear
isoperimetric inequality is not invariant under quasi-isometry. For
example, Z trivially satisfies a sublinear isoperimetric inequality
with respect to the standard generating set. However, with the
standard generating set the group Z® Zs, which is quasi-isometric
to 7, does not.

In what follows we use the notation i(p) and ¢(p) to denote the
initial and terminal vertices of a path p in a graph X. We also
give each loop L in X a preferred orientation and if v; and vy are
vertices of L write L(vy,vs) for the path obtained when travelling
around L from vy to vs in a positive direction.

An
° - ° : pnil@

A loop with linear area.

Theorem 3.3. If a group G has a finite presentation (S|R) with
respect to which G satisfies a sublinear isoperimetric inequality
then G is either free or finite.

Proof: In particular, G satisfies a sublinear simple isoperimetric
inequality. Hence by Corollary 3.2, I's(G) is a quasi—tree and G
is quasi—free. Now suppose that there is a nontrivial finite group
H which is a free factor of G. Let Hy be the subgraph of I's(G)
induced by the vertex set of H. Either G is finite or I's(G) contains
infinitely many copies of Hy. Let M be the maximum length of
a relator in R. We may choose a loop L of strictly positive area
in H and copies Hy = H, Hy,..., H,,...of H containing copies
Ly =1L, Ly,..., Ly,...of L in such a way that there are paths
Dis -+, Pn,--., all of the same length, where for each j, p; goes
from L;j_; to L; as in figure 1. Furthermore, we may choose these
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such that d(i(p;),t(p;)) > M for all j. Let A, be the loop

LO(L Z(p1)) * P o* L1 (t(pl),l(p2)) * P2 k-
#pn—1* Lo xpylys o xpy ' x L(i(pe), t(p1)) * i % Lo(i(p), 1).

Let N = A(L). Then since i(p;) and t(p;) are cut points of
I's(G) and the endpoints of the paths p; are sufficiently far apart,
A(A,) = Nn. Thus G satisfies an isoperimetric inequality which
is at least linear, a contradiction. Hence G is free. m
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