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1. Introdu
tion

Fixed points of fun
tions and operators are of fundamental import-

an
e in programming language semanti
s, in giving meaning to

re
ursive de�nitions and to 
onstru
ts whi
h involve self-referen
e.

It follows, therefore, that �xed-point theorems are also of funda-

mental importan
e in theoreti
al 
omputer s
ien
e. Often, order-

theoreti
 arguments are available, in whi
h 
ase the well-known

Knaster-Tarski theorem 
an be used to obtain �xed points. Some-

times, however, analyti
al arguments are needed involving the

Bana
h 
ontra
tion mapping theorem, as is the 
ase, for example,

in studying 
on
urren
y and 
ommuni
ating systems. Situations

arise also in 
omputational logi
 in the presen
e of negation whi
h

for
e non-monotoni
ity of the operators involved. A su

essful

attempt was made in [5℄ to employ metri
s and the 
ontra
tion

mapping theorem in studying some problemati
 logi
 programs.

These ideas were taken further in [16℄ in examining quasi-metri
s

and in [17,18℄ in 
onsidering elementary ideas from topologi
al

dynami
s in this same 
ontext of 
omputational logi
.

One thing whi
h emerged from [17℄ was an appli
ation of

a �xed-point theorem due to Sibylla Priess-Crampe and Paulo

Ribenboim, see [10℄. This theorem utilizes ultrametri
s whi
h
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are allowed to take values in an arbitrary partially ordered set

and is a substitute for the 
ontra
tion mapping theorem. The

inspiration for this result appears to have 
ome from appli
ations

within algebra and, in parti
ular, to ordered abelian groups, and

rings of generalized power series. However, as already indi
ated,

our interest in it resides in its potential appli
ations to theoreti
al


omputer s
ien
e.

Our purpose in this note is to give some weight to the pre-

vious senten
e by sket
hing the appli
ation we made in [17℄ of

Theorem 1. Thus, in x2 we brie
y 
onsider generalized ultramet-

ri
s i.e. ultrametri
s whi
h take values in an arbitrary partially

ordered set (not just in the non-negative reals) and state the �xed-

point theorem of Priess-Crampe & Ribenboim, Theorem 1. In x3,

we 
onsider a natural way of endowing S
ott domains with gener-

alized ultrametri
s. This step provides a te
hni
al tool whi
h we

need in x4 in applying Theorem 1 to �nding �xed points of non-

monotoni
 operators arising out of logi
 programs and dedu
tive

databases and hen
e to �nding models for these.

2. Generalized ultrametri
 spa
es:

the �xed-point theorem of Priess-Crampe & Ribenboim

It will be 
onvenient to give some basi
 de�nitions in this se
tion,

and to introdu
e some notation all of whi
h is to be found in

[10,11℄.

De�nition 1 (Priess-Crampe & Ribenboim) Let X be a set and

let � be a partially ordered set with least element 0. The pair

(X; d) is 
alled a generalized ultrametri
 spa
e (gum) if d : X �

X ! � is a fun
tion satisfying the following 
onditions for all

x; y; z 2 X and 
 2 �:

(1) d(x; y) = 0 if and only if x = y;

(2) d(x; y) = d(y; x);

(3) if d(x; y) � 
 and d(y; z) � 
, then d(x; z) � 
.

Of 
ourse, this de�nition is entirely standard ex
ept that the

fun
tion d takes its values in the set � rather than in the set of

non-negative real numbers, and to that extent is 
onsiderably more

general. Moreover, as in the 
lassi
al 
ase, one 
an de�ne \balls"
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in the 
ontext of generalized ultrametri
 spa
es: for 0 6= 
 2 �

and x 2 X , the set B




(x) = fy 2 X ; d(x; y) � 
g is 
alled a 
-ball

or just a ball in X . One then has the following elementary fa
ts,

see [10℄.

Fa
t 1 (1) If � � � and x 2 B

�

(y), then B

�

(x) � B

�

(y). Hen
e

every point of a ball is also its 
entre.

(2) If B

�

(x) � B

�

(y), then � 6� � (i.e. � < � if � is totally

ordered).

A substitute in the present 
ontext is needed for the usual

notion of 
ompleteness in (ultra)metri
 spa
es, and this is provided

by the notion of \spheri
al 
ompleteness" as follows. A generalized

ultrametri
 spa
e X is 
alled spheri
ally 
omplete if

T

C 6= ; for

any 
hain C of balls in X . (By a \
hain of balls" we mean, of


ourse, a set of balls whi
h is totally ordered by in
lusion.)

A typi
al example, see [11℄, of a generalized ultrametri


spa
e is provided by the following fun
tion spa
e in whi
h the

distan
e between two fun
tions is the set of points on whi
h they

di�er, and therefore is not numeri
al in nature.

Example 1 Take a non-empty set A and a set E with at least

two elements. Let H =

Q

a2A

E and de�ne d : H �H ! P(A) by

d(f; g) = fa 2 A; f(a) 6= g(a)g, where P(A) denotes the power set

of A. Then (H; d;P(A)) is a spheri
ally 
omplete gum.

A fun
tion f : X ! X is 
alled stri
tly 
ontra
ting if

d(f(x); f(y)) < d(x; y) for all x; y 2 X with x 6= y. The fol-

lowing theorem, whi
h is to be found in [10℄, 
an be thought of as

an analogue of the Bana
h 
ontra
tion mapping theorem.

Theorem 1 (Priess-Crampe & Ribenboim) Let (X; d) be a spher-

i
ally 
omplete generalized ultrametri
 spa
e and let f : X ! X

be stri
tly 
ontra
ting. Then f has a unique �xed point.

In fa
t, there are more general versions of this theorem for

both single and multi-valued mappings, see [11℄. As already noted,

it is our belief that this theorem has a signi�
ant rôle to play in

theoreti
al 
omputer s
ien
e in the study of the semanti
s of logi
-

based programming languages. Indeed, some appli
ations in this

area have been made in [11℄, and we dis
uss another one here in x 4.
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3. Domains as GUMS

Domains are a spe
ial type of ordered set, as de�ned below. They

were introdu
ed independently by D. S. S
ott and Y. L. Ershov as

a means of providing stru
tures for modelling 
omputation, and

to provide spa
es to support the denotational semanti
s approa
h

to understanding programming languages, see [20℄. Usually,

domains are endowed with the S
ott topology, whi
h is one of

the T

0

(but not T

1

) topologies of interest in theoreti
al 
om-

puter s
ien
e. However, under 
ertain 
onditions, to be examined

below, domains 
an be endowed with the stru
ture of a generalized

ultrametri
 spa
e. This is not something normally 
onsidered in

domain theory but, as we shall see, has interesting appli
ations to

the semanti
s of logi
 programs.

Let (D;v) denote a S
ott domain with set D

C

of 
ompa
t

elements, see [20℄. Thus:

� (D;v) is a partially ordered set whi
h, in fa
t, forms a 
omplete

partial order (
po). Hen
e, D has a bottom element ?, and the

supremum supA exists for all dire
ted subsets A of D.

� The elements a 2 D

C

satisfy: whenever A is dire
ted and a v

supA, then a v x for some x 2 A.

� For ea
h x 2 D, the set approx(x) = fa 2 D

C

; a v xg is dire
ted

and x = supapprox(x).

� If the set fa; bg � D

C

is 
onsistent (there exists x 2 D su
h that

a v x and b v x), then supfa; bg exists in D.

Several important fa
ts emerge from these 
onditions in
lud-

ing the existen
e (indeed 
onstru
tion) of �xed points of 
ontinu-

ous fun
tions, and the existen
e of fun
tion spa
es (the 
ategory

of domains is 
artesian 
losed). Moreover, the 
ompa
t elements

provide an abstra
t notion of 
omputability.

Example 2 (i) (P(N);�) is a domain whose 
ompa
t elements

are the �nite subsets of N .

(ii) The set of all partial fun
tions from N

n

into N ordered by

graph in
lusion is a domain whose 
ompa
t elements are the �nite

fun
tions.

As already noted, domains 
arry a natural and important

topology 
alled the S
ott topology. Under 
ertain 
onditions the
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S
ott topology 
an be generated by a quasi-metri
, see [16,19℄,

but is never metrizable. However, by means of a 
onstru
tion

similar to that dis
ussed in [19℄, we 
an endow a domain with

a generalized ultrametri
, quite separate from its S
ott topology,

and this we dis
uss next.

Let 
 denote an arbitrary 
ountable ordinal i.e. one of the

trans�nite sequen
e 0; 1; 2; : : : ; !; !+1; !+2; : : : ; !2; !2+1; !2+

2; : : : ; !!; !!+1; !!+2; : : :. Let �




denote the set f2

��

;� < 
g

of symbols 2

��

whi
h we order by 2

��

< 2

��

if and only if � < �.

De�nition 2 Let r : D

C

! 
 be a fun
tion, 
alled a rank fun
tion,

form �


+1

and denote 2

�


by 0. De�ne d

r

: D � D ! �


+1

by d

r

(x; y) = inff2

��

; 
 v x if and only if 
 v y for every 
 2

D

C

with r(
) < �g:

Then (D; d

r

) is a generalized ultrametri
 spa
e said to

be indu
ed by r. Moreover, (D; d

r

) is spheri
ally 
omplete

provided we impose one standing 
ondition (SC) on the rank

fun
tion r: for ea
h x 2 D and for ea
h ordinal � < 
, the set

f
 2 approx(x); r(
) < �g is dire
ted whenever it is non-empty.

Theorem 2 Under the standing 
ondition (SC) on r, (D; d

r

) is

spheri
ally 
omplete.

Full details of these results 
an be found in [17℄. However,

the key to obtaining Theorem 2 is the following lemma whose proof

we sket
h here; a key point in the details is that any point of a

ball in a gum is its 
entre (Fa
t 1). To simplify notation denote

the ball B

2

��
(x) by B

�

(x).

Lemma 1 Suppose that r satis�es 
ondition SC, and let B

�

(x) �

B

�

(y). Then the following hold.

(1) f
 2 approx(x); r(
) < �g = f
 2 approx(y); r(
) < �g.

(2) B

�

= supf
 2 approx(x); r(
) < �g and B

�

= supf
 2

approx(y); r(
) < �g both exist.

(3) B

�

v B

�

.

Proof. Sin
e x 2 B

�

(x), we have x 2 B

�

(y) and hen
e d

r

(x; y) �

2

��

. So (1) follows immediately from the de�nition of d

r

.

Sin
e f
 2 approx(x); r(
) < �g is bounded by x, we get (2) from

the 
onsistent 
ompleteness of D, see [20℄.

For the third statement:
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Step 1. Suppose B

�

(x) � B

�

(y). Then � < � by Fa
t 1 sin
e

�




is totally ordered. Thus B

�

= supf
 2 approx(y); r(
) < �g =

supf
 2 approx(x); r(
) < �g v supf
 2 approx(x); r(
) < �g =

B

�

, and so B

�

v B

�

as required.

Step 2. Now suppose that B

�

(x) = B

�

(y) = B, say.

Sub
ase 1. If � = �, then it is immediate that B

�

= B

�

.

Sub
ase 2. Suppose �nally that � 6= � and suppose in fa
t that

� < �, so that B

�

v B

�

, with a similar argument if it is the 
ase

that � < �. We show again that B

�

= B

�

, and it suÆ
es to obtain

d

r

(B

�

; B

�

) = 0. By de�nition of d

r

; B

�

and B

�

, we see that B

�

and B

�

are both elements of the ball B in question. Suppose that

d

r

(B

�

; B

�

) 6= 0. Then there is a 
ompa
t element 


1

su
h that

the statement \


1

v B

�

i� 


1

v B

�

" is false. Sin
e B

�

v B

�

,

it must be the 
ase that 


1

6v B

�

and 


1

v B

�

. By Fa
t 1 any

point of a ball is its 
entre, and so we 
an take y to be B

�

in the

equation established in (1). We therefore obtain B

�

= supf
 2

approx(B

�

); r(
) < �g. If f
 2 approx(B

�

); r(
) < �g is empty,

then B

�

and B

�

are both equal to the bottom element ? of D and

we are done; so suppose f
 2 approx(B

�

); r(
) < �g 6= ;. Sin
e




1

v B

�

, there is, by the 
ondition SC, a 
ompa
t element 


2

with

r(


2

) < � su
h that 


1

v 


2

v B

�

. But then 


2

6v B

�

otherwise

we would have 


1

v 


2

and 


2

v B

�

leading to the 
ontradi
tion




1

v B

�

. But now we have a 
ompa
t element 


2

with r(


2

) < �

and for whi
h 


2

6v B

�

and 


2

v B

�

, and this 
ontradi
ts the fa
t

that d

r

(B

�

; B

�

) � 2

��

. Hen
e, B

�

= B

�

as required.

4. Appli
ations to Computational Logi


Conventional logi
 programming is 
on
erned with 
omputation

as dedu
tion (using SLD-resolution) from (possibly in�nite) sets

P of 
lauses of type

C

1

_ : : : _ C

j

 A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

(for disjun
tive databases) or of type

C  A

1

^ � � � ^A

k

1

^ :B

1

^ � � � ^ :B

l

1

(for programs), where all the A's, B's and C's are atoms in some

�rst order language L, see [8℄ for details. A 
entral problem in the
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theory is to give a 
anoni
al meaning (semanti
s) to P , and the

standard solution of this problem is to �nd the �xed points of an

operator T

P

determined by P . (This 
ompares with the problem of

giving semanti
s to re
ursive de�nitions or to 
onstru
ts involving

self-referen
e in 
onventional programming languages. In both


ases, the meaning is taken to be a �xed point of a fun
tion (or

fun
tor) whi
h naturally arises from within the problem.)

For programs, we pro
eed as follows: form the set B

P

of all

ground (variable-free) atoms in L and its power set I

P

= P(B

P

)

ordered by set in
lusion (elements I of I

P


an be naturally iden-

ti�ed with interpretations, in
luding the models, for P ). Then

T

P

: I

P

! I

P

is de�ned by setting T

P

(I) to be the set of all

ground atoms C in B

P

for whi
h there is a ground instan
e C  

A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

2

of a 
lause in P satisfying

I j= A

1

^ � � � ^ A

k

1

^ :B

1

^ � � � ^ :B

l

1

. Some standard fa
ts


on
erning T

P

are as follows:

(a) If P 
ontains no negation symbols (P is positive), then T

P

is

monotone (even 
ontinuous) and its least �xed point 
an be found

by applying the Knaster-Tarski theorem (the �xed-point theorem

for 
pos) and gives a satisfa
tory semanti
s for P .

(b) If P 
ontains negation symbols, then T

P

is non-monotoni


and we fa
e the diÆ
ulty of �nding �xed points of non-monotoni


operators.

Note 1 There are various ways of 
onsidering T

P

from the point

of view of a dynami
al system, the main issue being to 
ontrol the

evolution of the iterates T

n

P

(;) or more generally of T

n

P

(I) for some

I 2 I

P

:

(i) Identify I

P

with a produ
t of two-point spa
es endowed with

the produ
t of the dis
rete topologies (Cantor spa
e) and then T

P


an be thought of as a kind of shift operator; this relates to the

work of Christopher Moore in [9℄, see also [21℄.

2

A ground instan
e of a 
lause in P is an instan
e C  A

1

^ � � � ^A

k

1

^

:B

1

^� � �^:B

l

1

of a program 
lause in whi
h ea
h of the atoms C;A

i

; B

j

is an element of B

P

i.e. a 
lause resulting from a program 
lause by

assigning all the variable symbols to ground terms.
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(ii) T

P


an be thought of as a mapping on a 
losed subspa
e of

the Vietoris spa
e of B

P

and hen
e as a set dynami
al system, see

[4,18℄.

For databases there are further problems in that the appro-

priate operator T is multi-valued and we want I su
h that I 2 T (I)

(a �xed point of T ). We shall not, however, dis
uss databases as

su
h in detail, but instead refer the reader to [7℄ where a multi-

valued version of the 
ontra
tion mapping theorem 
an be found,

and also an appli
ation of it to �nding models of disjun
tive data-

bases.

Returning to programs, various synta
ti
 
onditions, see

[1,2,12,13,14℄, have been 
onsidered in attempting to �nd �xed

points of non-monotoni
 operators, in
luding the following whi
h

is one of the most important:

De�nition 3 Let l : B

P

! 
 be a mapping (a level mapping

3

)

where 
 is a 
ountable ordinal. Call P :

(1) Lo
ally strati�ed with respe
t to l (Przymusinski) if the inequal-

ities l(C) � l(A

i

) and l(C) > l(B

j

) hold for all i and j in ea
h

ground instan
e of ea
h 
lause in P .

(2) Stri
tly level-de
reasing with respe
t to l, as in [17,18℄, if the

inequalities l(C) > l(A

i

); l(B

j

) hold for all i and j in ea
h ground

instan
e of ea
h 
lause in P .

It is known that the 
lass in (1) has several minimal,

supported

4

models (due to Przymusinski, Gelfond, Lifs
hitz et

al.) for ea
h program in the 
lass. Indeed, it is not a priori 
lear

whi
h of these models 
an be taken to be the natural semanti
s

for any given program in 
lass (1), and the 
hoi
e depends on

how one attempts to model non-monotoni
 reasoning. However,

sub
lass (2) of (1) is interesting in that it is one of the rather

3

Level mappings are used in logi
 programming in a variety of 
ontexts

in
luding problems 
on
erned with termination, and with 
ompleteness

and also to de�ne metri
s, see [2,3,5℄.

4

An interpretation I for P is said to be supported if I � T

P

(I). Su
h

interpretations are important in logi
 programming, and this point is

dis
ussed in [1℄. Sin
e an interpretation I is a model for P i� T

P

(I) � I,

it follows that a model for P is supported i� it is a �xed point of T

P

.
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rare 
lasses of programs whi
h satisfy both of the following two

properties (I) and (II) simultaneously, unlike the 
lass (1) whi
h

obviously satis�es (I) but not (II):

(I) It is 
omputationally adequate i.e. any partial re
ursive (
om-

putable) fun
tion 
an be 
omputed by some program in 
lass (2),

see [18℄.

(II) For ea
h program in (2) all the \natural" models 
oin
ide { so

there is no argument about whi
h is best. In fa
t, this statement

is an improvement on the results obtained by Przymusinski in

[12,13,14℄.

The statement (II) 
an be established by an appli
ation of

the ideas dis
ussed earlier by viewing I

P

as a domain whose set

of 
ompa
t elements is the set I

C

of all �nite subsets of B

P

, and

we now indi
ate brie
y how this is done.

De�nition 4 Let l : B

P

! 
 be a level mapping. De�ne the rank

fun
tion r

l

indu
ed by l by setting r

l

(I) = maxfl(A);A 2 Ig for

every I 2 I

C

, with I non-empty, and taking r

l

(;) = 0. Denote the

generalized ultrametri
 resulting from r

l

by d

l

.

The following theorem was established in [17℄, and we note

that the 
ondition SC imposed on r (
on
erning dire
tedness) is

trivially satis�ed by r

l

.

Theorem 3 Let P be stri
tly level-de
reasing with respe
t to a

level mapping l. Then T

P

is stri
tly 
ontra
ting with respe
t to

the generalized ultrametri
 d

l

indu
ed by l.

It follows from Theorems 1, 2 and 3 that T

P

has a unique

�xed point and therefore that P has a unique supported model.

In turn, it follows that all the standard semanti
s for P 
oin
ide

with the perfe
t model semanti
s (due to Przymusinski) whi
h is

the unique minimal supported model for P .

The interested reader 
an �nd full details of all the results

dis
ussed in this se
tion in [17,18℄, and we 
lose with a 
ouple of

simple examples of programs whi
h do not 
ompute anything in

parti
ular but whi
h illustrate how level mappings arise, taking

values in ordinals beyond !.
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Example 3 (1) Let P be the program 
onsisting of the following

three 
lauses:

q(o) :p(x);:p(s(x))

p(o) 

p(s(x)) :p(x)

De�ne l : B

P

! ! + 1 by l(p(s

n

(o))) = n and l(q(s

n

(o))) = !

for all n 2 N . Then P is stri
tly level-de
reasing, and the unique

supported model given by Theorem 3 is the set fp(s

2n

(o));n 2 Ng.

(2) This time take P to be as follows:

p(o; o) 

p(s(y); o) :p(y; x);:p(y; s(x))

p(y; s(x)) :p(y; x)

De�ne l : B

P

! !! by l(p(s

k

(o); s

j

(o))) = !k + j, where

!k denotes the k

th

limit ordinal. Then P is stri
tly level-

de
reasing and its unique supported model is fp(o; s

2n

(o));n 2

Ng [ fp(s

n+1

(o); s

2k+1

(o)); k; n 2 Ng.

Example 4 Take the \even numbers" program:

p(o) 

p(s(x)) :p(x)

with the !-level mapping l de�ned by l(p(s

n

(o))) = n. Theorem

3 applies to this program and the set fp(o); p(s

2

(o)); p(s

4

(o)); : : :g

of even numbers is the resulting unique �xed point of T

P

.

Example 5 Consider the following program P :

p(s(o)) :q(o)

p(x) r(x)

r(x)  p(x)



� Generalized Ultrametri
s 41

q(o) 

The set fq(o); p(s

n

(o)); r(s

n

(o))g is a �xed point of T

P

for every

n. Therefore, T

P


an never satisfy the hypothesis of Theorem 3.

In fa
t, this program is lo
ally strati�ed, but is never stri
tly level-

de
reasing for any level mapping be
ause of the 
y
le 
reated by

the se
ond and third 
lauses. Su
h a 
y
le would be prohibited in

a stri
tly level-de
reasing program, and this example shows that a

lo
ally strati�ed program need not have a 
ontra
tive immediate


onsequen
e operator.
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