
REPRESENTATION THEOREMS

FOR SOME CLASSES OF

OPERATORS ON C

�

-ALGEBRAS

Martin Mathieu

Abstra
t: This arti
le 
ontains a survey on representation theorems

for various 
lasses of linear operators on C

�

-algebras emphasizing the

role of lo
al multipliers to derive them.

1. Introdu
tion.

In studying a 
lass of, perhaps bounded linear, operators on

C

�

-algebras one 
an, at least, distinguish three di�erent levels of

understanding this 
lass. Firstly, there are (
anoni
al) examples

and ne
essary properties to be found whi
h guarantee the ri
hness

of, and stimulate interest in, this 
lass of operators and help to

single out those not 
ontained. Se
ondly, one seeks to establish

suÆ
ient properties that allow to 
hara
terize the members of

this 
lass of operators in a non-trivial way. Thirdly, and this

we should 
onsider the top level of understanding, one aims to

determine prototypi
al examples and a me
hanism to build all

other members in this 
lass from these. This then enables us in

prin
iple to read o� all the properties that one is investigating

from the prototypi
al, simple examples.

An instan
e of su
h a study arises in the theory of

*-derivations of C

�

-algebras. In the �rst pla
e, these are de�ned
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purely algebrai
ally but turn out to be automati
ally 
ontinuous, a

well-known result by Sakai, whi
h has been extended by di�erent

methods by several others in ea
h 
ase exploiting interesting prop-

erties of C

�

-algebras. Prominent examples are the inner deriva-

tions originating from 
ommutators (with self-adjoint elements),

thus revealing the intimate interplay with quantum physi
s. The

se
ond step 
onsists in showing that *-derivations pre
isely are

the generators of (norm-
ontinuous) groups of *-automorphisms

of C

�

-algebras. The latter are the models of reversible evolutions

of quantum systems. But the breakthrough is done via a repres-

entation theorem whi
h tells us that every *-derivation is inner, at

least for all von Neumann algebras or in some generalized sense.

Our aim here is to dis
uss a few of su
h representation theor-

ems for some 
lasses of (not ne
essarily bounded linear) operators

on C

�

-algebras, in parti
ular those re
ently proven by means of

a new tool in operator theory on C

�

-algebras, the lo
al multiplier

algebra. We hope to give some 
avour of the new ideas involved

and to water the mouth for fuller meals, su
h as o�ered in [4℄. This

arti
le 
omprises two talks delivered to the DIAS Christmas Sym-

posium 1997 in Dublin in De
ember 1997 and the Mathemati
al

Colloquium of the University of Aberdeen in May 1998, respe
t-

ively.

2. A few prerequisites.

In this se
tion we shall re
all a few basi
 notions in the theory of

C

�

-algebras that will be relevant for our dis
ussion. Throughout

one may think of a C

�

-algebra A as a subalgebra of the bounded

linear operators on a Hilbert spa
e, B(H), whi
h is 
losed in the

operator norm and with respe
t of taking adjoints: if x 2 A then so

is its adjoint x

�

. The fundamental law that ties together the three

basi
 stru
tures in a C

�

-algebra, the algebrai
, the metri
, and the

order stru
ture, is the C*-identity kx

�

xk = kxk

2

for all x 2 A.

In �nite dimensions, the n�n matri
es form a typi
al example of

a C

�

-algebra whereas the �rst in�nite dimensional C

�

-algebra is

provided by the 
ompa
t operators K(H) on a separable Hilbert

spa
e H . In fa
t, K(H) is 
losely related to the matrix algebras as

it results from them by taking the dire
t limit lim

�!

n

M

n

where the
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n�n matri
esM

n

are embedded into the (n+1)�(n+1) matri
es

by putting a 2 M

n

into the upper left hand 
orner and �lling up

with zeros. Sin
e K(H) is a 
losed *-ideal of B(H), the quotient

B(H)=K(H) is another prominent example of a C

�

-algebra, the

so-
alled Calkin algebra.

A typi
al 
ommutative C

�

-algebra is provided by the spa
e

C

0

(X) of all 
ontinuous 
omplex-valued fun
tions on a lo
ally


ompa
t Hausdor� spa
e X whi
h vanish at in�nity. This may be

regarded as an algebra of operators by identifying a fun
tion with

the multipli
ation by this fun
tion on the Hilbert spa
e L

2

(X;�),

where � gives non-zero measure to every non-empty open subset of

X , for example. Endowed with these basi
 examples one 
an then

start to build more 
ompli
ated ones by a number of pro
edures,

e.g. C

0

(X ;K(H)) where the fun
tions now take on their values

in the 
ompa
t operators rather than the 
omplex numbers but we

still use the supremum norm.

One of the 
onstru
tions with C

�

-algebras that we shall refer

to in the sequel is themultiplier algebra of a C

�

-algebra. Supposing

that A a
ts on H non-degenerately, that is, for ea
h � 2 H whi
h

is non-zero there exists an element x 2 A su
h that x� 6= 0,

M(A) = fy 2 B(H) j yA+Ay � Ag:

In the examples given above we have M(K(H)) = B(H) and

M(C

0

(X)) = C

b

(X), the algebra of all bounded 
ontinuous fun
-

tions on X . The multiplier algebra M(A) is distinguished by the

fa
t that it is the largest essential extension of A, that is, A is


ontained in M(A) as a 
losed essential ideal (wherefore it has

non-zero interse
tion with every other non-zero ideal in M(A))

and every unital C

�

-algebra B that also 
ontains A in the same

manner 
anoni
ally embeds into M(A).

3. How to apply a representation theorem.

Before we shall delve into our dis
ussion of some re
ent represent-

ation theorems, let us re
all a very familiar one and see how this


an be used to obtain some neat 
onsequen
es. Let A � B(H),
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B � B(K) be two C

�

-algebras. A linear mapping T :A ! B is


alled bounded if its operator norm

kTk = supfkTxk j x 2 A; kxk � 1g <1:

A requirement whi
h in general is (somewhat) stronger is the fol-

lowing. We say that T is 
ompletely bounded if the 
anoni
al

extension

T 
 id:A


min

K(`

2

) �! B 


min

K(`

2

)

is bounded, where the minimal tensor produ
t is obtained from

the algebrai
 tensor produ
t by letting A
K(`

2

) a
t 
anoni
ally

on H

�


 `

2

and 
ompleting in the operator norm. In this 
ase,

kTk


b

= kT 
 idk is 
alled the 
b-norm of T .

One of the very ni
e features of 
ompletely bounded operat-

ors is that there exists a representation theorem, proved by Paulsen

in 1984.

Theorem. Let T :A! B be a 
ompletely bounded linear oper-

ator between the C

�

-algebras A and B. Then there exist a repres-

entation � of A on a Hilbert spa
e

^

H and bounded linear operators

V :

^

H ! K, W :K !

^

H su
h that kV k kWk = kTk


b

and

Tx = V �(x)W (x 2 A):

This result emerged to be fundamental for the theory of 
ompletely

bounded operators, for instan
e, it immediately yields Wittsto
k's

extension and de
omposition theorems. For a survey on various

aspe
ts of 
ompletely bounded operators we refer to [11℄, and for

an up-to-date presentation of their theory in detail to [14℄.

Completely bounded operators were introdu
ed by Arveson

in the late 1960's, and it soon be
ame apparent that it doesn't

suÆ
e to study them on C

�

-algebras only. For that reason the

notion of an operator spa
e as a subspa
e E of some B(H) was

introdu
ed. Now there arose the question of how to des
ribe these

operator spa
es abstra
tly by a neat set of simple axioms, as was

done by Gelfand and Naimark for C

�

-algebras. This problem was

solved by Ruan in 1988 by providing the following axioms.
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Let E be a 
omplex ve
tor spa
e and let M

n

(E) denote the

ve
tor spa
e of n � n matri
es with entries in E. Suppose there

exists a sequen
e (k � k

n

)

n2N

of norms on M

n

(E) satisfying the

following two requirements

(R1) 8n 2 N 8�; � 2M

n

8x 2M

n

(E)

k�x�k

n

� k�k kxk

n

k�k

(R2) 8n;m 2 N 8x 2M

n

(E) 8 y 2M

m

(E)

kx� yk

n+m

= maxfkxk

n

; kyk

m

g:

Then

�

E; (k � k

n

)

n2N

�

is 
alled an abstra
t operator spa
e. It 
an

be seen easily that, if E � B(H) and M

n

(E) is 
onsidered as a

subspa
e of B(H

n

) 
anoni
ally, then the above axioms are ful�lled

so that, a priori, every operator spa
e is an abstra
t operator

spa
e. When
e the question remains whether the two 
on
epts


oin
ide.

To state Ruan's theorem, whi
h answers this question aÆrm-

atively, we have to extend the 
on
ept of 
omplete boundedness

to the abstra
t situation. Let E and F be abstra
t operator

spa
es. Every linear mapping T :E ! F yields a linear mapping

T

n

:M

n

(E) ! M

n

(F ) by (x

ij

) 7! (Tx

ij

). We say that T is 
om-

pletely bounded if ea
h T

n

, n 2 N is bounded and sup

n

kT

n

k <1;

in that 
ase, this supremum is again 
alled the 
ompletely bounded

norm kTk


b

of T . (It is not diÆ
ult to realize that this gives the

same notion as above in the 
on
rete setting.) The operator T is

said to be 
ompletely isometri
 if all T

n

, n 2 N are isometries.

Ruan's Theorem. Every abstra
t operator spa
e is 
ompletely

isometri
ally isomorphi
 to a subspa
e of some B(H).

We will now sket
h a proof of this fundamental result that

relies on another representation theorem related to Paulsen's the-

orem, taken from [8℄.

Theorem (E�ros-Ruan 1993). Let E be an abstra
t oper-

ator spa
e, and let f 2M

n

(E)

0

be a bounded linear fun
tional on
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M

n

(E) (equipped with the norm k � k

n

). Then there exist a 
om-

pletely bounded linear mapping ':E ! M

n

with k'k


b

� 1 and

bounded linear mappings v:C

n

2

! C, w:C ! C

n

2

, both with

norm at most 1, su
h that

f(x) = v '

n

(x)w (x 2M

n

(E)):

Suppose that E is an abstra
t operator spa
e, and take

x 2M

n

(E). By the Hahn-Bana
h theorem, there is some f 2

M

n

(E)

0

with the properties kfk = 1 and jf(x)j = kxk

n

. By the

E�ros-Ruan theorem above, there is a 
omplete 
ontra
tion ' from

E into M

n

su
h that k'

n

(x)k = kxk

n

. Let �

n

denote the set of

all 
omplete 
ontra
tions from E into M

n

. Letting

�:E �!

Y

n2N

Y

'2�

n

M

n

with �(x) = ('(x)) be the linear mapping that assigns to x the

family of all possible evaluations of some ' 2 �

n

, n 2 N at x,

we obtain a 
omplete 
ontra
tion � whi
h, in fa
t, is 
ompletely

isometri
 sin
e there is at least one su
h ' with k'

n

(x)k = kxk

n

.

The huge produ
t on the right hand side is a C

�

-algebra, thus

sits (
ompletely isometri
ally) inside some B(H) by the Gelfand-

Naimark theorem, and the proof of Ruan's theorem is 
omplete.

4. Some 
lasses of operators.

The following 
lasses of operators have been studied over the past

few years by means of multipliers whi
h are de�ned on ideals of a

C

�

-algebra rather than on the entire C

�

-algebra itself.

� elementary operators

� derivations

� Jordan homomorphisms

� Lie derivations, Lie isomorphisms

� 
entralizing and 
ommuting mappings, both linear and

quadrati
 ones;

bi-derivations
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� 
ommutativity preserving mappings

� orthogonality preserving mappings

� spe
trum preserving mappings?

The \?" in
luded into the last item is to indi
ate that this may

be a future proje
t rather than a solved problem. An outstanding

question raised by Kaplansky asks whether every unital surje
tive

linear mapping between unital C

�

-algebras preserving the spe
-

trum of every element has to be a Jordan isomorphism. At the

time of this writing, this question has been re
ently resolved in

the aÆrmative for �nite von Neumann algebras by Aupetit [5℄ but

was still open in the general 
ase and, following our experien
e

in similar situations, it may be possible that the theory of lo
al

multipliers may help to extend the result to general C

�

-algebras.

Rather than attempting an exhaustive dis
ussion of all of

the 
lasses of operators listed above, two sample representation

theorems will be des
ribe whi
h have been obtained by two of my

PhD students lately.

A linear mapping �:A ! A on a C

�

-algebra A is said to

be 
ommutativity preserving if it maps 
ommutative subsets of A

into 
ommutative subsets, i.e.,

�(x) �(y) = �(y) �(x) whenever xy = yx:

The interest in su
h mappings stems partially from the fa
t

that these are the mappings that preserve joint measurability

of quantum me
hani
al observables. Of 
ourse, su
h mappings

need not be bounded. Some natural examples are provided by

multipli
ations with 
entral elements, mappings into the 
entre,

and, less trivial, surje
tive Jordan homomorphisms, that is, linear

mappings preserving the Jordan produ
t xy+yx. Among the �rst

results on this 
lass of operators is a 
omplete des
ription in the


ase of 
omplex n�n matri
es, M

n

, due to Watkins, Beasley, and

Pier
e obtained in the late 1970's for n � 3. Examples show that

no su
h des
ription is possible in the 
ase of M

2

, while n = 1 of


ourse is trivial.

The following neat theorem obtained by Ralf Banning in

1998 uni�es and extends the previously known results, in parti
u-
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lar the 
ase of von Neumann algebras whi
h was treated by Bre�sar

and Miers in 1993 [7℄.

Theorem [6℄. Let A be a unital boundedly 
entrally 
losed

C

�

-algebra su
h that the ideal K

2

is essential. Let � be a bije
tive

linear mapping on A su
h that both � and �

�1

are 
ommutativity

preserving. Then there exist a unique invertible element 
 in the


entre Z(A) of A, a unique Jordan automorphism ' on A, and

a unique linear mapping �:A! Z(A) su
h that

�(x) = 
 '(x) + �(x) (x 2 A):

The hypothesis `boundedly 
entrally 
losed' will be explained in

the subsequent Se
tion 5. The assumption `K

2

essential' results

from 
ertain polynomial identities that M

2

satis�es but no matrix

algebra M

n

for higher n. These polynomial identities prevent a


omplete des
ription in the 2 � 2 
ase and thus have to be ruled

out. One equivalent formulation is that the set of those irredu-


ible representations of A with dimension at most two has empty

interior. The proof of the above theorem heavily relies on a rep-

resentation theorem for quadrati
 
ommuting mappings related to

a 
orresponding result for linear 
ommuting mappings obtained in

[2℄.

The next representation theorem deals with operators that

preserve a more geometri
 property. Let A � B(H) be a

C

�

-algebra. Two elements x; y 2 A are said to be orthogonal

if x

�

y = 0. In geometri
 terms this means that the ranges xH and

yH are orthogonal subspa
es of H . A linear mapping T :A ! B

between C

�

-algebras A and B is 
alled orthogonality preserving

if Tx and Ty are orthogonal whenever x and y are orthogonal.

Immediate examples are *-homomorphisms and right multipli
a-

tions.

The following beautiful representation theorem was proven

by J�urgen S
hweizer in his thesis in 1996.

Theorem [15℄. Let T :A! B(K) be a bounded orthogonality

preserving operator from the C

�

-algebra A into some B(K). Then

there is a representation � of A on K and an operator h 2 B(K)
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su
h that

Tx = �(x)h (x 2 A):

There is an immediate and surprising 
onsequen
e.

Corollary. Every bounded orthogonality preserving operator is


ompletely bounded.

In none of the above representation theorems is the use of

lo
al multipliers apparent; but this is due to the smooth formu-

lation that we 
hose. In Banning's theorem, the 
entral element


 a
tually arises as a 
entral multiplier of the ideal K

2

, and only

the assumption of bounded 
entral 
losedness brings it ba
k into

A. All the work in 
onstru
ting the mappings ' and � would not

be possible without the use of lo
al multipliers. In S
hweizer's

theorem, the *-homomorphism in fa
t maps into the multiplier

algebra of the hereditary C*-subalgebra generated by TA and the

element h is a multiplier of it, at least if T is self-adjoint. S
h-

weizer's methods involve a lot of non-
ommutative topology, and

the representation theorem itself reverts ba
k to an understand-

ing of non-
ommutative analogues of partially de�ned 
ontinuous

mappings. The above theorem indeed is only a spe
ial 
ase of a

mu
h farther ranging result for Hilbert C*-modules, as the produ
t

x

�

y may already indi
ate.

5. Lo
al multipliers and how to use them.

The lo
al multiplier algebra M

lo


(A) of a C

�

-algebra A is the

dire
t limit (in the 
ategory of C

�

-algebras) of the multiplier

algebras M(I) of 
losed essential ideals I in A. The 
onne
t-

ing *-homomorphisms are given by the restri
tion of multipliers

on an essential ideal I to the essential ideal J if J � I . This


onstru
tion, whi
h was �rst pursued by Elliott and Pedersen in

the mid 1970's [9℄, [13℄, resembles 
losely the 
onstru
tion of the

symmetri
 ring of quotients of a semiprime ring �a la Khar
henko

[10℄, and in fa
t, it is the exa
t C*-analogue of it. There are also


lose inter
onne
tions between the algebrai
 
onstru
tion, denoted

by Q

s

(A), and M

lo


(A): the bounded part of Q

s

(A) (in the order

theoreti
 sense of Handelman-Vidav), Q

b

(A), is dense in M

lo


(A)
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and 
onversely, Q

s

(A) is the 
entral lo
alization of Q

b

(A). This

interplay has been thoroughly studied by Pere Ara and myself

sin
e the early 1990's and will be laid out in [4℄. One of the fun-

damental results is the lo
al Dauns-Hofmann theorem des
ribing

the 
entre of M

lo


(A) in a similar fashion as the Dauns-Hofmann

theorem does for the 
entre of the multiplier algebra M(A).

Theorem [1℄. Let A be a C

�

-algebra. Then the 
entre

Z(M

lo


(A)) of M

lo


(A) is an AW*-algebra, and its stru
ture

spa
e is the inverse limit (in the 
ategory of 
ompa
t spa
es) over

the Stone-

�

Ce
h 
ompa
ti�
ations of all open dense subsets of the

primitive spe
trum of A.

Being an AW*-algebra, Z(M

lo


(A)) is ri
h in proje
tions,

and this allows to some extent to repla
e the use of the spe
tral

theorem in von Neumann algebras. The lo
al Dauns-Hofmann

theorem also gives rise to the 
on
ept of boundedly 
entrally


losed C

�

-algebras as follows. Among its 
onsequen
es is the

fa
t that the 
entre of the lo
al multiplier algebra of M

lo


(A)


oin
ides with Z(M

lo


(A)), whi
h parallels perfe
tly the algebrai


situation. (It is not known whether or not M

lo


(M

lo


(A)) 
oin-


ides with M

lo


(A), however.) Denoting by




A the C

�

-algebra

AZ(M

lo


(A)), the bounded 
entral 
losure of A, this entails that




(




A) =




A wherefore A 7!




A is a proper 
losure operation.

A C

�

-algebra A thus is said to be boundedly 
entrally 
losed if

A =




A. There are several equivalent formulations of this property

ea
h of whi
h is quite useful: Z(M(A)) = Z(M

lo


(A)); the prim-

itive spe
trum of A is extremally dis
onne
ted; A is self-inje
tive

as a Bana
h A-bimodule. Examples of boundedly 
entrally 
losed

C

�

-algebras are many, su
h as von Neumann algebras, more gener-

ally AW*-algebras, prime C

�

-algebras, hereditary C*-subalgebras

of boundedly 
entrally 
losed ones, : : :

The way one should think of the transition from A to its

bounded 
entral 
losure




A, or to M

lo


(A) possibly, is in analogy

to the transition from A to its enveloping von Neumann algebra

A

00

. The advantage is, however, that we do not need to refer to

weak topologies (and hen
e stay inside the 
ategory of C

�

-algebras

throughout) as the 
losure operation is performed by an algebrai
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plus norm 
losure pro
edure. The traditional approa
h in oper-

ator theory on C

�

-algebras to appeal to A

00

, and hen
e to von

Neumann algebras, is as follows. In studying a 
lass of operators

one �rst restri
ts attention to the mu
h ni
er 
lass of von Neumann

algebras and derives the properties under this additional assump-

tion. Then ones uses that, for every bounded linear operator T

on a C

�

-algebra A, the se
ond adjoint T

00

provides a 
anoni
al

bounded extension to A

00

so that one may apply the previously

obtained results in the more general setting. This route is taken,

for instan
e, in [15℄. It has the disadvantages that the operat-

ors ne
essarily have to be bounded and that the extension T

00

, in

general, may not inherit the properties that T had.

A

T

���! B

?

?

y

?

?

y

A

00

���!

T

00

B

00

A

T

���! B

?

?

y

?

?

y




A ���!




T




B

The new approa
h, via lo
al multipliers, suggests to study oper-

ators �rst on the 
lass of boundedly 
entrally 
losed C

�

-algebras

and then extend them to the bounded 
entral 
losure. This has the

advantage of being mu
h more algebrai
 and often simpler than the

traditional path; [6℄ is an example of a rather fruitful appli
ation

of this approa
h.

Another one is the following ni
e result des
ribing the norm

of an inner derivation on a C

�

-algebra. Suppose that a is an

element in the multiplier algebra M(A) of a C

�

-algebra A. By Æ

a

we shall denote the linear mapping on A de�ned by x 7! xa� ax,

x 2 A. This is 
alled an inner derivation, for it satis�es the

Leibniz produ
t rule

Æ

a

(xy) = x(Æ

a

y) + (Æ

a

x)y (x; y 2 A):

It is immediate that the norm kÆ

a

k is estimated above by

2 d(a; Z(M(A)), the distan
e of a from the 
entre Z(M(A)).

Sin
e the late 1960's, starting with work by Kadison, Lan
e and
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Ringrose, many authors studied situations in whi
h a
tual equal-

ity holds (whi
h in general fails). For example, equality holds

for von Neumann algebras, and this was extended to boundedly


entrally 
losed C

�

-algebras in [12℄. Following the `new approa
h'

as in [12℄, and 
ombining it with the result in [16℄ stating that

the distan
e to the 
entre of a C

�

-algebra is always attained, we

derive the following result.

Theorem. Let Æ

a

, a 2 M(A) be an inner derivation on the

C

�

-algebra A. Then there exists a lo
al multiplier b of A su
h

that Æ

a

= Æ

b

and kÆ

b

k = 2 kbk.

By means of this, the norm of an inner derivation is 
om-

puted pre
isely for an arbitrary C

�

-algebra. An extension of this

result to generalized inner derivations 
an be found in [4℄.

The su

ess in applying lo
al multipliers to study operators

on C

�

-algebras of 
ourse motivated further investigation of the

lo
al multiplier algebra itself. In parti
ular the ideal stru
ture

of M

lo


(A) needs to be understood better. One of the surprises

in these re
ent studies was the result that there exist non-simple

C

�

-algebras for whi
h the lo
al multiplier algebra 
an be simple,

in striking 
ontrast to the situation of the global multiplier algebra

M(A) [3℄.
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