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The Baer-Spe
ker group, P, is the group of fun
tions from the

natural numbers N into the integers Z. While P is very easy to

de�ne, it is the sour
e of a wealth of problems, some of whi
h have

only re
ently been solved. The aim of this paper is to present

an introdu
tory a

ount of old and new results about P, and to

explore some of the 
onne
tions of this group with other areas of

mathemati
s, in parti
ular with the real numbers, in�nitary logi
,

and 
ombinatorial set theory.

Introdu
tion

The Baer-Spe
ker group P is an in�nite abelian group under the

addition

(f + g)(n) = f(n) + g(n)

for n 2 N. P 
ontains the subgroup S, the dire
t sum of 
ountably

many 
opies of Z. In the literature, P is also denoted Z

N

, or Z

!

.

Sin
e all the groups 
onsidered in this paper are abelian, it will

save spa
e to adopt the 
onvention that the term group is short

for abelian group. The textbooks [20℄ and [22℄ are good referen
es

for in�nite abelian group theory. We use the symbols !, !

1

, and

2

!

to denote the 
ardinal numbers of the natural numbers N, the

�rst un
ountable 
ardinal, and the 
ardinal number of the real

numbers R, respe
tively. For example, P has 
ardinality 2

!

, and

S has 
ardinality !.
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I am very grateful to the organizers of the Irish Mathemati
al So
i-

ety Conferen
e in September 1997 for the opportunity to read a shorter

version of this paper to the parti
ipants.
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There are four se
tions in the paper. The �rst resumes some

basi
 material on P; the se
ond looks at a re
ently dis
overed 
on-

ne
tion relating slender subgroups of P to 
ertain 
ardinal invari-

ants of the real numbers. In the third se
tion, some logi
al aspe
ts

of P are explored. The �nal se
tion is about the 
omplexity of the

latti
e of subgroups of P. Sin
e the material 
overed in the paper

is diverse and s
attered a
ross di�erent domains, I have not given

many proofs, hoping that the bibliography will enable the reader

to follow themes in more depth.

1. Basi
s

The stru
ture of in�nite free groups is relatively 
lear (see, for

example, [22℄): for ea
h in�nite 
ardinal �, there is exa
tly one

free group of 
ardinality � on � generators (up to isomorphism).

So an obvious initial question in the study of P is to determine

how it stands in relation to freeness: is P free?

De�nition A group G is free if G is (isomorphi
 to) a dire
t sum

of 
opies of Z.

For example, P has a free subgroup S.

Theorem 1.1 (Baer [1℄) The group P is not free.

We shall dedu
e this theorem from a stronger assertion below

involving the notion of �{freeness.

De�nition Suppose that � is an in�nite 
ardinal. A group G is

�{free if every subgroup H � G having less than � elements is

free.

Every free group is �{free for every 
ardinal �, sin
e sub-

groups of free groups are free; if � < �, then �{freeness implies �{

freeness. Questions about whether �{freeness implies �{freeness

for � < � are highly non-trivial and have stimulated one of the

most important resear
h orientations in in�nite abelian group the-

ory, leading for example to Shelah's singular 
ompa
tness theorem

[7, 25, 20℄ and independen
e results in set theory [30℄. Sin
e in

general �{freeness is weaker than freeness, we 
an re�ne the initial

question about the non-freeness of P and ask whether there are

any 
ardinals � for whi
h P is �{free. Re
all that !

2

is the se
ond

un
ountable 
ardinal, the 
ardinal su

essor of !

1

.
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Proposition 1.2 The group P is not !

2

{free.

Proof: We need to �nd a non-free subgroup of P whi
h has 
ar-

dinality !

1

. Let p be a �xed prime number, and take a pure

subgroup H of 
ardinality !

1


ontaining S and su
h that every

element (n

1

; n

2

; : : :) of H has the property that the tail is divis-

ible by arbitrarily high powers of p: (8m)(9r)(8k > r)(p

m

jn

k

).

2

Then the quotient group H=pH is a ve
tor spa
e over F

p

, the �nite

�eld of p elements. It follows that H is not free, for if H were free,

then H=pH must have dimension (and hen
e 
ardinality) !

1

; but

every 
oset of H=pH 
ontains an element of S, and hen
e H=pH

has 
ardinality at most jSj = ! {a 
ontradi
tion. So H is not

free.

We 
an use Proposition 1.2 to improve exer
ise 19.7 of [22℄:

Corollary For every un
ountable 
ardinal �, there exists a non-

free !

1

{free group of 
ardinality �.

Proof: For example, the group �

�<�

H , the dire
t sum of � 
opies

of the group H in the proof of Proposition 1.2, will work.

Proposition 1.2 implies Baer's theorem, sin
e H is a non-

free subgroup of P. However, it leaves open the question whether


ountable subgroups of P are free, i.e. whether P is !

1

{free.

Theorem 1.3 (Spe
ker [42℄) The group P is !

1

{free.

Proof: This is a well-known result and a full proof is given in

the standard referen
e textbooks [20, 22℄. It rests on Pontryagin's

Criterion: a 
ountable group is free if and only if every �nite rank

subgroup is free. We shall give a proof of this 
riterion using logi


in se
tion three. The proof of Theorem 1.3 pro
eeds as follows:

every �nite rank subgroup of P is embedded in a �nitely generated

torsion-free dire
t summand of P, and hen
e is free; so if G � P is


ountable, then every �nite rank subgroup of G is free; now apply

Pontryagin's Criterion.

To 
lose this se
tion, let us introdu
e another type of \lo
al"

freeness whi
h has been intensively studied: a group G is almost

free if G is jGj{free (jGj is the number of elements of G), i.e. every

2

Or: letH be an elementary submodel of the p-adi
 
losure of S inP

of 
ardinality !

1


ontaining S. H exists by the Downward Loewenheim-

Skolem Theorem of �rst-order logi
.
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subgroup of G of smaller 
ardinality than G is free. Is P almost

free?

Corollary 1.4 P is almost free if and only if the Continuum

Hypothesis (CH: 2

!

= !

1

) holds.

If the Continuum Hypothesis is true, then P is almost free if P

is !

1

{free, whi
h is true by Theorem 1.3; if the Continuum Hypo-

thesis is false, then the subgroup H in Proposition 1.2 is a non-free

subgroup of 
ardinality !

1

< 2

!

= jPj and so P is not almost

free. Thus one 
annot de
ide whether P is almost free or not on

the basis of ordinary set theory (ZFC).

One trend in the study of �{freeness has been to try to �nd

equivalen
es between the algebrai
 and set-theoreti
 de�nitions.

In light of Corollary 1.4, it might be interesting to know whether

there are algebrai
 properties ' and  su
h that:

(1) P has almost ' i� the weak Continuum Hypothesis (wCH:

2

!

< 2

!

1

) holds;

(2) P has almost  i� Diamond holds.

Diamond � is a stronger form of the Continuum Hypothesis CH.

One way to state CH is as a list of guesses A

�

for the subsets of

N:

(9fA

�

� � : � < !

1

g su
h that

(8X � N)(f� : X = A

�

g is a stationary subset of !

1

)):

A stationary subset of !

1

is large: it interse
ts every 
losed

unbounded subset of !

1

(in the order topology) non-trivially. In

other words, the Continuum Hypothesis says that there is a list of

length !

1

whi
h predi
ts 
orre
tly every subset of natural numbers

a large number of times. What about subsets of !

1

? One 
annot

hope for a list of length !

1

whi
h would predi
t 
orre
tly every

subset of !

1

, sin
e there are 2

!

1

subsets of !

1

and 2

!

1

> !

1

.

But perhaps one might be able to predi
t 
orre
tly just the initial

segments of subsets of !

1

. Diamond asserts that there is a list of

!

1

guesses A

�

for the initial segments of subsets of !

1

and these

guesses are 
orre
t on a large subset of !

1

. Formally, Diamond



� The Baer-Spe
ker Group 13

states:

(9fA

�

� � : � < !

1

g su
h that

(8X � !

1

)(f� : X \ � = A

�

g is a stationary subset of !

1

)):

A more detailed explanation of this type of predi
tion prin
iple


an be found in the standard textbooks on set theory [26℄ and

[29℄.

2. P and the real numbers R

We start this se
tion by looking at some 
ardinal invariants of the

real numbers R. Re
ent resear
h has un
overed rather surpris-

ing 
onne
tions between these invariants and the size of 
ertain

subgroups of P.

De�nition (1) The additivity of measure, add(L), is the smal-

lest number of measure-zero subsets of R whose union is not of

measure zero.

(2) The additivity of 
ategory, add(B), is the smallest number

of �rst 
ategory subsets of R whose union is of se
ond 
ategory

(not of �rst 
ategory).

(3) The 
ardinal d, the dominating number, is de�ned as:

minfjDj : D is a subset of N

N

and

(8g 2 N

N

)(9f 2 D)(g(n) � f(n) for all but �nitely many n)g:

(4) The 
ardinal b, the bounding number, is de�ned as:

minfjBj : B is a subset of N

N

and

(8g 2 N

N

)(9f 2 B)(g(n) < f(n) for all but �nitely many n)g:

The 
ountable additivity of Lebesgue measure and the Baire 
at-

egory theorem imply that add(L) and add(B) are both at least

!

1

. And they are also at most 2

!

. It is immediate too that

!

1

� b � d � 2

!

.
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The reason why the dominating and bounding numbers are


alled invariants of the reals is that the irrationals are homeo-

morphi
 to the topologi
al spa
eN

N

when N

N

is given the produ
t

topology and N has the dis
rete topology.

We shall need one other invariant whi
h is 
alled the pseudo-

interse
tion number. A family F of subsets of N has the strong

�nite interse
tion property (SFIP) if the interse
tion of every

�nite subfamily is an in�nite set. For example, the family of 
o-

�nite subsets of N has the SFIP. A set A is almost 
ontained

in a set B if A nB is �nite.

De�nition The 
ardinal p is

minfjF j : F is a family of subsets of N su
h that F has

the SFIP but there is no in�nite set whi
h is almost


ontained in every member of Fg:

It is an instru
tive exer
ise to show that !

1

� p � 2

!

.

These 
ardinals are related as in the following pi
ture, part of

the Ci
hon diagram (ex
ept for the 
ardinal p). An arrow relation

�! � means � � �:

!

1

p

add(L) add(B)

b

d

2

!

6

6

6

66

-

-

Bartoszynski [2℄,

Raisonnier and Stern

[36℄

Miller [32℄

Martin and

Solovay [31℄
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Some of the earliest results on the 
ardinal invariants of the reals

are due to Rothberger [37℄. The dis
overy of Martin's Axiom

in 1970 stimulated renewed interest in these and other invari-

ants. A fuller a

ount of the area whi
h has been studied in great

depth by mathemati
ians sin
e the 1970's is available in the art-

i
les by van Douwen [13℄ and Vaughan [44℄. More re
ent work has

revealed links between 
ardinal invariants and quadrati
 forms:

several of these invariants determine how large orthogonal 
omple-

ments there are in a quadrati
 spa
e. This resear
h (on Gross and

strongly Gross spa
es) is surveyed in the paper [43℄. The bound-

ing number b also appears in re
ent work (in fun
tional analysis)

on metrizable barrelled spa
es [38℄.

To explain the 
onne
tion of 
ardinal invariants with the Baer-

Spe
ker group P, we shall introdu
e one further de�nition.

De�nition ( Lo�s). A group G is slender if whenever � is a homo-

morphism from P into G, then �(e

n

) = 0 for all but �nitely many

n, where e

n

is the element of P that has 1 at the n{th 
o-ordinate

and 0 everywhere else.

There are several important equivalent 
hara
terizations of

slender groups whi
h we insert here for the sake of 
ompleteness

and as an aid to intuition.

Theorem 2.1 (Nunke [33℄, Heinlein [24℄, Eda (1982, see [20℄))

The group G is slender if and only if G does not 
ontain a 
opy

of the rationals Q, the 
y
li
 group of order p Z(p), the p-adi


integers J

p

, or P;

equivalently, every homomorphism � from P into G is 
ontinuous,

where G and Z are given the dis
rete topology and P the produ
t

topology;

equivalently, for any family fG

i

: i 2 Ig and homomorphism �

from �

i2I

G

i

to G, there are !

1

-
omplete ultra�lters D

1

,: : : , D

n

on I su
h that

(8g 2 �

i2I

G

i

)(if the support of g; fi 2 I : g(i) 6= 0g;

does not belong to D

k

(1 � k � n); then �(g) = 0):

Corollary 2.2 Every !

1

{free group whi
h does not 
ontain P is

slender.
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Examples The group Z is slender; every free group is slender. P

is not slender (Spe
ker [42℄). Subgroups and dire
t sums of slender

groups are slender.

Spe
ker's proof that P is not slender works for many other

subgroups of P whi
h exhibit the Spe
ker phenomenon. But

these subgroups all have 
ardinality 2

!

.

De�nition (Eda [15℄, Blass [8℄) (1) A subgroup G of P exhibits

the Spe
ker phenomenon i� G 
ontains a sequen
e fg

n

: n 2

Ng of linearly independent elements su
h that whenever � is a

homomorphism from G into Z, then �(g

n

) = 0 for all but �nitely

many n.

(2) The Spe
ker-Eda number, se, is de�ned as:

minfjGj : G � P exhibits the Spe
ker phenomenong:

Corollary 2.3 !

1

� se � 2

!

.

Theorem 2.4 (Eda [15℄.) (1) CH implies se = !

1

.

(2) Martin's Axiom (MA) implies se = 2

!

.

(3) There is a model of ordinary set theory (ZFC) in whi
h se <

2

!

.

In 1994, Andreas Blass observed that Eda's proofs establish


onne
tions between the Spe
ker-Eda number and some of the 
ar-

dinal invariants of the real numbers whi
h were de�ned at the

beginning of this se
tion.

Theorem 2.5 (Eda [15℄, Blass [8℄) (1) p � se � d.

(2) add(L) � se � b.

Conje
ture 2.6 (Blass [8℄) se = add(B).

3. P and in�nitary logi


From the logi
al point of view, a group G is a stru
ture G =

(G; +

G

; �

G

; 0

G

) whi
h satis�es the axioms for a group. In this

se
tion we use L to denote the vo
abulary of groups, that is, L


ontains the 
onstant, unary, and binary fun
tion symbols 0, �,

and + to name the zero, inverse, and addition of a group. There

are other possible 
hoi
es for the vo
abulary of groups, but for the
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sake of de�niteness we shall �x L as above. It is also a fa
t that

all the theorems of logi
 presented here are true in mu
h greater

generality.

The in�nitary language L

1�

is the smallest 
lass of formulas

in the vo
abulary L whi
h is 
losed under negations, 
onjun
tions

of arbitrary length, and strings of quanti�ers

(9x

1

9x

2

: : :9x

�

: : :)

(�<�)

of length � less than �. This in�nitary language is more express-

ive than the �rst-order language of groups where one is limited

to negations, �nite 
onjun
tions, and �nite strings of quanti�ers.

While the axioms for a group are �rst-order, many of the interest-

ing group-theoreti
 properties 
annot be expressed by �rst-order

senten
es. For example, the following senten
e of L

1!

says that

a group is torsion:

(8g)(g = 0 or 2g = 0 or 3g = 0 or : : : or ng = 0 : : :):

But the 
on
ept of torsion 
annot be axiomatized in a �rst-order

language. In�nitary logi
 
an express the 
on
epts of �{freeness,

�{purity, < �{generatedness and so on. The paper by Barwise [3℄

is an ex
ellent introdu
tion to the ba
k and forth methods 
har-

a
teristi
 of in�nitary logi
. Other useful referen
es for in�nit-

ary logi
s are the book by Barwise [4℄ and the arti
le by Di
k-

mann [12℄. A typi
al problem in general in�nitary model theory

involves determining whether there are in�nitarily equivalent non-

isomorphi
 models in various 
ardinalities, [40℄.

De�nition Two groups A and B are L

1�

{equivalent if and only

if for every senten
e ' in L

1�

: ' is true in A i� ' is true in B.

So L

1�

{equivalent groups 
annot be distinguished by a sen-

ten
e in the in�nitary language L

1�

. There is an algebrai
 
har-

a
terization of in�nitary equivalen
e whi
h is very useful and per-

haps more familiar.

Theorem 3.1 (Karp [27℄, Benda [6℄, Calais [9℄) Two groups A

and B are L

1�

{equivalent if and only if there is a �{extendible

system of partial isomorphisms from A to B.
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A �{extendible system of partial isomorphisms from A to B is

a family F of isomorphisms between subgroups of A and B whi
h

has the �{ba
k-and-forth property: if � 2 F is an isomorphism

from M

1

� A onto N

1

� B and X (respe
tively Y ) is a subset

of A (respe
tively B) of 
ardinality less than �, then there exists

 2 F from M

2

onto N

2

su
h that M

1

�M

2

� A, N

1

� N

2

� B,

 extends � and X (Y ) is a subset of M

2

(N

2

).

Using this algebrai
 
on
ept, it is easy to 
he
k for example

that any two un
ountable free groups are L

1!

{equivalent. �{

extendible systems are a natural generalization of Cantor's te
h-

nique for showing that there is (up to isomorphism) exa
tly

one unbounded dense 
ountable linear order, namely the linearly

ordered set of the rational numbers [3℄. Indeed, for 
ountable

groups, in�nitary equivalen
e and isomorphism are synonymous:

Theorem 3.2 (S
ott [39℄) If A and B are 
ountable L

1!

{

equivalent groups, then A and B are isomorphi
.

The in�nitary model theory of abelian groups was intensively

studied in the 1970's by Barwise, Eklof, Fis
her, Gregory, Kueker,

and Mekler (see [5, 16, 17, 23, 28℄ for example). One of the �rst

important results is due to Eklof, who su

eeded in determining

whi
h groups are in�nitarily equivalent to free groups.

De�nition A subgroup A of G is �{pure if for every subgroup B

su
h that A � B � G and B=A is < �{generated (i.e. generated

by fewer than � elements), A is a dire
t summand of B.

Theorem 3.3 (Eklof [16℄) A group G is L

1�

{equivalent to a

free group if and only if every < �{generated subgroup of G is


ontained in a free, �{pure subgroup of G.

For the purposes of this exposition, it is suÆ
ient to know the

following 
orollaries.

Corollary 3.4 A group G is L

1!

{equivalent to a free group i�

every subgroup of G of �nite rank is free.

Eklof used this result to dedu
e a very famous 
riterion for

freeness in 
ountable groups:

Corollary 3.5 (Pontryagin's Criterion [35℄) A 
ountable group is

free i� every subgroup of �nite rank is free.
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Proof: Apply S
ott's Theorem 3.2 to Corollary 3.4.

Corollary 3.6 (Kueker) A group is L

1!

{equivalent to a free

group i� it is !

1

{free.

Now we 
an return to the Baer-Spe
ker group P and see what

these fa
ts tell us.

Corollary 3.7 (Keisler-Kueker) The Baer-Spe
ker group P is

L

1!

{equivalent to a free group. The 
lass of free groups is not

de�nable in L

1!

.

Corollary 3.8 (Eklof [16℄) The group P is not L

1!

1

{equivalent

to a free group.

Sin
e free groups are slender, it follows too from Corollary

3.7 that the 
lass of slender groups is not de�nable in L

1!

. It

might be tempting to 
onje
ture that P is not L

1!

1

{equivalent

to a slender group. Another possible suggestion is that P is not

L

1se

{equivalent to a slender group. Mekler showed that if � is a

strongly 
ompa
t 
ardinal, then the 
lass of free groups is de�nable

in L

1�

. This prompts the question whether the 
lass of slender

groups is de�nable in L

1�

if � is strongly 
ompa
t. Eklof and

Mekler have developed appli
ations of other generalized logi
s to

problems of abelian group theory in the papers [18℄ and [19℄.

4. The latti
e of subgroups of P

The broad thrust in this se
tion is to des
ribe some re
ent resear
h

on the 
omplexity of the latti
e of subgroups of P. One way to

measure this 
omplexity is to study what sorts of groups 
an be

embedded into P. Very generally, the natural questions often have

the form whether there are families of maximal possible size of

subgroups of P whi
h are strongly di�erent (non-isomorphi
) in

some pre
isely de�ned sense.

An example of this type of theorem in the 
ontext of general

abelian groups is the following.

Theorem 4.1 (Eklof, Mekler and Shelah [21℄) Under various set-

theoreti
 hypotheses, there exist families of maximal possible size

of almost free abelian groups whi
h are pairwise almost disjoint

(the interse
tion of any pair 
ontains no non-free subgroup).
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There is an inverse 
orrelation between the size of the family

and the strong di�eren
e of its members. If one 
onsiders families

of pure subgroups of P and takes the notion of strong di�eren
e to

mean that the only homomorphisms between any pair are those of

�nite rank, then it is possible to prove the existen
e of a strongly

di�erent family of maximal size.

Theorem 4.2 (Corner and Goldsmith [10℄) LetD be the subgroup

of P 
ontaining S su
h that D=S is the divisible part of P=S.

Let 
 = 2

!

. There exists a family C 
onsisting of 2




pure sub-

groups G of D with D=G rank{1 divisible where ea
h G is slender,

essentially-inde
omposable, essentially-rigid with End(G) = Z +

E

0

(G), where E

0

(G) is the ideal of all endomorphisms of G whose

images have �nite rank.

A similar type of question is the following: does there exist a

family of 2

!

1

non-isomorphi
 pure subgroups of P, ea
h of 
ardin-

ality !

1

, su
h that the interse
tion of any pair is free? The answer

is positive.

Theorem 4.3 (Shelah and Kolman [41℄) There exists a family

fG

�

: � < 2

!

1

g of pure subgroups of P su
h that

(1) ea
h G

�

has 
ardinality !

1

;

(2) if � 6= �, then G

�

\G

�

is free.

The question whether 
ertain 
lasses of group 
an be embed-

ded in P sometimes leads to independen
e results. Re
all that a

groupG is !

1

{separable if every 
ountable subset of G is 
ontained

in a free dire
t summand of G.

Theorem 4.4 (Dugas and Irwin [14℄) Embeddability of !

1

{

separable groups of 
ardinality !

1

in P is independent of ZFC.

Re
exive subgroups of P have also been studied in some

depth. The following result was known for many years under the

additional assumption of the Continuum Hypothesis.

Theorem 4.5 (Ohta [34℄) There exists a non-re
exive dual sub-

group of P.

The variety displayed in this sele
tion of results on the Baer-

Spe
ker group P illustrates how this easily de�nable abelian group

is a sour
e of interesting resear
h problems whose solutions often
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reveal unexpe
ted 
onne
tions with problems in other domains of

mathemati
s.
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