
EXPRESSING UNIPOTENT MATRICES OVER

RINGS AS PRODUCTS OF INVOLUTIONS

Thomas J. La�ey

Let R be a ring with 1 and letM

n

(R) be the ring of n�n matries

with entries in R. An element A 2 M

n

(R) is alled unipotent if

it is of the form I

n

+N where I

n

is the identity n� n matrix and

N is either stritly upper triangular or stritly lower triangular.

An element J 2M

n

(R) is alled an involution if J

2

= I

n

. In this

note we prove:

Theorem 1 Let R be a ring and n a positive integer. Then every

unipotent element A in M

n

(R) is the produt of ten involutions.

Proof: We an assume A is upper triangular, say
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For j odd, row j of H is of the form

(0; 0; : : : ; 0; 1; a

j j+1

; a

j+1 j+2

; : : : ; 0)

while for j even, it has the form

(0; 0; : : : ; 1; a

j j+1

; 0; : : : ; 0):

Note that K = H

�1

A has the form
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Note that H is expressible as produt H = H

1

H

2

, where
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and
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Using the fatorization
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where the two matries on the right are involutions, we see that H

is the produt of four involutions.

Note that

K = JL

where J is the full Jordan blok
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and L is of the form
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If D is the diagonal matrix diag

�

1;�1; 1;�1; : : : ; (�1)
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then we de�ne the matrix L
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By a result of Dennis and Vaserstein, L

0

is similar to J via an

element T of GL(n;R). In fat, just take T to be a unipotent

upper-triangular matrix and observe that the linear system

TL

0

= JT

is solvable indutively over every ring. (See [2℄, proof of Lemma

13.)

The desired result then follows from our next result.

Proposition The full unipotent Jordan blok J is the produt of

three involutions.

Proof: Let C be the ompanion matrix of (x � 1)

n

, so
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So J is similar to C over R.

But C is expressible as the produt C = C

1
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, where
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Now C

1

is an involution and C

2

is the produt of two involutions

(when n is even, this follows from the fat that every permutation

is the produt of two involutions and for n odd, we use a slight

modi�ation of this argument). See [3℄ for this fatorization of a

ompanion matrix.

Hene C and therefore J is the produt of three involutions.

A well-known result of Gustafson, Halmos and Radjavi, [3℄,

states that if F is a �eld and A 2 M

n

(F ) is suh that detA =

�1, then A is the produt of four involutions in GL(n; F ), but in

general not the produt of fewer than four. A number of results on

matries A whih are the produt of three involutions is presented

by Liu, [5℄.

Ishibashi [4℄ has obtained a version of the Gustafson-Halmos-

Radjavi result for integer matries. He proves that if n > 2 and

A 2 GL(n;Z), then A is the produt of 3n + 9 involutions in

GL(n;Z).
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It an be dedued from Bass, [1℄, that if n � 3 and A 2

GL(n;Z), then

A = U
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are uni-

potent lower-triangular integer matries and S 2 GL(2;Z) (see

also [2℄, Lemma 9). Sine
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and U

1

U

2

is unipotent upper-triangular, we dedue from the the-

orem that U

1
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is the produt of 30 involutions and apply-

ing Ishibashi's result in the ase n = 3, we dedue that A is the

produt of 48 involutions. Using Bass's result, Dennis and Vaser-

stein, [2℄, show that for n suÆiently large (one an hek that

n � 82 will do), every A 2 SL(n;Z) an be written as a produt
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Using this and the fat that if detA = �1 and

D := diag(�1; 1; 1; : : : ; 1)

then D is an involution and AD 2 SL(n;Z), Theorem 1 yields:

Theorem 2 Every A 2 GL(n;Z) (n � 3) an be written as a

produt of 48 (or fewer) involutions in GL(n;Z). For n � 82, this

number an be redued to 41.

Remark (i) It would be interesting to get best possible bounds.

(ii) Ishibashi, [4℄, shows that for elements in GL(2;Z), no suh

bound is possible.
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