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The Baer-Speker group, P, is the group of funtions from the

natural numbers N into the integers Z. While P is very easy to

de�ne, it is the soure of a wealth of problems, some of whih have

only reently been solved. The aim of this paper is to present

an introdutory aount of old and new results about P, and to

explore some of the onnetions of this group with other areas of

mathematis, in partiular with the real numbers, in�nitary logi,

and ombinatorial set theory.

Introdution

The Baer-Speker group P is an in�nite abelian group under the

addition

(f + g)(n) = f(n) + g(n)

for n 2 N. P ontains the subgroup S, the diret sum of ountably

many opies of Z. In the literature, P is also denoted Z

N

, or Z

!

.

Sine all the groups onsidered in this paper are abelian, it will

save spae to adopt the onvention that the term group is short

for abelian group. The textbooks [20℄ and [22℄ are good referenes

for in�nite abelian group theory. We use the symbols !, !

1

, and

2

!

to denote the ardinal numbers of the natural numbers N, the

�rst unountable ardinal, and the ardinal number of the real

numbers R, respetively. For example, P has ardinality 2

!

, and

S has ardinality !.

1

I am very grateful to the organizers of the Irish Mathematial Soi-

ety Conferene in September 1997 for the opportunity to read a shorter

version of this paper to the partiipants.
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There are four setions in the paper. The �rst resumes some

basi material on P; the seond looks at a reently disovered on-

netion relating slender subgroups of P to ertain ardinal invari-

ants of the real numbers. In the third setion, some logial aspets

of P are explored. The �nal setion is about the omplexity of the

lattie of subgroups of P. Sine the material overed in the paper

is diverse and sattered aross di�erent domains, I have not given

many proofs, hoping that the bibliography will enable the reader

to follow themes in more depth.

1. Basis

The struture of in�nite free groups is relatively lear (see, for

example, [22℄): for eah in�nite ardinal �, there is exatly one

free group of ardinality � on � generators (up to isomorphism).

So an obvious initial question in the study of P is to determine

how it stands in relation to freeness: is P free?

De�nition A group G is free if G is (isomorphi to) a diret sum

of opies of Z.

For example, P has a free subgroup S.

Theorem 1.1 (Baer [1℄) The group P is not free.

We shall dedue this theorem from a stronger assertion below

involving the notion of �{freeness.

De�nition Suppose that � is an in�nite ardinal. A group G is

�{free if every subgroup H � G having less than � elements is

free.

Every free group is �{free for every ardinal �, sine sub-

groups of free groups are free; if � < �, then �{freeness implies �{

freeness. Questions about whether �{freeness implies �{freeness

for � < � are highly non-trivial and have stimulated one of the

most important researh orientations in in�nite abelian group the-

ory, leading for example to Shelah's singular ompatness theorem

[7, 25, 20℄ and independene results in set theory [30℄. Sine in

general �{freeness is weaker than freeness, we an re�ne the initial

question about the non-freeness of P and ask whether there are

any ardinals � for whih P is �{free. Reall that !

2

is the seond

unountable ardinal, the ardinal suessor of !

1

.
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Proposition 1.2 The group P is not !

2

{free.

Proof: We need to �nd a non-free subgroup of P whih has ar-

dinality !

1

. Let p be a �xed prime number, and take a pure

subgroup H of ardinality !

1

ontaining S and suh that every

element (n

1

; n

2

; : : :) of H has the property that the tail is divis-

ible by arbitrarily high powers of p: (8m)(9r)(8k > r)(p

m

jn

k

).

2

Then the quotient group H=pH is a vetor spae over F

p

, the �nite

�eld of p elements. It follows that H is not free, for if H were free,

then H=pH must have dimension (and hene ardinality) !

1

; but

every oset of H=pH ontains an element of S, and hene H=pH

has ardinality at most jSj = ! {a ontradition. So H is not

free.

We an use Proposition 1.2 to improve exerise 19.7 of [22℄:

Corollary For every unountable ardinal �, there exists a non-

free !

1

{free group of ardinality �.

Proof: For example, the group �

�<�

H , the diret sum of � opies

of the group H in the proof of Proposition 1.2, will work.

Proposition 1.2 implies Baer's theorem, sine H is a non-

free subgroup of P. However, it leaves open the question whether

ountable subgroups of P are free, i.e. whether P is !

1

{free.

Theorem 1.3 (Speker [42℄) The group P is !

1

{free.

Proof: This is a well-known result and a full proof is given in

the standard referene textbooks [20, 22℄. It rests on Pontryagin's

Criterion: a ountable group is free if and only if every �nite rank

subgroup is free. We shall give a proof of this riterion using logi

in setion three. The proof of Theorem 1.3 proeeds as follows:

every �nite rank subgroup of P is embedded in a �nitely generated

torsion-free diret summand of P, and hene is free; so if G � P is

ountable, then every �nite rank subgroup of G is free; now apply

Pontryagin's Criterion.

To lose this setion, let us introdue another type of \loal"

freeness whih has been intensively studied: a group G is almost

free if G is jGj{free (jGj is the number of elements of G), i.e. every

2

Or: letH be an elementary submodel of the p-adi losure of S inP

of ardinality !

1

ontaining S. H exists by the Downward Loewenheim-

Skolem Theorem of �rst-order logi.



12 IMS Bulletin 40, 1998 �

subgroup of G of smaller ardinality than G is free. Is P almost

free?

Corollary 1.4 P is almost free if and only if the Continuum

Hypothesis (CH: 2

!

= !

1

) holds.

If the Continuum Hypothesis is true, then P is almost free if P

is !

1

{free, whih is true by Theorem 1.3; if the Continuum Hypo-

thesis is false, then the subgroup H in Proposition 1.2 is a non-free

subgroup of ardinality !

1

< 2

!

= jPj and so P is not almost

free. Thus one annot deide whether P is almost free or not on

the basis of ordinary set theory (ZFC).

One trend in the study of �{freeness has been to try to �nd

equivalenes between the algebrai and set-theoreti de�nitions.

In light of Corollary 1.4, it might be interesting to know whether

there are algebrai properties ' and  suh that:

(1) P has almost ' i� the weak Continuum Hypothesis (wCH:

2

!

< 2

!

1

) holds;

(2) P has almost  i� Diamond holds.

Diamond � is a stronger form of the Continuum Hypothesis CH.

One way to state CH is as a list of guesses A

�

for the subsets of

N:

(9fA

�

� � : � < !

1

g suh that

(8X � N)(f� : X = A

�

g is a stationary subset of !

1

)):

A stationary subset of !

1

is large: it intersets every losed

unbounded subset of !

1

(in the order topology) non-trivially. In

other words, the Continuum Hypothesis says that there is a list of

length !

1

whih predits orretly every subset of natural numbers

a large number of times. What about subsets of !

1

? One annot

hope for a list of length !

1

whih would predit orretly every

subset of !

1

, sine there are 2

!

1

subsets of !

1

and 2

!

1

> !

1

.

But perhaps one might be able to predit orretly just the initial

segments of subsets of !

1

. Diamond asserts that there is a list of

!

1

guesses A

�

for the initial segments of subsets of !

1

and these

guesses are orret on a large subset of !

1

. Formally, Diamond
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states:

(9fA

�

� � : � < !

1

g suh that

(8X � !

1

)(f� : X \ � = A

�

g is a stationary subset of !

1

)):

A more detailed explanation of this type of predition priniple

an be found in the standard textbooks on set theory [26℄ and

[29℄.

2. P and the real numbers R

We start this setion by looking at some ardinal invariants of the

real numbers R. Reent researh has unovered rather surpris-

ing onnetions between these invariants and the size of ertain

subgroups of P.

De�nition (1) The additivity of measure, add(L), is the smal-

lest number of measure-zero subsets of R whose union is not of

measure zero.

(2) The additivity of ategory, add(B), is the smallest number

of �rst ategory subsets of R whose union is of seond ategory

(not of �rst ategory).

(3) The ardinal d, the dominating number, is de�ned as:

minfjDj : D is a subset of N

N

and

(8g 2 N

N

)(9f 2 D)(g(n) � f(n) for all but �nitely many n)g:

(4) The ardinal b, the bounding number, is de�ned as:

minfjBj : B is a subset of N

N

and

(8g 2 N

N

)(9f 2 B)(g(n) < f(n) for all but �nitely many n)g:

The ountable additivity of Lebesgue measure and the Baire at-

egory theorem imply that add(L) and add(B) are both at least

!

1

. And they are also at most 2

!

. It is immediate too that

!

1

� b � d � 2

!

.
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The reason why the dominating and bounding numbers are

alled invariants of the reals is that the irrationals are homeo-

morphi to the topologial spaeN

N

when N

N

is given the produt

topology and N has the disrete topology.

We shall need one other invariant whih is alled the pseudo-

intersetion number. A family F of subsets of N has the strong

�nite intersetion property (SFIP) if the intersetion of every

�nite subfamily is an in�nite set. For example, the family of o-

�nite subsets of N has the SFIP. A set A is almost ontained

in a set B if A nB is �nite.

De�nition The ardinal p is

minfjF j : F is a family of subsets of N suh that F has

the SFIP but there is no in�nite set whih is almost

ontained in every member of Fg:

It is an instrutive exerise to show that !

1

� p � 2

!

.

These ardinals are related as in the following piture, part of

the Cihon diagram (exept for the ardinal p). An arrow relation

�! � means � � �:

!

1

p

add(L) add(B)

b

d

2

!

6

6

6

66

-

-

Bartoszynski [2℄,

Raisonnier and Stern

[36℄

Miller [32℄

Martin and

Solovay [31℄
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Some of the earliest results on the ardinal invariants of the reals

are due to Rothberger [37℄. The disovery of Martin's Axiom

in 1970 stimulated renewed interest in these and other invari-

ants. A fuller aount of the area whih has been studied in great

depth by mathematiians sine the 1970's is available in the art-

iles by van Douwen [13℄ and Vaughan [44℄. More reent work has

revealed links between ardinal invariants and quadrati forms:

several of these invariants determine how large orthogonal omple-

ments there are in a quadrati spae. This researh (on Gross and

strongly Gross spaes) is surveyed in the paper [43℄. The bound-

ing number b also appears in reent work (in funtional analysis)

on metrizable barrelled spaes [38℄.

To explain the onnetion of ardinal invariants with the Baer-

Speker group P, we shall introdue one further de�nition.

De�nition ( Lo�s). A group G is slender if whenever � is a homo-

morphism from P into G, then �(e

n

) = 0 for all but �nitely many

n, where e

n

is the element of P that has 1 at the n{th o-ordinate

and 0 everywhere else.

There are several important equivalent haraterizations of

slender groups whih we insert here for the sake of ompleteness

and as an aid to intuition.

Theorem 2.1 (Nunke [33℄, Heinlein [24℄, Eda (1982, see [20℄))

The group G is slender if and only if G does not ontain a opy

of the rationals Q, the yli group of order p Z(p), the p-adi

integers J

p

, or P;

equivalently, every homomorphism � from P into G is ontinuous,

where G and Z are given the disrete topology and P the produt

topology;

equivalently, for any family fG

i

: i 2 Ig and homomorphism �

from �

i2I

G

i

to G, there are !

1

-omplete ultra�lters D

1

,: : : , D

n

on I suh that

(8g 2 �

i2I

G

i

)(if the support of g; fi 2 I : g(i) 6= 0g;

does not belong to D

k

(1 � k � n); then �(g) = 0):

Corollary 2.2 Every !

1

{free group whih does not ontain P is

slender.
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Examples The group Z is slender; every free group is slender. P

is not slender (Speker [42℄). Subgroups and diret sums of slender

groups are slender.

Speker's proof that P is not slender works for many other

subgroups of P whih exhibit the Speker phenomenon. But

these subgroups all have ardinality 2

!

.

De�nition (Eda [15℄, Blass [8℄) (1) A subgroup G of P exhibits

the Speker phenomenon i� G ontains a sequene fg

n

: n 2

Ng of linearly independent elements suh that whenever � is a

homomorphism from G into Z, then �(g

n

) = 0 for all but �nitely

many n.

(2) The Speker-Eda number, se, is de�ned as:

minfjGj : G � P exhibits the Speker phenomenong:

Corollary 2.3 !

1

� se � 2

!

.

Theorem 2.4 (Eda [15℄.) (1) CH implies se = !

1

.

(2) Martin's Axiom (MA) implies se = 2

!

.

(3) There is a model of ordinary set theory (ZFC) in whih se <

2

!

.

In 1994, Andreas Blass observed that Eda's proofs establish

onnetions between the Speker-Eda number and some of the ar-

dinal invariants of the real numbers whih were de�ned at the

beginning of this setion.

Theorem 2.5 (Eda [15℄, Blass [8℄) (1) p � se � d.

(2) add(L) � se � b.

Conjeture 2.6 (Blass [8℄) se = add(B).

3. P and in�nitary logi

From the logial point of view, a group G is a struture G =

(G; +

G

; �

G

; 0

G

) whih satis�es the axioms for a group. In this

setion we use L to denote the voabulary of groups, that is, L

ontains the onstant, unary, and binary funtion symbols 0, �,

and + to name the zero, inverse, and addition of a group. There

are other possible hoies for the voabulary of groups, but for the
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sake of de�niteness we shall �x L as above. It is also a fat that

all the theorems of logi presented here are true in muh greater

generality.

The in�nitary language L

1�

is the smallest lass of formulas

in the voabulary L whih is losed under negations, onjuntions

of arbitrary length, and strings of quanti�ers

(9x

1

9x

2

: : :9x

�

: : :)

(�<�)

of length � less than �. This in�nitary language is more express-

ive than the �rst-order language of groups where one is limited

to negations, �nite onjuntions, and �nite strings of quanti�ers.

While the axioms for a group are �rst-order, many of the interest-

ing group-theoreti properties annot be expressed by �rst-order

sentenes. For example, the following sentene of L

1!

says that

a group is torsion:

(8g)(g = 0 or 2g = 0 or 3g = 0 or : : : or ng = 0 : : :):

But the onept of torsion annot be axiomatized in a �rst-order

language. In�nitary logi an express the onepts of �{freeness,

�{purity, < �{generatedness and so on. The paper by Barwise [3℄

is an exellent introdution to the bak and forth methods har-

ateristi of in�nitary logi. Other useful referenes for in�nit-

ary logis are the book by Barwise [4℄ and the artile by Dik-

mann [12℄. A typial problem in general in�nitary model theory

involves determining whether there are in�nitarily equivalent non-

isomorphi models in various ardinalities, [40℄.

De�nition Two groups A and B are L

1�

{equivalent if and only

if for every sentene ' in L

1�

: ' is true in A i� ' is true in B.

So L

1�

{equivalent groups annot be distinguished by a sen-

tene in the in�nitary language L

1�

. There is an algebrai har-

aterization of in�nitary equivalene whih is very useful and per-

haps more familiar.

Theorem 3.1 (Karp [27℄, Benda [6℄, Calais [9℄) Two groups A

and B are L

1�

{equivalent if and only if there is a �{extendible

system of partial isomorphisms from A to B.



18 IMS Bulletin 40, 1998 �

A �{extendible system of partial isomorphisms from A to B is

a family F of isomorphisms between subgroups of A and B whih

has the �{bak-and-forth property: if � 2 F is an isomorphism

from M

1

� A onto N

1

� B and X (respetively Y ) is a subset

of A (respetively B) of ardinality less than �, then there exists

 2 F from M

2

onto N

2

suh that M

1

�M

2

� A, N

1

� N

2

� B,

 extends � and X (Y ) is a subset of M

2

(N

2

).

Using this algebrai onept, it is easy to hek for example

that any two unountable free groups are L

1!

{equivalent. �{

extendible systems are a natural generalization of Cantor's teh-

nique for showing that there is (up to isomorphism) exatly

one unbounded dense ountable linear order, namely the linearly

ordered set of the rational numbers [3℄. Indeed, for ountable

groups, in�nitary equivalene and isomorphism are synonymous:

Theorem 3.2 (Sott [39℄) If A and B are ountable L

1!

{

equivalent groups, then A and B are isomorphi.

The in�nitary model theory of abelian groups was intensively

studied in the 1970's by Barwise, Eklof, Fisher, Gregory, Kueker,

and Mekler (see [5, 16, 17, 23, 28℄ for example). One of the �rst

important results is due to Eklof, who sueeded in determining

whih groups are in�nitarily equivalent to free groups.

De�nition A subgroup A of G is �{pure if for every subgroup B

suh that A � B � G and B=A is < �{generated (i.e. generated

by fewer than � elements), A is a diret summand of B.

Theorem 3.3 (Eklof [16℄) A group G is L

1�

{equivalent to a

free group if and only if every < �{generated subgroup of G is

ontained in a free, �{pure subgroup of G.

For the purposes of this exposition, it is suÆient to know the

following orollaries.

Corollary 3.4 A group G is L

1!

{equivalent to a free group i�

every subgroup of G of �nite rank is free.

Eklof used this result to dedue a very famous riterion for

freeness in ountable groups:

Corollary 3.5 (Pontryagin's Criterion [35℄) A ountable group is

free i� every subgroup of �nite rank is free.
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Proof: Apply Sott's Theorem 3.2 to Corollary 3.4.

Corollary 3.6 (Kueker) A group is L

1!

{equivalent to a free

group i� it is !

1

{free.

Now we an return to the Baer-Speker group P and see what

these fats tell us.

Corollary 3.7 (Keisler-Kueker) The Baer-Speker group P is

L

1!

{equivalent to a free group. The lass of free groups is not

de�nable in L

1!

.

Corollary 3.8 (Eklof [16℄) The group P is not L

1!

1

{equivalent

to a free group.

Sine free groups are slender, it follows too from Corollary

3.7 that the lass of slender groups is not de�nable in L

1!

. It

might be tempting to onjeture that P is not L

1!

1

{equivalent

to a slender group. Another possible suggestion is that P is not

L

1se

{equivalent to a slender group. Mekler showed that if � is a

strongly ompat ardinal, then the lass of free groups is de�nable

in L

1�

. This prompts the question whether the lass of slender

groups is de�nable in L

1�

if � is strongly ompat. Eklof and

Mekler have developed appliations of other generalized logis to

problems of abelian group theory in the papers [18℄ and [19℄.

4. The lattie of subgroups of P

The broad thrust in this setion is to desribe some reent researh

on the omplexity of the lattie of subgroups of P. One way to

measure this omplexity is to study what sorts of groups an be

embedded into P. Very generally, the natural questions often have

the form whether there are families of maximal possible size of

subgroups of P whih are strongly di�erent (non-isomorphi) in

some preisely de�ned sense.

An example of this type of theorem in the ontext of general

abelian groups is the following.

Theorem 4.1 (Eklof, Mekler and Shelah [21℄) Under various set-

theoreti hypotheses, there exist families of maximal possible size

of almost free abelian groups whih are pairwise almost disjoint

(the intersetion of any pair ontains no non-free subgroup).
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There is an inverse orrelation between the size of the family

and the strong di�erene of its members. If one onsiders families

of pure subgroups of P and takes the notion of strong di�erene to

mean that the only homomorphisms between any pair are those of

�nite rank, then it is possible to prove the existene of a strongly

di�erent family of maximal size.

Theorem 4.2 (Corner and Goldsmith [10℄) LetD be the subgroup

of P ontaining S suh that D=S is the divisible part of P=S.

Let  = 2

!

. There exists a family C onsisting of 2



pure sub-

groups G of D with D=G rank{1 divisible where eah G is slender,

essentially-indeomposable, essentially-rigid with End(G) = Z +

E

0

(G), where E

0

(G) is the ideal of all endomorphisms of G whose

images have �nite rank.

A similar type of question is the following: does there exist a

family of 2

!

1

non-isomorphi pure subgroups of P, eah of ardin-

ality !

1

, suh that the intersetion of any pair is free? The answer

is positive.

Theorem 4.3 (Shelah and Kolman [41℄) There exists a family

fG

�

: � < 2

!

1

g of pure subgroups of P suh that

(1) eah G

�

has ardinality !

1

;

(2) if � 6= �, then G

�

\G

�

is free.

The question whether ertain lasses of group an be embed-

ded in P sometimes leads to independene results. Reall that a

groupG is !

1

{separable if every ountable subset of G is ontained

in a free diret summand of G.

Theorem 4.4 (Dugas and Irwin [14℄) Embeddability of !

1

{

separable groups of ardinality !

1

in P is independent of ZFC.

Reexive subgroups of P have also been studied in some

depth. The following result was known for many years under the

additional assumption of the Continuum Hypothesis.

Theorem 4.5 (Ohta [34℄) There exists a non-reexive dual sub-

group of P.

The variety displayed in this seletion of results on the Baer-

Speker group P illustrates how this easily de�nable abelian group

is a soure of interesting researh problems whose solutions often
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reveal unexpeted onnetions with problems in other domains of

mathematis.
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