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x1 Introduction.

Douglas, after presenting an adaptation of Widom's proof [2] that

every Toeplitz operator has connected spectrum, comments, \Des-

pite the elegance of the preceding proof of connectedness, we view

it as not completely satisfactory for two reasons: First, the proof

gives us no hint as to why the result is true. Second, the proof

seems to depend on showing that the set of some kind of singular-

ities for a function of two complex variables is connected ... " [1,

p.196]. The purpose of this note is to demonstrate that one of the

variables referred to by Douglas can be e�ectively suppressed by

extensive use of the F. & M. Riesz Theorem; the modi�ed proof

is, I believe, somewhat cleaner.

x2 Preliminary concepts.

The items in this section are well-known and are covered in [1].

Notation. The unit circle is denoted by T. We consider the

spaces L

p

= L

p

(T) for p = 1; 2;1, where the measure is Lebesgue

measure and the vectors are treated as functions de�ned almost

everywhere. The functions e

n

: z ! z

n

(n 2 Z) form an orthonor-

mal basis for the Hilbert space L

2

. The Hardy spaces H

p

are

H

p

=

�

f 2 L

p

:

R

T

fe

n

= 0 8n > 0

	

, (p = 1; 2;1). P will denote

the orthogonal projection from L

2

ontoH

2

. Note that L

1

andH

1

are Banach algebras, that L

1

� L

2

� L

1

and H

1

� H

2

� H

1

and that L

1

L

2

= L

2

. For � 2 L

1

, �(�) will denote the spectrum,

f� 2 C : ��� not invertible in L

1

g, of � in L

1

; note that this is

the same as the essential range of �, namely, the set of all � 2 C

31
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such that, for every � > 0, the set fz 2 T : j�(z) � �j < �g has

positive measure. For T 2 B(H

2

), the algebra of bounded linear

operators on H

2

, �(T ) will denote the spectrum of T in B(H

2

).

De�nition. For each � 2 L

1

we de�ne the Toeplitz operator

T

�

2 B(H

2

) by T

�

f = P (�f) for each f 2 H

2

.

Proposition 1. Suppose f 2 L

1

and

R

T

fe

n

= 0 for all n 2 Z.

Then f = 0.

Proposition 2. Suppose f; g 2 H

2

. Then fg 2 H

1

.

Proposition 3. Suppose � 2 L

1

. Then T

�

= T

�

�

.

Proposition 4. Suppose � 2 L

1

. Then �(�) � �(T

�

). (This

implies, of course, that, if T

�

is invertible, then so is �. However,

it is worth noting that the inverse of T

�

is not, except in very

special cases, equal to T

�

�1
.)

F. & M. Riesz Theorem. Suppose f 2 H

2

. If f 6= 0 then the

set of zeroes of f has zero measure. (It follows immediately from

this that if � 2 H

1

and the essential range of � is countable, then

� is essentially constant.)

x3 The connectedness.

Proposition 5. Suppose � is a simple closed integration path

and K is a compact subset of the complex plane with K \ � = ;.

Let � 2 L

1

be such that �(�) = K. Then � fails to separate K if

and only if

exp

�

P

Z

�

d�

�� �

�

= e

0

:

Proof: � fails to separate �(�) if and only if the winding number

function in L

1

w(�; �) =

1

2�i

Z

�

d�

�� �

is (essentially) constant. Since w(�; �) has only integer values, the

F. & M. Riesz Theorem ensures that this happens if and only if

w(�; �) is in H

1

, i.e., if and only if

P

Z

�

d�

�� �

=

Z

�

d�

�� �

:



� Widom's Theorem 33

Since exp

�

R

�

d�

���

�

= e

0

, the result follows by invoking the

F. & M. Riesz Theorem again.

Proposition 6. Suppose � 2 L

1

and T

�

is invertible in B(H

2

).

If f 2 H

2

satis�es T

�

f = e

0

, then f

�1

2 H

2

and T

�

�1
f

�1

= e

0

.

Proof: Firstly, since T

�

is invertible, Propositions 3 and 4 ensure

that � and � are invertible in L

1

and that T

�

= T

�

�

is invertible

in B(H

2

). In particular, there is exactly one vector mapped to

e

0

by T

�

, so that dim(�H

2

\ H

2

) = 1. It follows that the space

H

2

\ �

�1

H

2

has dimension 1 and then also that

dim(�

�1

H

2

\H

2

) = 1:

We deduce that T

�

�1
is injective and that there exists g 2 H

2

such that T

�

�1
g = e

0

. Then there exist u; v 2 (H

2

)

?

such that

�f = e

0

+ u and �

�1

g = e

0

+ v. By multiplication we have

fg = e

0

+ u+ v + uv, whence u+ v + uv 2 H

1

by Proposition 2.

Since u; v 2 (H

2

)

?

, an easy calculation using Proposition 1 shows

that u+ v + uv = 0 and hence that fg = e

0

.

Widom's Theorem. Suppose � 2 L

1

; then �(T

�

) is connected.

Proof: Consider the function f : Cn�(T

�

) ! H

2

given by the

equations f(�) = (� � T

�

)

�1

e

0

. Then f is di�erentiable and we

have P [(� � �)f

0

(�) + f(�)] = 0. But Proposition 6 gives also

the equation P [1=((� � �)f(�))] = e

0

. Multiplying, we get the

di�erential equation

f

0

(�) = f(�)P

�

1

�� �

�

:

Note that any non-zero solution of this equation is a multiple

of f by a non-zero function independent of �. So, using the

F. & M. Riesz Theorem again, we solve to get, for any �xed �

in each connected component of Cn�(T

�

) and for each � in that

component,

f(�) = f(�) exp

�

P

Z

�

d�

�� �

�
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where � is any simple integration arc in the component going from

� to �. If � is closed, the condition

exp

�

P

Z

�

d�

�� �

�

= e

0

of Proposition 5 holds, so no such � separates �(�) and connec-

tedness of �(T

�

) will follow if we can show that �(T

�

) is exterior

to such a � whenever �(�) is. Suppose, then, that � is a simple

closed integration path in Cn�(T

�

) and that �(�) is exterior to

�. Then the solution to the di�erential equation gives a unique

analytic continuation of f to the interior of �, so that, setting Q

to be the associated spectral idempotent for T

�

, we have

Qe

0

=

1

2�i

Z

�

(�� T

�

)

�1

e

0

d� =

1

2�i

Z

�

f(�) d� = 0:

Now (��T

�

)(e

n

f(�)) = e

n

+

P

n�1

i=0

�

i

e

i

for each � 2 � and some

related scalars �

i

; assuming inductively that Qe

i

= 0 for i < n, it

follows, since Q commutes with T

�

, that

Q(e

n

f(�)) = (�� T

�

)

�1

Qe

n

;

and integration around � gives Qe

n

= 0. So Q = 0 by induction,

whence no part of �(T

�

) is interior to � and the theorem is proved.
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