GENERALIZED ULTRAMETRICS,
DOMAINS AND AN APPLICATION
TO COMPUTATIONAL LOGIC!

Anthony Karel Seda & Pascal Hitzler

1. Introduction

Fixed points of functions and operators are of fundamental import-
ance in programming language semantics, in giving meaning to
recursive definitions and to constructs which involve self-reference.
It follows, therefore, that fixed-point theorems are also of funda-
mental importance in theoretical computer science. Often, order-
theoretic arguments are available, in which case the well-known
Knaster-Tarski theorem can be used to obtain fixed points. Some-
times, however, analytical arguments are needed involving the
Banach contraction mapping theorem, as is the case, for example,
in studying concurrency and communicating systems. Situations
arise also in computational logic in the presence of negation which
force non-monotonicity of the operators involved. A successful
attempt was made in [5] to employ metrics and the contraction
mapping theorem in studying some problematic logic programs.
These ideas were taken further in [16] in examining quasi-metrics
and in [17,18] in considering elementary ideas from topological
dynamics in this same context of computational logic.

One thing which emerged from [17] was an application of
a fixed-point theorem due to Sibylla Priess-Crampe and Paulo
Ribenboim, see [10]. This theorem utilizes ultrametrics which

!This article is a slightly expanded version of a paper of the same title
presented by the first named author at the 11th September meeting of
the IMS, University of Ulster at Coleraine, September 1998.
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are allowed to take values in an arbitrary partially ordered set
and is a substitute for the contraction mapping theorem. The
inspiration for this result appears to have come from applications
within algebra and, in particular, to ordered abelian groups, and
rings of generalized power series. However, as already indicated,
our interest in it resides in its potential applications to theoretical
computer science.

Our purpose in this note is to give some weight to the pre-
vious sentence by sketching the application we made in [17] of
Theorem 1. Thus, in §2 we briefly consider generalized ultramet-
rics i.e. ultrametrics which take values in an arbitrary partially
ordered set (not just in the non-negative reals) and state the fixed-
point theorem of Priess-Crampe & Ribenboim, Theorem 1. In §3,
we consider a natural way of endowing Scott domains with gener-
alized ultrametrics. This step provides a technical tool which we
need in §4 in applying Theorem 1 to finding fixed points of non-
monotonic operators arising out of logic programs and deductive
databases and hence to finding models for these.

2. Generalized ultrametric spaces:
the fixed-point theorem of Priess-Crampe & Ribenboim

It will be convenient to give some basic definitions in this section,
and to introduce some notation all of which is to be found in
[10,11].

Definition 1 (Priess-Crampe & Ribenboim) Let X be a set and
let I' be a partially ordered set with least element 0. The pair
(X,d) is called a generalized ultrametric space (gum) if d : X X
X — T is a function satisfying the following conditions for all
z,y,2 € X and vy € I':

(1) d(z,y) = 0 if and only if x = y;

(2) d(z,y) = d(y, x);

(3) if d(z,y) <y and d(y, ) < ¥, then d(, 2) < 7.

Of course, this definition is entirely standard except that the
function d takes its values in the set I' rather than in the set of
non-negative real numbers, and to that extent is considerably more
general. Moreover, as in the classical case, one can define “balls”



1] Generalized Ultrametrics 33

in the context of generalized ultrametric spaces: for 0 # v € T
and z € X, the set B, (z) = {y € X;d(z,y) <} is called a y-ball
or just a ball in X. One then has the following elementary facts,
see [10].

Fact 1 (1) If a < 8 and x € Bg(y), then B,(x) C Bg(y). Hence
every point of a ball is also its centre.

(2) If Bo(z) C Bga(y), then 8 £ a (le. a < B if T is totally
ordered).

A substitute in the present context is needed for the usual
notion of completeness in (ultra)metric spaces, and this is provided
by the notion of “spherical completeness” as follows. A generalized
ultrametric space X is called spherically complete if (\C # () for
any chain C of balls in X. (By a “chain of balls” we mean, of
course, a set of balls which is totally ordered by inclusion.)

A typical example, see [11], of a generalized ultrametric
space is provided by the following function space in which the
distance between two functions is the set of points on which they
differ, and therefore is not numerical in nature.

Example 1 Take a non-empty set A and a set E with at least
two elements. Let H =[], ,F and define d : H x H — P(A) by
d(f,g9) = {a € A; f(a) # g(a)}, where P(A) denotes the power set
of A. Then (H,d,P(A)) is a spherically complete gum.

A function f : X — X is called strictly contracting if
d(f(z), f(y)) < d(z,y) for all z,y € X with  # y. The fol-
lowing theorem, which is to be found in [10], can be thought of as
an analogue of the Banach contraction mapping theorem.

Theorem 1 (Priess-Crampe & Ribenboim) Let (X, d) be a spher-
ically complete generalized ultrametric space and let f : X — X
be strictly contracting. Then f has a unique fixed point.

In fact, there are more general versions of this theorem for
both single and multi-valued mappings, see [11]. As already noted,
it is our belief that this theorem has a significant réle to play in
theoretical computer science in the study of the semantics of logic-
based programming languages. Indeed, some applications in this
area have been made in [11], and we discuss another one here in § 4.



34 IMS Bulletin 41, 1998 i

3. Domains as GUMS

Domains are a special type of ordered set, as defined below. They
were introduced independently by D. S. Scott and Y. L. Ershov as
a means of providing structures for modelling computation, and
to provide spaces to support the denotational semantics approach
to understanding programming languages, see [20]. Usually,
domains are endowed with the Scott topology, which is one of
the Ty (but not 77) topologies of interest in theoretical com-
puter science. However, under certain conditions, to be examined
below, domains can be endowed with the structure of a generalized
ultrametric space. This is not something normally considered in
domain theory but, as we shall see, has interesting applications to
the semantics of logic programs.

Let (D,C) denote a Scott domain with set Do of compact
elements, see [20]. Thus:

e (D, C) is a partially ordered set which, in fact, forms a complete
partial order (cpo). Hence, D has a bottom element L, and the
supremum sup A exists for all directed subsets A of D.

e The elements a € D¢ satisfy: whenever A is directed and a C
sup A, then a C z for some z € A.

e For each z € D, the set approx(z) = {a € D¢;a C z} is directed
and = = sup approx(z).

o If the set {a,b} C D¢ is consistent (there exists z € D such that
a C z and b C z), then sup{a, b} exists in D.

Several important facts emerge from these conditions includ-
ing the existence (indeed construction) of fixed points of continu-
ous functions, and the existence of function spaces (the category
of domains is cartesian closed). Moreover, the compact elements
provide an abstract notion of computability.

Example 2 (i) (P(N),C) is a domain whose compact elements
are the finite subsets of V.
(ii) The set of all partial functions from N™ into N ordered by
graph inclusion is a domain whose compact elements are the finite
functions.

As already noted, domains carry a natural and important
topology called the Scott topology. Under certain conditions the
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Scott topology can be generated by a quasi-metric, see [16,19],
but is never metrizable. However, by means of a construction
similar to that discussed in [19], we can endow a domain with
a generalized ultrametric, quite separate from its Scott topology,
and this we discuss next.

Let v denote an arbitrary countable ordinal i.e. one of the
transfinite sequence 0,1,2,...,w,w+1,w+2,..., w2, w2+ 1, w2+
2,..,ww,ww+1l,ww+2,.... Let [y denote the set {27 *;a < v}
of symbols 2~ which we order by 2% < 277 if and only if 8 < a.

Definition 2 Let r : D¢ — -« be a function, called a rank function,
form I'y;; and denote 277 by 0. Define d, : D x D — I'y44
by d.(z,y) = inf{27% ¢ C z if and only if ¢ C y for every ¢ €
D¢ with r(e) < a}.

Then (D,d,) is a generalized ultrametric space said to
be induced by r. Moreover, (D,d,) is spherically complete
provided we impose one standing condition (SC) on the rank
function r: for each € D and for each ordinal o < 7, the set
{c € approx(z);r(c) < a} is directed whenever it is non-empty.

Theorem 2 Under the standing condition (SC) on r, (D,d,) is
spherically complete.

Full details of these results can be found in [17]. However,
the key to obtaining Theorem 2 is the following lemma whose proof
we sketch here; a key point in the details is that any point of a

ball in a gum is its centre (Fact 1). To simplify notation denote
the ball By-a () by B, (z).

Lemma 1 Suppose that r satisfies condition SC, and let B, (x) C
Bgs(y). Then the following hold.

(1) {c € approx(z);r(c) < B} = {c € approx(y); r(c) < 8}.

(2) B, = sup{c € approx(z);r(c) < a} and Bg = sup{c €
approx(y); r(c) < B} both exist.

(3) By C Ba.

Proof. Since z € By(z), we have x € Bg(y) and hence d,(z,y) <
277, So (1) follows immediately from the definition of d,.

Since {c € approx(z);r(c) < 8} is bounded by z, we get (2) from
the consistent completeness of D, see [20].

For the third statement:
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Step 1. Suppose B, (z) C Bg(y). Then 3 < «a by Fact 1 since
T, is totally ordered. Thus Bg = sup{c € approx(y);r(c) < f} =
sup{c € approx(z);r(c) < 8} C sup{c € approx(z);r(c) < a} =
B, and so Bz C B, as required.

Step 2. Now suppose that B, (z) = Bs(y) = B, say.

Subcase 1. If a = 3, then it is immediate that B, = Bg.

Subcase 2. Suppose finally that o # 3 and suppose in fact that
a < (3, so that B, C Bg, with a similar argument if it is the case
that 8 < a. We show again that B, = Bg, and it suffices to obtain
d,(Ba,Bs) = 0. By definition of d,, B, and Bg, we see that B,
and Bp are both elements of the ball B in question. Suppose that
d,(Ba,Bg) # 0. Then there is a compact element ¢; such that
the statement “cy C B, iff ¢4 C Bg” is false. Since B, C Bg,
it must be the case that ¢; Z B, and ¢; C Bg. By Fact 1 any
point of a ball is its centre, and so we can take y to be Bg in the
equation established in (1). We therefore obtain Bz = sup{c €
approx(Bg);r(c) < B}. If {¢ € approx(Bg);r(c) < B} is empty,
then B, and Bg are both equal to the bottom element L of D and
we are done; so suppose {c € approx(Bg);r(c) < 3} # . Since
c1 C Bg, there is, by the condition SC, a compact element c; with
r(c2) < B such that ¢; T ¢y C Bg. But then ¢y [Z B, otherwise
we would have ¢; C ¢o and ¢y C B, leading to the contradiction
¢1 C B,. But now we have a compact element co with r(cy) < 3
and for which ¢y Z B, and c; C Bg, and this contradicts the fact
that d,.(Ba, Bg) < 279, Hence, B, = Bp as required. m

4. Applications to Computational Logic

Conventional logic programming is concerned with computation
as deduction (using SLD-resolution) from (possibly infinite) sets
P of clauses of type

Clv...\/C]' (—Al/\"'/\Ak1 /\"l?l/\"'/\—lBl1
(for disjunctive databases) or of type
C A A---NAg, A=By A---A—By,

(for programs), where all the A’s, B’s and C’s are atoms in some
first order language £, see [8] for details. A central problem in the
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theory is to give a canonical meaning (semantics) to P, and the
standard solution of this problem is to find the fixed points of an
operator Tp determined by P. (This compares with the problem of
giving semantics to recursive definitions or to constructs involving
self-reference in conventional programming languages. In both
cases, the meaning is taken to be a fixed point of a function (or
functor) which naturally arises from within the problem.)

For programs, we proceed as follows: form the set Bp of all
ground (variable-free) atoms in £ and its power set Ip = P(Bp)
ordered by set inclusion (elements I of Ip can be naturally iden-
tified with interpretations, including the models, for P). Then
Tp : Ip — Ip is defined by setting Tp(I) to be the set of all
ground atoms C' in Bp for which there is a ground instance C' ¢+
Ay AN+ AN Ag, A =By A--- A=Bp,? of a clause in P satisfying
I = A AN---NAg, AN-By A--- A-By,. Some standard facts
concerning T'p are as follows:

(a) If P contains no negation symbols (P is positive), then Tp is
monotone (even continuous) and its least fixed point can be found
by applying the Knaster-Tarski theorem (the fixed-point theorem
for cpos) and gives a satisfactory semantics for P.

(b) If P contains negation symbols, then Tp is non-monotonic
and we face the difficulty of finding fixed points of non-monotonic
operators.

Note 1 There are various ways of considering Tp from the point
of view of a dynamical system, the main issue being to control the
evolution of the iterates TR () or more generally of TA(I) for some
Ie€lp:

(i) Identify Ip with a product of two-point spaces endowed with
the product of the discrete topologies (Cantor space) and then Tp
can be thought of as a kind of shift operator; this relates to the
work of Christopher Moore in [9], see also [21].

2A ground instance of a clause in P is an instance C' <~ A1 A--- A Ay, A
—B1A---A-By, of a program clause in which each of the atoms C, A;, B;
is an element of Bp i.e. a clause resulting from a program clause by
assigning all the variable symbols to ground terms.
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(ii) Tp can be thought of as a mapping on a closed subspace of
the Vietoris space of Bp and hence as a set dynamical system, see
[4,18].

For databases there are further problems in that the appro-
priate operator T' is multi-valued and we want I such that I € T'(I)
(a fixed point of T'). We shall not, however, discuss databases as
such in detail, but instead refer the reader to [7] where a multi-
valued version of the contraction mapping theorem can be found,
and also an application of it to finding models of disjunctive data-
bases.

Returning to programs, various syntactic conditions, see
[1,2,12,13,14], have been considered in attempting to find fixed
points of non-monotonic operators, including the following which
is one of the most important:

Definition 3 Let | : Bp — v be a mapping (a level mapping?)
where v is a countable ordinal. Call P:

(1) Locally stratified with respect to | (Przymusinski) if the inequal-
ities I(C') > 1(A;) and I(C) > I(Bj) hold for all i and j in each
ground instance of each clause in P.

(2) Strictly level-decreasing with respect to [, as in [17,18], if the
inequalities [(C) > I(A;),[(B;) hold for all 4 and j in each ground
instance of each clause in P.

It is known that the class in (1) has several minimal,
supported* models (due to Przymusinski, Gelfond, Lifschitz et
al.) for each program in the class. Indeed, it is not a priori clear
which of these models can be taken to be the natural semantics
for any given program in class (1), and the choice depends on
how one attempts to model non-monotonic reasoning. However,
subclass (2) of (1) is interesting in that it is one of the rather

3Level mappings are used in logic programming in a variety of contexts
including problems concerned with termination, and with completeness
and also to define metrics, see [2,3,5].

4An interpretation I for P is said to be supported if I C Tp(I). Such
interpretations are important in logic programming, and this point is
discussed in [1]. Since an interpretation I is a model for P iff Tp(I) C I,
it follows that a model for P is supported iff it is a fixed point of Tp.
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rare classes of programs which satisfy both of the following two
properties (I) and (IT) simultaneously, unlike the class (1) which
obviously satisfies (I) but not (II):

(I) Tt is computationally adequate i.e. any partial recursive (com-
putable) function can be computed by some program in class (2),
see [18].

(IT) For each program in (2) all the “natural” models coincide — so
there is no argument about which is best. In fact, this statement
is an improvement on the results obtained by Przymusinski in
[12,13,14].

The statement (IT) can be established by an application of
the ideas discussed earlier by viewing Ip as a domain whose set
of compact elements is the set I~ of all finite subsets of Bp, and
we now indicate briefly how this is done.

Definition 4 Let | : Bp — v be a level mapping. Define the rank
function r; induced by I by setting r;(I) = max{l(A); A € I} for
every I € I, with I non-empty, and taking r;(#) = 0. Denote the
generalized ultrametric resulting from r; by d;.

The following theorem was established in [17], and we note
that the condition SC imposed on r (concerning directedness) is
trivially satisfied by ;.

Theorem 3 Let P be strictly level-decreasing with respect to a
level mapping . Then Tp is strictly contracting with respect to
the generalized ultrametric d; induced by .

It follows from Theorems 1, 2 and 3 that Tp has a unique
fixed point and therefore that P has a unique supported model.
In turn, it follows that all the standard semantics for P coincide
with the perfect model semantics (due to Przymusinski) which is
the unique minimal supported model for P.

The interested reader can find full details of all the results
discussed in this section in [17,18], and we close with a couple of
simple examples of programs which do not compute anything in
particular but which illustrate how level mappings arise, taking
values in ordinals beyond w.
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Example 3 (1) Let P be the program consisting of the following
three clauses:
q(0) < —p(z), ~p(s(z))

p(o) +
p(s(z)) + —p(x)

Define I : Bp — w + 1 by I(p(s™(0))) = n and I(g(s"(0))) = w
for all n € N. Then P is strictly level-decreasing, and the unique
supported model given by Theorem 3 is the set {p(s>*(0));n € N}.
(2) This time take P to be as follows:

p(0,0)

p(S(y), 0) — _'p(ya 1‘), _'p(ya S(‘T))
p(y,s(z)) « —ply,z)

Define [ : Bp — ww by I(p(s*(0),s7(0))) = wk + j, where
wk denotes the k" limit ordinal. Then P is strictly level-

decreasing and its unique supported model is {p(o0,s>"(0));n €
N} U {p(s"*t1(0),s**1(0));k,n € N}.

Example 4 Take the “even numbers” program:
p(0)

p(s(2)) < —p(z)

with the w-level mapping ! defined by I(p(s™(0))) = n. Theorem
3 applies to this program and the set {p(0), p(s*(0)), p(s*(0)), ...}
of even numbers is the resulting unique fixed point of Tp.

Example 5 Consider the following program P:

p(s(0)) ¢ =q(0)
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q(0) <

The set {q(0),p(s™(0)),r(s™(0))} is a fixed point of Tp for every
n. Therefore, Tp can never satisfy the hypothesis of Theorem 3.
In fact, this program is locally stratified, but is never strictly level-
decreasing for any level mapping because of the cycle created by
the second and third clauses. Such a cycle would be prohibited in
a strictly level-decreasing program, and this example shows that a
locally stratified program need not have a contractive immediate
consequence operator. m
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