ON A COMMENT OF DOUGLAS CONCERNING WIDOM'S THEOREM

Mícheál Ó Searcóid

§1 Introduction.

Douglas, after presenting an adaptation of Widom's proof [2] that every Toeplitz operator has connected spectrum, comments, "Despite the elegance of the preceding proof of connectedness, we view it as not completely satisfactory for two reasons: First, the proof gives us no hint as to why the result is true. Second, the proof seems to depend on showing that the set of some kind of singularities for a function of two complex variables is connected ... " [1, p.196]. The purpose of this note is to demonstrate that one of the variables referred to by Douglas can be effectively suppressed by extensive use of the F. & M. Riesz Theorem; the modified proof is, I believe, somewhat cleaner.

§2 Preliminary concepts.

The items in this section are well-known and are covered in [1].

Notation. The unit circle is denoted by **T**. We consider the spaces $L^p = L^p(\mathbf{T})$ for $p = 1, 2, \infty$, where the measure is Lebesgue measure and the vectors are treated as functions defined almost everywhere. The functions $e_n : z \to z^n$ $(n \in \mathbf{Z})$ form an orthonormal basis for the Hilbert space L^2 . The Hardy spaces H^p are $H^p = \{f \in L^p : \int_{\mathbf{T}} f e_n = 0 \ \forall n > 0\}, (p = 1, 2, \infty)$. P will denote the orthogonal projection from L^2 onto H^2 . Note that L^{∞} and H^{∞} are Banach algebras, that $L^{\infty} \subset L^2 \subset L^1$ and $H^{\infty} \subset H^2 \subset H^1$ and that $L^{\infty}L^2 = L^2$. For $\phi \in L^{\infty}$, $\sigma(\phi)$ will denote the spectrum, $\{\lambda \in \mathbf{C} : \phi - \lambda \text{ not invertible in } L^{\infty}\}$, of ϕ in L^{∞} ; note that this is the same as the essential range of ϕ , namely, the set of all $\lambda \in \mathbf{C}$

31

such that, for every $\epsilon > 0$, the set $\{z \in \mathbf{T} : |\phi(z) - \lambda| < \epsilon\}$ has positive measure. For $T \in \mathcal{B}(H^2)$, the algebra of bounded linear operators on H^2 , $\sigma(T)$ will denote the spectrum of T in $\mathcal{B}(H^2)$.

Definition. For each $\phi \in L^{\infty}$ we define the Toeplitz operator $T_{\phi} \in \mathcal{B}(H^2)$ by $T_{\phi}f = P(\phi f)$ for each $f \in H^2$.

Proposition 1. Suppose $f \in L^1$ and $\int_{\mathbf{T}} f e_n = 0$ for all $n \in \mathbf{Z}$. Then f = 0.

Proposition 2. Suppose $f, g \in H^2$. Then $fg \in H^1$.

Proposition 3. Suppose $\phi \in L^{\infty}$. Then $T_{\overline{\phi}} = T_{\phi}^*$.

Proposition 4. Suppose $\phi \in L^{\infty}$. Then $\sigma(\phi) \subseteq \sigma(T_{\phi})$. (This implies, of course, that, if T_{ϕ} is invertible, then so is ϕ . However, it is worth noting that the inverse of T_{ϕ} is not, except in very special cases, equal to $T_{\phi^{-1}}$.)

F. & **M. Riesz Theorem.** Suppose $f \in H^2$. If $f \neq 0$ then the set of zeroes of f has zero measure. (It follows immediately from this that if $\phi \in H^{\infty}$ and the essential range of ϕ is countable, then ϕ is essentially constant.)

§3 The connectedness.

Proposition 5. Suppose Γ is a simple closed integration path and K is a compact subset of the complex plane with $K \cap \Gamma = \emptyset$. Let $\phi \in L^{\infty}$ be such that $\sigma(\phi) = K$. Then Γ fails to separate K if and only if

$$\exp\left(P\int_{\Gamma}\frac{d\mu}{\phi-\mu}\right)=e_0.$$

Proof: Γ fails to separate $\sigma(\phi)$ if and only if the winding number function in L^{∞}

$$w(\Gamma,\phi) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d\mu}{\mu - \phi}$$

is (essentially) constant. Since $w(\Gamma, \phi)$ has only integer values, the F. & M. Riesz Theorem ensures that this happens if and only if $w(\Gamma, \phi)$ is in H^{∞} , i.e., if and only if

$$P\int_{\Gamma}\frac{d\mu}{\mu-\phi} = \int_{\Gamma}\frac{d\mu}{\mu-\phi}.$$

33

Since $\exp\left(\int_{\Gamma} \frac{d\mu}{\phi-\mu}\right) = e_0$, the result follows by invoking the F. & M. Riesz Theorem again.

Proposition 6. Suppose $\phi \in L^{\infty}$ and T_{ϕ} is invertible in $\mathcal{B}(H^2)$. If $f \in H^2$ satisfies $T_{\phi}f = e_0$, then $f^{-1} \in H^2$ and $T_{\phi^{-1}}f^{-1} = e_0$.

Proof: Firstly, since T_{ϕ} is invertible, Propositions 3 and 4 ensure that ϕ and $\overline{\phi}$ are invertible in L^{∞} and that $T_{\overline{\phi}} = T_{\phi}^{*}$ is invertible in $\mathcal{B}(H^{2})$. In particular, there is exactly one vector mapped to e_{0} by $T_{\overline{\phi}}$, so that $\dim(\overline{\phi}H^{2} \cap \overline{H^{2}}) = 1$. It follows that the space $H^{2} \cap \overline{\phi}^{-1}\overline{H^{2}}$ has dimension 1 and then also that

 $\dim(\phi^{-1}H^2 \cap \overline{H^2}) = 1.$

We deduce that $T_{\phi^{-1}}$ is injective and that there exists $g \in H^2$ such that $T_{\phi^{-1}}g = e_0$. Then there exist $u, v \in (H^2)^{\perp}$ such that $\phi f = e_0 + u$ and $\phi^{-1}g = e_0 + v$. By multiplication we have $fg = e_0 + u + v + uv$, whence $u + v + uv \in H^1$ by Proposition 2. Since $u, v \in (H^2)^{\perp}$, an easy calculation using Proposition 1 shows that u + v + uv = 0 and hence that $fg = e_0$.

Widom's Theorem. Suppose $\phi \in L^{\infty}$; then $\sigma(T_{\phi})$ is connected.

Proof: Consider the function $f : \mathbf{C} \setminus \sigma(T_{\phi}) \to H^2$ given by the equations $f(\lambda) = (\lambda - T_{\phi})^{-1} e_0$. Then f is differentiable and we have $P[(\lambda - \phi)f'(\lambda) + f(\lambda)] = 0$. But Proposition 6 gives also the equation $P[1/((\lambda - \phi)f(\lambda))] = e_0$. Multiplying, we get the differential equation

$$f'(\lambda) = f(\lambda)P\left(\frac{1}{\phi - \lambda}\right).$$

Note that any non-zero solution of this equation is a multiple of f by a non-zero function independent of λ . So, using the F. & M. Riesz Theorem again, we solve to get, for any fixed α in each connected component of $\mathbf{C} \setminus \sigma(T_{\phi})$ and for each λ in that component,

$$f(\lambda) = f(\alpha) \exp\left(P \int_{\Gamma} \frac{d\mu}{\phi - \mu}\right)$$

where Γ is **any** simple integration arc in the component going from α to λ . If Γ is closed, the condition

$$\exp\left(P\int_{\Gamma}\frac{d\mu}{\phi-\mu}\right) = e_0$$

of Proposition 5 holds, so no such Γ separates $\sigma(\phi)$ and connectedness of $\sigma(T_{\phi})$ will follow if we can show that $\sigma(T_{\phi})$ is exterior to such a Γ whenever $\sigma(\phi)$ is. Suppose, then, that Γ is a simple closed integration path in $\mathbf{C} \setminus \sigma(T_{\phi})$ and that $\sigma(\phi)$ is exterior to Γ . Then the solution to the differential equation gives a unique analytic continuation of f to the interior of Γ , so that, setting Qto be the associated spectral idempotent for T_{ϕ} , we have

$$Qe_0 = \frac{1}{2\pi i} \int_{\Gamma} (\mu - T_{\phi})^{-1} e_0 \, d\mu = \frac{1}{2\pi i} \int_{\Gamma} f(\mu) \, d\mu = 0.$$

Now $(\lambda - T_{\phi})(e_n f(\lambda)) = e_n + \sum_{i=0}^{n-1} \beta_i e_i$ for each $\lambda \in \Gamma$ and some related scalars β_i ; assuming inductively that $Qe_i = 0$ for i < n, it follows, since Q commutes with T_{ϕ} , that

$$Q(e_n f(\lambda)) = (\lambda - T_{\phi})^{-1} Q e_n,$$

and integration around Γ gives $Qe_n = 0$. So Q = 0 by induction, whence no part of $\sigma(T_{\phi})$ is interior to Γ and the theorem is proved.

References

- Douglas, R. G., Banach Algebra techniques in Operator Theory, Academic Press, New York & London, 1972.
- Widom, H., On the spectrum of a Toeplitz operator, Pacific. J. Math., 14 (1964), 365–375.

Mícheál Ó Searcóid Department of Mathematics University College Dublin email: micheal.osearcoid@ucd.ie