ON A COMMENT OF DOUGLAS
CONCERNING WIDOM’S THEOREM

Michedl O Searcéid

§1 Introduction.

Douglas, after presenting an adaptation of Widom’s proof [2] that
every Toeplitz operator has connected spectrum, comments, “Des-
pite the elegance of the preceding proof of connectedness, we view
it as not completely satisfactory for two reasons: First, the proof
gives us no hint as to why the result is true. Second, the proof
seems to depend on showing that the set of some kind of singular-
ities for a function of two complex variables is connected ... ” [1,
p-196]. The purpose of this note is to demonstrate that one of the
variables referred to by Douglas can be effectively suppressed by
extensive use of the F. & M. Riesz Theorem; the modified proof
is, I believe, somewhat cleaner.

§2 Preliminary concepts.
The items in this section are well-known and are covered in [1].

Notation. The unit circle is denoted by T. We consider the
spaces LP = LP(T) for p = 1,2, 0o, where the measure is Lebesgue
measure and the vectors are treated as functions defined almost
everywhere. The functions e, : z — 2™ (n € Z) form an orthonor-
mal basis for the Hilbert space L?. The Hardy spaces HP are
HP ={feL?: [.fe,=0 Vn>0}, (p=1,200). P will denote
the orthogonal projection from L? onto H2. Note that L> and H>®
are Banach algebras, that L C L?> C L' and H*® C H? C H!
and that L°L? = L2. For ¢ € L*>, o(¢) will denote the spectrum,
{A € C: ¢ — A not invertible in L}, of ¢ in L°°; note that this is
the same as the essential range of ¢, namely, the set of all A € C
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such that, for every € > 0, the set {z € T : |¢(z) — A| < €} has
positive measure. For T € B(H?), the algebra of bounded linear
operators on H?, (T) will denote the spectrum of T in B(H?).

Definition. For each ¢ € L we define the Toeplitz operator
T, € B(H?) by Tyf = P(¢f) for each f € H>.

Proposition 1. Suppose f € L' and [, fe, =0 for all n € Z.
Then f = 0.

Proposition 2. Suppose f,g € H2. Then fg € H'.
Proposition 3. Suppose ¢ € L. Then Tg =T;.

Proposition 4. Suppose ¢ € L. Then o(¢) C o(Ty). (This
implies, of course, that, if Ty is invertible, then so is ¢. However,
it is worth noting that the inverse of Ty is not, except in very
special cases, equal to Ty-1.)

F. & M. Riesz Theorem. Suppose f € H?. If f # 0 then the
set of zeroes of f has zero measure. (It follows immediately from
this that if ¢ € H*> and the essential range of ¢ is countable, then
¢ is essentially constant.)

63 The connectedness.

Proposition 5. Suppose T' is a simple closed integration path
and K is a compact subset of the complex plane with K NT = ().
Let ¢ € L™ be such that o(¢) = K. Then T fails to separate K if

and only if
d
exp <P _,u) = ep.
ro—p
Proof: T fails to separate o(¢) if and only if the winding number

function in L . p
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T,¢)=— [ ——
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is (essentially) constant. Since w(T', ¢) has only integer values, the
F. & M. Riesz Theorem ensures that this happens if and only if
w(T, ¢) is in H*, i.e., if and only if
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Since exp ( Jr %) = ep, the result follows by invoking the
F. & M. Riesz Theorem again. O

Proposition 6. Suppose ¢ € L™ and Ty is invertible in B(H?).
If f € H? satisfies Ty f = eq, then f~ € H* and Ty-1 f ' = e.

Proof:  Firstly, since Ty is invertible, Propositions 3 and 4 ensure
that ¢ and ¢ are invertible in L> and that TE =T} is invertible
in B(H?). In particular, there is exactly one vector mapped to
eo by T3, so that dim(¢H? N H?) = 1. It follows that the space

H?>N'$ "H? has dimension 1 and then also that
dim(¢~"H? N H2) = 1.

We deduce that Tjs-1 is injective and that there exists g € H?
such that Ty-1g = eg. Then there exist u,v € (H?)* such that
¢f = eg +u and ¢ 'g = ep + v. By multiplication we have
fg =eg+u+v+uv, whence u + v + uv € H' by Proposition 2.
Since u,v € (H?)*, an easy calculation using Proposition 1 shows
that u + v + uv = 0 and hence that fg = ey. ]

Widom’s Theorem. Suppose ¢ € L*°; then o(Ty) is connected.

Proof: Consider the function f : C\o(T,) — H? given by the
equations f(X) = (A — Ty) 'ep. Then f is differentiable and we
have P[(A — @) f'(A) + f(A)] = 0. But Proposition 6 gives also
the equation P[1/((A — ¢)f(N))] = eo. Multiplying, we get the
differential equation

oy =100P (525)-

Note that any non-zero solution of this equation is a multiple
of f by a non-zero function independent of A. So, using the
F. & M. Riesz Theorem again, we solve to get, for any fixed «
in each connected component of C\o(T};) and for each A in that
component,

O = f(@) exp (P [ ¢d——ﬂu>
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where I' is any simple integration arc in the component going from
a to A. If T is closed, the condition

(e ) -

of Proposition 5 holds, so no such I separates o(¢) and connec-
tedness of o(Ty) will follow if we can show that o(Ty) is exterior
to such a ' whenever o(¢) is. Suppose, then, that I' is a simple
closed integration path in C\o(T},) and that o(¢) is exterior to
. Then the solution to the differential equation gives a unique
analytic continuation of f to the interior of ', so that, setting @
to be the associated spectral idempotent for Tj, we have

_ 1 -1 _ b _
Qeo—%/r(u—%) eodu—%i/rf(u)du—o-

Now (A —=Ty)(enf(A) =en+ Z?;Ol Bie; for each A € T' and some
related scalars ;; assuming inductively that Qe; = 0 for i < n, it
follows, since () commutes with T}, that

Q(enf(/\)) = (/\ - Td))_lQena

and integration around I' gives e, = 0. So @ = 0 by induction,
whence no part of o(Ty) is interior to I' and the theorem is proved.
i
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