REPRESENTATION THEOREMS
FOR SOME CLASSES OF
OPERATORS ON C*-ALGEBRAS

Martin Mathieu

Abstract: This article contains a survey on representation theorems
for various classes of linear operators on C*-algebras emphasizing the
role of local multipliers to derive them.

1. Introduction.

In studying a class of, perhaps bounded linear, operators on
C'*-algebras one can, at least, distinguish three different levels of
understanding this class. Firstly, there are (canonical) examples
and necessary properties to be found which guarantee the richness
of, and stimulate interest in, this class of operators and help to
single out those mot contained. Secondly, one seeks to establish
sufficient properties that allow to characterize the members of
this class of operators in a non-trivial way. Thirdly, and this
we should consider the top level of understanding, one aims to
determine prototypical examples and a mechanism to build all
other members in this class from these. This then enables us in
principle to read off all the properties that one is investigating
from the prototypical, simple examples.

An instance of such a study arises in the theory of
*-derivations of C*-algebras. In the first place, these are defined
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purely algebraically but turn out to be automatically continuous, a
well-known result by Sakai, which has been extended by different
methods by several others in each case exploiting interesting prop-
erties of C*-algebras. Prominent examples are the inner deriva-
tions originating from commutators (with self-adjoint elements),
thus revealing the intimate interplay with quantum physics. The
second step consists in showing that *-derivations precisely are
the generators of (norm-continuous) groups of *-automorphisms
of C*-algebras. The latter are the models of reversible evolutions
of quantum systems. But the breakthrough is done via a repres-
entation theorem which tells us that every *-derivation is inner, at
least for all von Neumann algebras or in some generalized sense.

Our aim here is to discuss a few of such representation theor-
ems for some classes of (not necessarily bounded linear) operators
on (C*-algebras, in particular those recently proven by means of
a new tool in operator theory on C*-algebras, the local multiplier
algebra. We hope to give some flavour of the new ideas involved
and to water the mouth for fuller meals, such as offered in [4]. This
article comprises two talks delivered to the DIAS Christmas Sym-
posium 1997 in Dublin in December 1997 and the Mathematical
Colloquium of the University of Aberdeen in May 1998, respect-
ively.

2. A few prerequisites.

In this section we shall recall a few basic notions in the theory of
C'*-algebras that will be relevant for our discussion. Throughout
one may think of a C*-algebra A as a subalgebra of the bounded
linear operators on a Hilbert space, B(H), which is closed in the
operator norm and with respect of taking adjoints: if 2z € A then so
is its adjoint z*. The fundamental law that ties together the three
basic structures in a C*-algebra, the algebraic, the metric, and the
order structure, is the C*-identity ||z*z| = ||z|* for all z € A.
In finite dimensions, the n X n matrices form a typical example of
a (C*-algebra whereas the first infinite dimensional C*-algebra is
provided by the compact operators K(H) on a separable Hilbert
space H. In fact, K(H) is closely related to the matrix algebras as
it results from them by taking the direct limit h_n>1n M,, where the
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n x n matrices M,, are embedded into the (n+1) x (n+ 1) matrices
by putting a € M, into the upper left hand corner and filling up
with zeros. Since K (H) is a closed *-ideal of B(H), the quotient
B(H)/K(H) is another prominent example of a C*-algebra, the
so-called Calkin algebra.

A typical commutative C*-algebra is provided by the space
Co(X) of all continuous complex-valued functions on a locally
compact Hausdorff space X which vanish at infinity. This may be
regarded as an algebra of operators by identifying a function with
the multiplication by this function on the Hilbert space L?(X, ),
where p gives non-zero measure to every non-empty open subset of
X, for example. Endowed with these basic examples one can then
start to build more complicated ones by a number of procedures,
e.g. Co(X;K(H)) where the functions now take on their values
in the compact operators rather than the complex numbers but we
still use the supremum norm.

One of the constructions with C*-algebras that we shall refer
to in the sequel is the multiplier algebra of a C'*-algebra. Supposing
that A acts on H non-degenerately, that is, for each £ € H which
is non-zero there exists an element z € A such that z§ # 0,

M(A) = {y € B(H) | yA+ Ay C A}.

In the examples given above we have M(K(H)) = B(H) and
M(Cy(X)) = Cp(X), the algebra of all bounded continuous func-
tions on X. The multiplier algebra M (A) is distinguished by the
fact that it is the largest essential extension of A, that is, A is
contained in M (A) as a closed essential ideal (wherefore it has
non-zero intersection with every other non-zero ideal in M (A))
and every unital C*-algebra B that also contains A in the same
manner canonically embeds into M (A).

3. How to apply a representation theorem.

Before we shall delve into our discussion of some recent represent-
ation theorems, let us recall a very familiar one and see how this
can be used to obtain some neat consequences. Let A C B(H),
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B C B(K) be two C*-algebras. A linear mapping T: A — B is
called bounded if its operator norm

T[] = sup{[|T|| | = € A, ||lz[| < 1} < o0.

A requirement which in general is (somewhat) stronger is the fol-
lowing. We say that T is completely bounded if the canonical
extension

T ®id: A @i K(0%) — B @min K (£?)

is bounded, where the minimal tensor product is obtained from
the algebraic tensor product by letting A ® K (¢2) act canonically
on H®¥¢? and completing in the operator norm. In this case,
|IT)|les = |IT ®id]| is called the cb-norm of T'.

One of the very nice features of completely bounded operat-
ors is that there exists a representation theorem, proved by Paulsen
in 1984.

Theorem. Let T: A — B be a completely bounded linear oper-
ator between the C*-algebras A and B. Then there exist a repres-
entation w of A on a Hilbert space H and bounded linear operators
V:H - K, W:K — H such that |V||||W|| = |l and

Te=Var(z)W (x € A).

This result emerged to be fundamental for the theory of completely
bounded operators, for instance, it immediately yields Wittstock’s
extension and decomposition theorems. For a survey on various
aspects of completely bounded operators we refer to [11], and for
an up-to-date presentation of their theory in detail to [14].
Completely bounded operators were introduced by Arveson
in the late 1960’s, and it soon became apparent that it doesn’t
suffice to study them on C*-algebras only. For that reason the
notion of an operator space as a subspace E of some B(H) was
introduced. Now there arose the question of how to describe these
operator spaces abstractly by a neat set of simple axioms, as was
done by Gelfand and Naimark for C*-algebras. This problem was
solved by Ruan in 1988 by providing the following axioms.
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Let E be a complex vector space and let M, (E) denote the
vector space of n X n matrices with entries in E. Suppose there
exists a sequence (|| - ||n)nen of norms on M, (E) satisfying the
following two requirements

(R1) VneNVa,fe€ M, Vze My(E)

ez Blln < llafl [[[ln Il

(R2) Vn,meNVze M,(E)Vy € M,(E)

12 @ Yllntm = max{[|z|ln, [ly[lm}-

Then (E, (|| - [|n)nen) is called an abstract operator space. It can
be seen easily that, if E C B(H) and M,(FE) is considered as a
subspace of B(H") canonically, then the above axioms are fulfilled
so that, a priori, every operator space is an abstract operator
space. Whence the question remains whether the two concepts
coincide.

To state Ruan’s theorem, which answers this question affirm-
atively, we have to extend the concept of complete boundedness
to the abstract situation. Let E and F be abstract operator
spaces. Every linear mapping 7: E — F yields a linear mapping
T: M,(E) - My(F) by (xi5) = (Tzi;). We say that T is com-
pletely bounded if each T),, n € N is bounded and sup,, [|T,|| < oo;
in that case, this supremum is again called the completely bounded
norm |||, of T. (It is not difficult to realize that this gives the
same notion as above in the concrete setting.) The operator T is
said to be completely isometric if all T, n € N are isometries.

Ruan’s Theorem.  FEvery abstract operator space is completely
isometrically isomorphic to a subspace of some B(H).

We will now sketch a proof of this fundamental result that
relies on another representation theorem related to Paulsen’s the-
orem, taken from [8].

Theorem (Effros-Ruan 1993).  Let E be an abstract oper-
ator space, and let f € M,(E)' be a bounded linear functional on
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M, (E) (equipped with the norm || - ||»). Then there exist a com-
pletely bounded linear mapping ¢: E — M, with ||¢|les < 1 and

bounded linear mappings v:C" C, w:C — C”Q, both with
norm at most 1, such that

f@)=ven(r)w  (z € My(E)).

Suppose that FE is an abstract operator space, and take
x € M,(E). By the Hahn-Banach theorem, there is some f €
M, (E)" with the properties ||f|| = 1 and |f(z)| = ||z||,. By the
Effros-Ruan theorem above, there is a complete contraction ¢ from
E into M, such that ||p,(z)|| = ||z||»- Let ®, denote the set of
all complete contractions from E into M,,. Letting

p:E—>H H M,

neN ¢ped,

with p(z) = (p(z)) be the linear mapping that assigns to z the
family of all possible evaluations of some ¢ € ®,, n € N at z,
we obtain a complete contraction p which, in fact, is completely
isometric since there is at least one such ¢ with ||, (2)|| = ||Z||n-
The huge product on the right hand side is a C*-algebra, thus
sits (completely isometrically) inside some B(H) by the Gelfand-
Naimark theorem, and the proof of Ruan’s theorem is complete.

4. Some classes of operators.
The following classes of operators have been studied over the past
few years by means of multipliers which are defined on ideals of a
C*-algebra rather than on the entire C*-algebra itself.

« elementary operators

o derivations

¢ Jordan homomorphisms

o Lie derivations, Lie isomorphisms

o centralizing and commuting mappings, both linear and
quadratic ones;
bi-derivations
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o commutativity preserving mappings

« orthogonality preserving mappings

e spectrum preserving mappings?
The “?” included into the last item is to indicate that this may
be a future project rather than a solved problem. An outstanding
question raised by Kaplansky asks whether every unital surjective
linear mapping between unital C*-algebras preserving the spec-
trum of every element has to be a Jordan isomorphism. At the
time of this writing, this question has been recently resolved in
the affirmative for finite von Neumann algebras by Aupetit [5] but
was still open in the general case and, following our experience
in similar situations, it may be possible that the theory of local
multipliers may help to extend the result to general C*-algebras.

Rather than attempting an exhaustive discussion of all of
the classes of operators listed above, two sample representation
theorems will be describe which have been obtained by two of my
PhD students lately.
A linear mapping 6: A — A on a C*-algebra A is said to

be commutativity preserving if it maps commutative subsets of A
into commutative subsets, i.e.,

0(z)0(y) =0(y)O(x) whenever zy = yz.

The interest in such mappings stems partially from the fact
that these are the mappings that preserve joint measurability
of quantum mechanical observables. Of course, such mappings
need not be bounded. Some natural examples are provided by
multiplications with central elements, mappings into the centre,
and, less trivial, surjective Jordan homomorphisms, that is, linear
mappings preserving the Jordan product zy + yz. Among the first
results on this class of operators is a complete description in the
case of complex n x n matrices, M,,, due to Watkins, Beasley, and
Pierce obtained in the late 1970’s for n > 3. Examples show that
no such description is possible in the case of Ms, while n = 1 of
course is trivial.

The following neat theorem obtained by Ralf Banning in
1998 unifies and extends the previously known results, in particu-
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lar the case of von Neumann algebras which was treated by Bresar
and Miers in 1993 [7].

Theorem [6]. Let A be a unital boundedly centrally closed
C™-algebra such that the ideal Ko is essential. Let 6 be a bijective
linear mapping on A such that both @ and 0~ are commutativity
preserving. Then there exist a unique invertible element c in the
centre Z(A) of A, a unique Jordan automorphism ¢ on A, and
a unique linear mapping C: A — Z(A) such that

0(z) = co(x) +((z)  (z€A).

The hypothesis ‘boundedly centrally closed’ will be explained in
the subsequent Section 5. The assumption ‘K> essential’ results
from certain polynomial identities that M satisfies but no matrix
algebra M, for higher n. These polynomial identities prevent a
complete description in the 2 x 2 case and thus have to be ruled
out. One equivalent formulation is that the set of those irredu-
cible representations of A with dimension at most two has empty
interior. The proof of the above theorem heavily relies on a rep-
resentation theorem for quadratic commuting mappings related to
a corresponding result for linear commuting mappings obtained in
[2].

The next representation theorem deals with operators that
preserve a more geometric property. Let A C B(H) be a
C*-algebra. Two elements z,y € A are said to be orthogonal
if z*y = 0. In geometric terms this means that the ranges xH and
yH are orthogonal subspaces of H. A linear mapping 7: A — B
between C*-algebras A and B is called orthogonality preserving
if Tx and Ty are orthogonal whenever z and y are orthogonal.
Immediate examples are *-homomorphisms and right multiplica-
tions.

The following beautiful representation theorem was proven
by Jiirgen Schweizer in his thesis in 1996.

Theorem [15].  Let T: A — B(K) be a bounded orthogonality
preserving operator from the C*-algebra A into some B(K). Then
there is a representation m of A on K and an operator h € B(K)
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such that
Tz =7(x)h (x € A).

There is an immediate and surprising consequence.

Corollary. FEvery bounded orthogonality preserving operator is
completely bounded.

In none of the above representation theorems is the use of
local multipliers apparent; but this is due to the smooth formu-
lation that we chose. In Banning’s theorem, the central element
c actually arises as a central multiplier of the ideal K5, and only
the assumption of bounded central closedness brings it back into
A. All the work in constructing the mappings ¢ and { would not
be possible without the use of local multipliers. In Schweizer’s
theorem, the *-homomorphism in fact maps into the multiplier
algebra of the hereditary C*-subalgebra generated by T'A and the
element h is a multiplier of it, at least if T is self-adjoint. Sch-
weizer’s methods involve a lot of non-commutative topology, and
the representation theorem itself reverts back to an understand-
ing of non-commutative analogues of partially defined continuous
mappings. The above theorem indeed is only a special case of a
much farther ranging result for Hilbert C*-modules, as the product
x*y may already indicate.

5. Local multipliers and how to use them.

The local multiplier algebra M,.(A) of a C*-algebra A is the
direct limit (in the category of C*-algebras) of the multiplier
algebras M(I) of closed essential ideals I in A. The connect-
ing *-homomorphisms are given by the restriction of multipliers
on an essential ideal I to the essential ideal J if J C I. This
construction, which was first pursued by Elliott and Pedersen in
the mid 1970’s [9], [13], resembles closely the construction of the
symmetric ring of quotients of a semiprime ring & la Kharchenko
[10], and in fact, it is the exact C*-analogue of it. There are also
close interconnections between the algebraic construction, denoted
by Qs(A), and Mjo.(A): the bounded part of Qs(A) (in the order
theoretic sense of Handelman-Vidav), Q;(A), is dense in Mjo.(A)
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and conversely, Qs(A) is the central localization of ();(A4). This
interplay has been thoroughly studied by Pere Ara and myself
since the early 1990’s and will be laid out in [4]. One of the fun-
damental results is the local Dauns-Hofmann theorem describing
the centre of Mjoc(A) in a similar fashion as the Dauns-Hofmann
theorem does for the centre of the multiplier algebra M (A).

Theorem [1]. Let A be a C*-algebra. Then the centre
Z(Mioc(A)) of Mioc(A) is an AW*-algebra, and its structure
space is the inverse limit (in the category of compact spaces) over
the Stone-Cech compactifications of all open dense subsets of the
primitive spectrum of A.

Being an AW*-algebra, Z(M,.(A)) is rich in projections,
and this allows to some extent to replace the use of the spectral
theorem in von Neumann algebras. The local Dauns-Hofmann
theorem also gives rise to the concept of boundedly centrally
closed C*-algebras as follows. Among its consequences is the
fact that the centre of the local multiplier algebra of Mj,c(A)
coincides with Z(Me.(A)), which parallels perfectly the algebraic
situation. (It is not known whether or not Mjoc(Mioc(A)) coin-
cides with M)oc(A4), however.) Denoting by A the C*-algebra

A Z(Moe(A)), the bounded central closure of A, this entails that
¢(cA) = °A wherefore A + €A is a proper closure operation.
A C*-algebra A thus is said to be boundedly centrally closed if
A = °A. There are several equivalent formulations of this property
each of which is quite useful: Z(M(A)) = Z(Moc(A)); the prim-
itive spectrum of A is extremally disconnected; A is self-injective
as a Banach A-bimodule. Examples of boundedly centrally closed
C'*-algebras are many, such as von Neumann algebras, more gener-
ally AW*-algebras, prime C*-algebras, hereditary C*-subalgebras
of boundedly centrally closed ones, ...

The way one should think of the transition from A to its
bounded central closure A, or to M,.(A) possibly, is in analogy
to the transition from A to its enveloping von Neumann algebra
A”. The advantage is, however, that we do not need to refer to
weak topologies (and hence stay inside the category of C*-algebras
throughout) as the closure operation is performed by an algebraic



o4 IMS Bulletin 41, 1998 i

plus norm closure procedure. The traditional approach in oper-
ator theory on C*-algebras to appeal to A”, and hence to von
Neumann algebras, is as follows. In studying a class of operators
one first restricts attention to the much nicer class of von Neumann
algebras and derives the properties under this additional assump-
tion. Then ones uses that, for every bounded linear operator T
on a C*-algebra A, the second adjoint T provides a canonical
bounded extension to A” so that one may apply the previously
obtained results in the more general setting. This route is taken,
for instance, in [15]. It has the disadvantages that the operat-
ors necessarily have to be bounded and that the extension 7", in
general, may not inherit the properties that 7" had.

4 T, B A L5 B
| | | |
A" T) B" A —T> ‘B

The new approach, via local multipliers, suggests to study oper-
ators first on the class of boundedly centrally closed C*-algebras
and then extend them to the bounded central closure. This has the
advantage of being much more algebraic and often simpler than the
traditional path; [6] is an example of a rather fruitful application
of this approach.

Another one is the following nice result describing the norm
of an inner derivation on a C*-algebra. Suppose that a is an
element in the multiplier algebra M (A) of a C*-algebra A. By 4,
we shall denote the linear mapping on A defined by z — za — az,
x € A. This is called an inner derivation, for it satisfies the
Leibniz product rule

ba(ry) = x(0ay) + (Baz)y  (,y € A).

It is immediate that the norm ||§,]| is estimated above by
2d(a,Z(M(A)), the distance of a from the centre Z(M(A)).
Since the late 1960’s, starting with work by Kadison, Lance and
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Ringrose, many authors studied situations in which actual equal-
ity holds (which in general fails). For example, equality holds
for von Neumann algebras, and this was extended to boundedly
centrally closed C*-algebras in [12]. Following the ‘new approach’
as in [12], and combining it with the result in [16] stating that
the distance to the centre of a C*-algebra is always attained, we
derive the following result.

Theorem.  Let §,, a € M(A) be an inner derivation on the
C*-algebra A. Then there exists a local multiplier b of A such
that 6, = &y and ||| = 21]b|].

By means of this, the norm of an inner derivation is com-
puted precisely for an arbitrary C*-algebra. An extension of this
result to generalized inner derivations can be found in [4].

The success in applying local multipliers to study operators
on C*-algebras of course motivated further investigation of the
local multiplier algebra itself. In particular the ideal structure
of Mioc(A) needs to be understood better. One of the surprises
in these recent studies was the result that there exist non-simple
C*-algebras for which the local multiplier algebra can be simple,
in striking contrast to the situation of the global multiplier algebra
M(A) [3].
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