THE BAER-SPECKER GROUP

Eoin Coleman!

The Baer-Specker group, P, is the group of functions from the
natural numbers N into the integers Z. While P is very easy to
define, it is the source of a wealth of problems, some of which have
only recently been solved. The aim of this paper is to present
an introductory account of old and new results about P, and to
explore some of the connections of this group with other areas of
mathematics, in particular with the real numbers, infinitary logic,
and combinatorial set theory.

Introduction

The Baer-Specker group P is an infinite abelian group under the
addition

(f+9)(n) = f(n) +g(n)

for n € N. P contains the subgroup S, the direct sum of countably
many copies of Z. In the literature, P is also denoted ZN, or Z¢.
Since all the groups considered in this paper are abelian, it will
save space to adopt the convention that the term group is short
for abelian group. The textbooks [20] and [22] are good references
for infinite abelian group theory. We use the symbols w, wy, and
2“ to denote the cardinal numbers of the natural numbers N, the
first uncountable cardinal, and the cardinal number of the real
numbers R, respectively. For example, P has cardinality 2¢, and
S has cardinality w.

'T am very grateful to the organizers of the Irish Mathematical Soci-
ety Conference in September 1997 for the opportunity to read a shorter
version of this paper to the participants.
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There are four sections in the paper. The first resumes some
basic material on P; the second looks at a recently discovered con-
nection relating slender subgroups of P to certain cardinal invari-
ants of the real numbers. In the third section, some logical aspects
of P are explored. The final section is about the complexity of the
lattice of subgroups of P. Since the material covered in the paper
is diverse and scattered across different domains, I have not given
many proofs, hoping that the bibliography will enable the reader
to follow themes in more depth.

1. Basics

The structure of infinite free groups is relatively clear (see, for
example, [22]): for each infinite cardinal x, there is exactly one
free group of cardinality x on s generators (up to isomorphism).
So an obvious initial question in the study of P is to determine
how it stands in relation to freeness: is P free?

Definition A group G is free if G is (isomorphic to) a direct sum
of copies of Z.

For example, P has a free subgroup S.
Theorem 1.1 (Baer [1]) The group P is not free.

We shall deduce this theorem from a stronger assertion below
involving the notion of xk—freeness.

Definition Suppose that « is an infinite cardinal. A group G is
k—free if every subgroup H < G having less than x elements is
free.

Every free group is k—free for every cardinal &, since sub-
groups of free groups are free; if A < k, then k—freeness implies A\—
freeness. Questions about whether A—freeness implies k—freeness
for A < k are highly non-trivial and have stimulated one of the
most important research orientations in infinite abelian group the-
ory, leading for example to Shelah’s singular compactness theorem
[7, 25, 20] and independence results in set theory [30]. Since in
general k—freeness is weaker than freeness, we can refine the initial
question about the non-freeness of P and ask whether there are
any cardinals x for which P is k—free. Recall that ws is the second
uncountable cardinal, the cardinal successor of w;.
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Proposition 1.2 The group P is not ws—free.
Proof: We need to find a non-free subgroup of P which has car-
dinality w;. Let p be a fixed prime number, and take a pure
subgroup H of cardinality w; containing S and such that every
element (ny, na, ...) of H has the property that the tail is divis-
ible by arbitrarily high powers of p: (Vm)(3r)(Vk > r)(p™|n).2
Then the quotient group H/pH is a vector space over F,,, the finite
field of p elements. It follows that H is not free, for if H were free,
then H/pH must have dimension (and hence cardinality) w; but
every coset of H/pH contains an element of S, and hence H/pH
has cardinality at most |S| = w —a contradiction. So H is not
free. m

We can use Proposition 1.2 to improve exercise 19.7 of [22]:

Corollary For every uncountable cardinal k, there exists a non-
free wy—free group of cardinality k.

Proof: For example, the group @<, H, the direct sum of k copies
of the group H in the proof of Proposition 1.2, will work. m

Proposition 1.2 implies Baer’s theorem, since H is a non-
free subgroup of P. However, it leaves open the question whether
countable subgroups of P are free, i.e. whether P is w;—free.

Theorem 1.3 (Specker [42]) The group P is wy—free.
Proof: This is a well-known result and a full proof is given in
the standard reference textbooks [20, 22]. It rests on Pontryagin’s
Criterion: a countable group is free if and only if every finite rank
subgroup is free. We shall give a proof of this criterion using logic
in section three. The proof of Theorem 1.3 proceeds as follows:
every finite rank subgroup of P is embedded in a finitely generated
torsion-free direct summand of P, and hence is free; so if G < P is
countable, then every finite rank subgroup of G is free; now apply
Pontryagin’s Criterion. m

To close this section, let us introduce another type of “local”
freeness which has been intensively studied: a group G is almost
free if G is |G|ree (|G| is the number of elements of G), i.e. every

2 Or: let H be an elementary submodel of the p-adic closure of S in P
of cardinality wi containing S. H exists by the Downward Loewenheim-
Skolem Theorem of first-order logic.
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subgroup of G of smaller cardinality than G is free. Is P almost
free?

Corollary 1.4 P is almost free if and only if the Continuum
Hypothesis (CH: 2¥ = w;) holds.

If the Continuum Hypothesis is true, then P is almost free if P
is wy—free, which is true by Theorem 1.3; if the Continuum Hypo-
thesis is false, then the subgroup H in Proposition 1.2 is a non-free
subgroup of cardinality w; < 2¢ = |P| and so P is not almost
free. Thus one cannot decide whether P is almost free or not on
the basis of ordinary set theory (ZFC).

One trend in the study of k—freeness has been to try to find
equivalences between the algebraic and set-theoretic definitions.
In light of Corollary 1.4, it might be interesting to know whether
there are algebraic properties ¢ and ¢ such that:

(1) P has almost ¢ iff the weak Continuum Hypothesis (wCH:
2¢ < 2¥1) holds;

(2) P has almost ¢ iff Diamond holds.

Diamond ¢ is a stronger form of the Continuum Hypothesis CH.
One way to state CH is as a list of guesses A, for the subsets of
N:

(3{4, C a: a < w;} such that
(VX CN){a: X = A,} is a stationary subset of wy)).

A stationary subset of w; is large: it intersects every closed
unbounded subset of w; (in the order topology) non-trivially. In
other words, the Continuum Hypothesis says that there is a list of
length w; which predicts correctly every subset of natural numbers
a large number of times. What about subsets of w4 ? One cannot
hope for a list of length w; which would predict correctly every
subset of w;, since there are 2“! subsets of w; and 2“' > w;.
But perhaps one might be able to predict correctly just the initial
segments of subsets of w;. Diamond asserts that there is a list of
w1 guesses A, for the initial segments of subsets of w; and these
guesses are correct on a large subset of w;. Formally, Diamond
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states:

(H{ A, C a:a < w} such that
(VX Cw){a: XNa=A,} is a stationary subset of wy)).

A more detailed explanation of this type of prediction principle
can be found in the standard textbooks on set theory [26] and
[29].

2. P and the real numbers R

We start this section by looking at some cardinal invariants of the
real numbers R. Recent research has uncovered rather surpris-
ing connections between these invariants and the size of certain
subgroups of P.

Definition (1) The additivity of measure, add(L), is the smal-
lest number of measure-zero subsets of R whose union is not of
measure zero.

(2) The additivity of category, add(B), is the smallest number
of first category subsets of R whose union is of second category
(not of first category).

(3) The cardinal d, the dominating number, is defined as:

min{|D|: D is a subset of N~ and
(Vg € NN)(3f € D)(g9(n) < f(n) for all but finitely many n)}.

(4) The cardinal b, the bounding number, is defined as:

min{|B| : B is a subset of N~ and
(Vg € NN)(3f € B)(g(n) < f(n) for all but finitely many n)}.

The countable additivity of Lebesgue measure and the Baire cat-
egory theorem imply that add(L) and add(B) are both at least
wi. And they are also at most 2¢. It is immediate too that
w1 S b S d S 2%,
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The reason why the dominating and bounding numbers are
called invariants of the reals is that the irrationals are homeo-
morphic to the topological space NN when NN is given the product
topology and N has the discrete topology.

We shall need one other invariant which is called the pseudo-
intersection number. A family F' of subsets of N has the strong
finite intersection property (SFIP) if the intersection of every
finite subfamily is an infinite set. For example, the family of co-
finite subsets of N has the SFIP. A set A is almost contained
in a set B if A\ B is finite.

Definition The cardinal p is
min{|F| : F is a family of subsets of N such that F' has
the SFIP but there is no infinite set which is almost

contained in every member of F'}.

It is an instructive exercise to show that wy < p < 2%.

These cardinals are related as in the following picture, part of
the Cichon diagram (except for the cardinal p). An arrow relation
Kk — XA means k < A: Qw

A

b

Miller [32]

add(L) add(B)
Bartoszynski [2],

Raisonnier and Stern
[36] Martin and

Solovay [31]
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Some of the earliest results on the cardinal invariants of the reals
are due to Rothberger [37]. The discovery of Martin’s Axiom
in 1970 stimulated renewed interest in these and other invari-
ants. A fuller account of the area which has been studied in great
depth by mathematicians since the 1970’s is available in the art-
icles by van Douwen [13] and Vaughan [44]. More recent work has
revealed links between cardinal invariants and quadratic forms:
several of these invariants determine how large orthogonal comple-
ments there are in a quadratic space. This research (on Gross and
strongly Gross spaces) is surveyed in the paper [43]. The bound-
ing number b also appears in recent work (in functional analysis)
on metrizable barrelled spaces [38].

To explain the connection of cardinal invariants with the Baer-
Specker group P, we shall introduce one further definition.

Definition (Los). A group G is slender if whenever ¢ is a homo-
morphism from P into G, then ¢(e,,) = 0 for all but finitely many
n, where e, is the element of P that has 1 at the n—th co-ordinate
and 0 everywhere else.

There are several important equivalent characterizations of
slender groups which we insert here for the sake of completeness
and as an aid to intuition.

Theorem 2.1 (Nunke [33], Heinlein [24], Eda (1982, see [20]))
The group G is slender if and only if G does not contain a copy
of the rationals Q, the cyclic group of order p Z(p), the p-adic
integers J,, or P;

equivalently, every homomorphism ¢ from P into G is continuous,
where G and Z are given the discrete topology and P the product
topology;

equivalently, for any family {G; : i € I} and homomorphism ¢
from IL;c;G; to G, there are wi-complete ultrafilters Dy,..., D,
on [ such that

(Vg € I;erG;)(if the support of g,{i € I : g(i) # 0},
does not belong to Di(1 < k <n), then ¢(g) = 0).

Corollary 2.2 Every wi—free group which does not contain P is
slender.
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Examples The group Z is slender; every free group is slender. P
is not slender (Specker [42]). Subgroups and direct sums of slender
groups are slender.

Specker’s proof that P is not slender works for many other

subgroups of P which exhibit the Specker phenomenon. But
these subgroups all have cardinality 2¢.
Definition (Eda [15], Blass [8]) (1) A subgroup G of P exhibits
the Specker phenomenon iff G contains a sequence {g, : n €
N} of linearly independent elements such that whenever ¢ is a
homomorphism from G into Z, then ¢(g,) = 0 for all but finitely
many n.

(2) The Specker-Eda number, se, is defined as:
min{|G| : G < P exhibits the Specker phenomenon}.

Corollary 2.3 w; <se <2v.

Theorem 2.4 (Eda [15].) (1) CH implies se = w .

(2) Martin’s Axiom (MA) implies se = 2¥.

(3) There is a model of ordinary set theory (ZFC) in which se <
29,

In 1994, Andreas Blass observed that Eda’s proofs establish
connections between the Specker-Eda number and some of the car-
dinal invariants of the real numbers which were defined at the
beginning of this section.

Theorem 2.5 (Eda [15], Blass [8]) (1) p < se < d.
(2) add(L) < se < b.
Conjecture 2.6 (Blass [8]) se = add(B).

3. P and infinitary logic

From the logical point of view, a group G is a structure G =
(G, +9, =%, 0%) which satisfies the axioms for a group. In this
section we use L to denote the vocabulary of groups, that is, L
contains the constant, unary, and binary function symbols 0, —,
and + to name the zero, inverse, and addition of a group. There
are other possible choices for the vocabulary of groups, but for the
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sake of definiteness we shall fix L as above. It is also a fact that
all the theorems of logic presented here are true in much greater
generality.

The infinitary language Lo, is the smallest class of formulas
in the vocabulary L which is closed under negations, conjunctions
of arbitrary length, and strings of quantifiers

(Ell'1§|$2 e Ell‘a . -)(a<>\)

of length X\ less than x. This infinitary language is more express-
ive than the first-order language of groups where one is limited
to negations, finite conjunctions, and finite strings of quantifiers.
While the axioms for a group are first-order, many of the interest-
ing group-theoretic properties cannot be expressed by first-order
sentences. For example, the following sentence of L., says that
a group is torsion:

(Vg)(g=0o0r2g=00r3g=0o0r ... orng=0...).

But the concept of torsion cannot be axiomatized in a first-order
language. Infinitary logic can express the concepts of k—freeness,
k—purity, < k—generatedness and so on. The paper by Barwise [3]
is an excellent introduction to the back and forth methods char-
acteristic of infinitary logic. Other useful references for infinit-
ary logics are the book by Barwise [4] and the article by Dick-
mann [12]. A typical problem in general infinitary model theory
involves determining whether there are infinitarily equivalent non-
isomorphic models in various cardinalities, [40].

Definition Two groups A and B are Lo ,—equivalent if and only
if for every sentence ¢ in Lyo,: ¢ is true in A iff ¢ is true in B.

So Lo.x—equivalent groups cannot be distinguished by a sen-
tence in the infinitary language Loo,. There is an algebraic char-
acterization of infinitary equivalence which is very useful and per-
haps more familiar.

Theorem 3.1 (Karp [27], Benda [6], Calais [9]) Two groups A
and B are L..,—equivalent if and only if there is a k—extendible
system of partial isomorphisms from A to B.
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A k—extendible system of partial isomorphisms from A to B is
a family F' of isomorphisms between subgroups of A and B which
has the k—back-and-forth property: if ¢ € F' is an isomorphism
from M; < A onto N; < B and X (respectively Y) is a subset
of A (respectively B) of cardinality less than &, then there exists
Y € F from Ms onto Ns such that My < My < A, Ny < N, < B,
¥ extends ¢ and X (V') is a subset of My (N»).

Using this algebraic concept, it is easy to check for example
that any two uncountable free groups are L.,,—equivalent. k—
extendible systems are a natural generalization of Cantor’s tech-
nique for showing that there is (up to isomorphism) exactly
one unbounded dense countable linear order, namely the linearly
ordered set of the rational numbers [3]. Indeed, for countable
groups, infinitary equivalence and isomorphism are synonymous:

Theorem 3.2 (Scott [39]) If A and B are countable L,—
equivalent groups, then A and B are isomorphic.

The infinitary model theory of abelian groups was intensively
studied in the 1970’s by Barwise, Eklof, Fischer, Gregory, Kueker,
and Mekler (see [5, 16, 17, 23, 28] for example). One of the first
important results is due to Eklof, who succeeded in determining
which groups are infinitarily equivalent to free groups.

Definition A subgroup A of G is k—pure if for every subgroup B
such that A < B < G and B/A is < k—generated (i.e. generated
by fewer than x elements), A is a direct summand of B.
Theorem 3.3 (Eklof [16]) A group G is Loos—equivalent to a
free group if and only if every < k—generated subgroup of G is
contained in a free, k—pure subgroup of G.

For the purposes of this exposition, it is sufficient to know the
following corollaries.

Corollary 3.4 A group G is Ly, —equivalent to a free group iff
every subgroup of G of finite rank is free.

Eklof used this result to deduce a very famous criterion for
freeness in countable groups:

Corollary 3.5 (Pontryagin’s Criterion [35]) A countable group is
free iff every subgroup of finite rank is free.
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Proof: Apply Scott’s Theorem 3.2 to Corollary 3.4. =

Corollary 3.6 (Kueker) A group is L.,—equivalent to a free
group iff it is wy —free.

Now we can return to the Baer-Specker group P and see what
these facts tell us.

Corollary 3.7 (Keisler-Kueker) The Baer-Specker group P is
Lo, —equivalent to a free group. The class of free groups is not
definable in Lo, .

Corollary 3.8 (Eklof [16]) The group P is not L., —equivalent
to a free group.

Since free groups are slender, it follows too from Corollary
3.7 that the class of slender groups is not definable in Ly, . It
might be tempting to conjecture that P is not L., —equivalent
to a slender group. Another possible suggestion is that P is not
Loose—equivalent to a slender group. Mekler showed that if k is a
strongly compact cardinal, then the class of free groups is definable
in L. This prompts the question whether the class of slender
groups is definable in Lo if « is strongly compact. Eklof and
Mekler have developed applications of other generalized logics to
problems of abelian group theory in the papers [18] and [19].

4. The lattice of subgroups of P

The broad thrust in this section is to describe some recent research
on the complexity of the lattice of subgroups of P. One way to
measure this complexity is to study what sorts of groups can be
embedded into P. Very generally, the natural questions often have
the form whether there are families of maximal possible size of
subgroups of P which are strongly different (non-isomorphic) in
some precisely defined sense.

An example of this type of theorem in the context of general
abelian groups is the following.

Theorem 4.1 (Eklof, Mekler and Shelah [21]) Under various set-
theoretic hypotheses, there exist families of maximal possible size
of almost free abelian groups which are pairwise almost disjoint
(the intersection of any pair contains no non-free subgroup).
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There is an inverse correlation between the size of the family

and the strong difference of its members. If one considers families
of pure subgroups of P and takes the notion of strong difference to
mean that the only homomorphisms between any pair are those of
finite rank, then it is possible to prove the existence of a strongly
different family of maximal size.
Theorem 4.2 (Corner and Goldsmith [10]) Let D be the subgroup
of P containing S such that D/S is the divisible part of P/S.
Let ¢ = 2¥. There exists a family C consisting of 2¢ pure sub-
groups G of D with D/G rank—1 divisible where each G is slender,
essentially-indecomposable, essentially-rigid with End(G) = Z +
Eo(G), where Ey(G) is the ideal of all endomorphisms of G whose
images have finite rank.

A similar type of question is the following: does there exist a
family of 2¢! non-isomorphic pure subgroups of P, each of cardin-
ality wy, such that the intersection of any pair is free? The answer
is positive.

Theorem 4.3 (Shelah and Kolman [41]) There exists a family
{Gy : a < 291} of pure subgroups of P such that

(1) each G, has cardinality ws;

(2) if @ # B, then G, N Gg Is free.

The question whether certain classes of group can be embed-
ded in P sometimes leads to independence results. Recall that a
group G is wi—separable if every countable subset of G is contained
in a free direct summand of G.

Theorem 4.4 (Dugas and Irwin [14]) Embeddability of wi—
separable groups of cardinality wy in P is independent of ZFC.

Reflexive subgroups of P have also been studied in some
depth. The following result was known for many years under the
additional assumption of the Continuum Hypothesis.

Theorem 4.5 (Ohta [34]) There exists a non-reflexive dual sub-
group of P.

The variety displayed in this selection of results on the Baer-
Specker group P illustrates how this easily definable abelian group
is a source of interesting research problems whose solutions often



[9]

[10]

[11]
[12]

[13]

[14]

A The Baer-Specker Group 21

reveal unexpected connections with problems in other domains of
mathematics.

References

R. Baer, Abelian groups without elements of finite order, Duke Math. J.
3 (1937), 68-122.

T. Bartoszynski, Additivity of measure implies additivity of category,
Trans. Amer. Math. Soc. 281 (1984), 209-213.

J. Barwise, Back and forth through infinitary logic, pp.5-33 in: M.
Morley (ed.), Studies in Model Theory, 1975.

J. Barwise, Admissible Sets and Structures. Springer-Verlag: Berlin,
1975.

J. Barwise and P. C. Eklof, Infinitary properties of abelian torsion
groups, Ann. Math. Logic 2 (1970), 25-68.

M. Benda, Reduced products and non-standard logics, J. Sym. Logic
34 (1969), 424-436.

S. Ben-David, On Shelah’s compactness of cardinals, Israel J. Math. 31
(1978), 34-56.

A. Blass, Cardinal characteristics and the product of countably many
infinite cyclic groups, J. Algebra 169 (1994), 512-540.

J. P. Calais, La méthode de Fraissé dans les langages infinis, C. R.
Acad. Sci. Paris 268 (1969), 785-788.

A. L. S. Corner and B. Goldsmith, On endomorphisms and automorph-
isms of some pure subgroups of the Baer-Specker group, pp.69-78 in:
R. Goebel et al. (eds.), Abelian group theory and related topics, Con-
temp. Math. 171 (1994).

K. J. Devlin, Constructibility. Springer-Verlag: Berlin, 1984.

M. Dickmann, Larger infinitary languages, Chapter IX in: J. Barwise
and S. Feferman (eds.), Model-theoretic Logics. Springer-Verlag: Ber-
lin, 1985.

E. van Douwen, The integers and topology, pp.111-167 in: K. Kunen
and J. E. Vaughan (eds.), Handbook of Set-theoretic Topology. North-
Holland: Amsterdam, 1984.

M. Dugas and J. Irwin, On pure subgroups of cartesian products of
integers, Results in Math. 15 (1989), 35-52.



[15]

[16]
[17)
[18]
[19]
[20]
[21]
[22]
23]
[24]
[25]

[26]
[27]

28]
[29]
[30]
[31]

[32]

22 IMS Bulletin 40, 1998 I

K. Eda, A note on subgroups of ZN, pp.371-374 in: R.Goebel et al.
(eds.), Abelian Group Theory. Lecture Notes in Mathematics 1006.
Springer-Verlag: Berlin, 1983.

P. C. Eklof, Infinitary equivalence of abelian groups, Fund. Math. 81
(1974), 305-314.

P. C. Eklof and E. R. Fisher, The elementary theory of abelian groups,
Ann. Math. Logic 4 (1972), 115-171.

P. C. Eklof and A. H. Mekler, Infinitary stationary logic and abelian
groups, Fund. Math. 112 (1981), 1-15.

P. C. Eklof and A. H. Mekler, Categoricity results for Lo..—free algeb-
ras, Ann. Pure and Appl. Logic 37 (1988), 81-99.

P. C. Eklof and A. H. Mekler, Almost Free Modules. North-Holland:
Amsterdam, 1990.

P. C. Eklof, A. H. Mekler and S. Shelah, Almost disjoint abelian groups,
Israel J. Math. 49 (1984), 34-54.

L. Fuchs, Infinite Abelian Groups, Vol. I. Academic Press: New York,
1970.

J. Gregory, Abelian groups infinitarily equivalent to free groups, Notices
Amer. Math. Soc 20 (1973), A-500.

G. Heinlein, Vollreflexive Ringe und schlanke Moduln, doctoral disser-
tation, Univ. Erlangen, 1971.

W. Hodges, In singular cardinality, locally free algebras are free,
Algebra Universalis 12 (1981), 205-259.

T. Jech, Set Theory. Academic Press: New York, 1978.

C. Karp, Finite quantifier equivalence, pp.407-412 in: J. Addison et al.
(eds.), The Theory of Models. North-Holland: Amsterdam, 1965.

D. W. Kueker, L., —elementarily equivalent models of power w1, pp.
120-131 4n: Logic Year 1979-80, Lecture Notes in Mathematics 859.
Springer-Verlag: Berlin, 1981.

K. Kunen, Set Theory. North-Holland: Amsterdam, 1980.

M. Magidor and S. Shelah, When does almost free imply free?, J. Amer.
Math. Soc. 7 (1994), 769-830.

D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math.
Logic 2 (1970), 143-178.

A. W. Miller, Additivity of measure implies dominating reals, Proc.
Amer. Math. Soc. 91 (1984), 111-117.



[33]
[34]

[35]
[36]

(37]

[38]

(39]

[40]
[41]
[42]

[43]

[44]

= The Baer-Specker Group 23

R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73.

H. Ohta, Chains of strongly non-reflexive dual groups of integer-valued
continuous functions, Proc. Amer. Math. Soc. 124 (1996), 961-967.

L. S. Pontryagin, The theory of topological commutative groups, Ann.
Math. 35 (1934), 361-388.

J. Raisonnier and J. Stern, The strength of measurability hypotheses,
Israel J. Math. 50 (1985), 337-349.

F. Rothberger, Fine Aequivalenz zwischen der Kontinuumhypothese
und der Existenz der Lusinschen und Sierpinskischen Mengen, Fund.
Math. 30 (1938), 215-217.

S. A. Saxon and L. M. Sdnchez-Ruiz, Barrelled countable enlargements
and the bounding cardinal, J. London Math. Soc. 53 (1996), 158-166.

D. Scott, Logic with denumerably long formulas and finite strings of
quantifiers, pp.329-341 in: J. Addison et al. (eds.), The Theory of
Models. North-Holland: Amsterdam, 1965.

S. Shelah, Existence of many L.,)—equivalent, non-isomorphic models
of T of power A, Ann. Pure and Appl. Logic 34 (1987), 291-310.

S. Shelah and O. Kolman, Almost disjoint pure subgroups of the Baer-
Specker group, submitted.

E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae
Math. 9 (1950), 131-140.

O. Spinas, Cardinal invariants and quadratic forms, pp.563-581 in:
H. Judah (ed.), Set Theory of the Reals. Israel Mathematical Con-
ference Proceedings (Gelbart Research Institute, Bar-Ilan University),
1993.

J. E. Vaughan, Small uncountable cardinals and topology, pp.195-218
in: J. van Mill and G. M. Reed (eds.), Open Problems in Topology.
North-Holland: Amsterdam, 1990.

Eoin Coleman,

King’s College London,

Strand,

London WC2R 2LS,

England

email: okolman@member.ams.org



