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It is a curious fact that, given any square matrix with entries from
a given field, it is possible to produce an invertible matrix simply
by subtracting 1 from some of the diagonal entries of the matrix.
(There is of course nothing special about 1 here; any non-zero
member of the field could be used.) An inductive proof is given in
Proposition 1 below. The proof is effected by playing off the two
idempotents of the field against one another.

Proposition 1. Suppose n is a natural number and A is an n xn
matrix. Then there exists a diagonal idempotent n X n matrix ()
such that A — @ is invertible.

Proof: The result is trivial if n = 1. Suppose it is true for n =
« .
m > 1and let ( .V _]:_ P) represent an arbitrary (m+1)x(m+1)

matrix, where « is a scalar, f is a 1 X m matrix, z is an m X 1
matrix, V' is an m xm invertible matrix and P is an m xm diagonal
idempotent matrix. Note that

(2 vip) = V)G 2= V)0 »)
Both (0 0) and (1 0) are diagonal idempotent matrices;

0 P 0 P

moreover since the determinants of the matrices (a ; 1 ‘J;) and

(C: ‘];) differ by the determinant of V', which is non-zero, one or

other of the matrices is invertible. It follows that the result is true
for n = m + 1, and the general result follows by induction. m]
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Let us turn now to infinite dimensions, where we shall use the
notation £(X, W) to denote the set of linear operators from any
linear space X to any linear space W and abbreviate this to £(X)
if X = W. The following result is well known.

Proposition 2. Suppose Y and X are linear spaces over the
same field and T € L(Y & X) is represented matricially by T =
(g‘ 5) where A € L(Y), B € L(X,Y), C € L(Y,X) and
V € L(X). Suppose V is invertible in L(X); then T is invertible
if and only if A — BV ~'C is invertible in L(Y).

Proof: Tt is easy to check that if A— BV ~'(C is not invertible then
T is not invertible. If A — BV ~1C is invertible, we set J € L(Y)
to be its inverse; then a short calculation will confirm that

( J —JBV ! )
-v-tcg viyv-ilcsBV!

is inverse to T'. O

When Y is finite dimensional, the condition of Proposition 2
is, of course, equivalent to det(4 — BV ~1C) # 0, which reduces
to A # BV 1C when Y is one dimensional. This can be used
instead of the determinant argument in Proposition 1 and might
lead us to believe that a statement analogous to Proposition 1
is true for operators on infinite dimensional spaces. Specifically,
suppose X is a linear space, & = {e; : i € I} is any basis for
X and T € £(X); is it in general possible to find an idempotent
Q € L(X) with Qe; € {e;,0} for each ¢ € I such that T'— @ is
invertible? The answer is no, and the reader can easily verify the
impossibility when I is the set of natural numbers and T is the
unilateral shift, i.e., when T satisfies the equations T'e; = e;41 for
each i € N.

What happens when we drop the diagonal requirement? It
was upon hearing from Tom Laffey that it has recently been proved
that every operator on a space of countable dimension can be per-
turbed by an idempotent to produce an invertible operator that
my interest in the question was aroused. The condition of count-
ability is unnecessary; in Proposition 3 below we give a proof that
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the perturbation is possible for every operator on any linear space.
It might be of interest to note that the proof of Proposition 3 is
motivated by that of Proposition 1; induction has been replaced
by Zorn’s lemma and we again use the trick of playing off the zero
against, the identity, though not with the same degree of ostenta-
tion.

Proposition 3. Let X be a linear space over a field F. Suppose
that T € L(X), the algebra of linear operators on X. Then there
exists P € L(X), with P = P2, such that T — P is invertible in
L(X).

Proof: Let S denote the set of all ordered pairs (M, Q) where
M is a subspace of X invariant under T, Q?> = Q € L(M),
(T — Q)M = M and Ty — @ is injective, where Ty denotes the
restriction of T to M. Note that S # () since ({0},0) € S.

Define a partial ordering on S by setting (M;, Q;) < (M;, Q;)
whenever both are in S, M; C M; and @); is the restriction of @;
to M,

Suppose {(M;,Q;) : i € I} is a totally ordered subset of S.
Then @ is well-defined in L(|J M;) by setting Qz = Q;x (i €
I,z € M;), and it is easy to check that (| M;, Q) € S and that
(M;,Q;) < (UM;,Q) for all i € I. Tt follows from Zorn’s Lemma
that there exists a maximal element (V,P) in S. We claim that
Y =X.

Firstly, suppose there were to exist € X\Y such that Tz €
Y. Then we could set Pz = x and extend P linearly to Y @ Fz. It
is an easy matter to check that we should then have (Y ® Fx, P) €
S, contradicting maximality of (Y, P).

Secondly suppose there were to exist a polynomial p with non-
zero constant term and a vector z € X\Y such that p(T)z € Y;
then we might assume p and z to satisfy these criteria with the
degree m of p being the least possible for any such arrangement.
It would follow that {T*z : 0 < k < m} was a linearly independent,
set and that the subspace W of X spanned by it satisfied WNY =
{0}. We could set P =0 on W and extend P linearly to W ¢ Y.
Using the fact that the constant term of p was specified to be non-
zero, it is easy to check that we should then have (Y & W, P) € S,
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again contradicting maximality of (Y, P).

Thirdly suppose there were to exist # € X\Y such that
p(T)(z) € X\Y for every non-zero polynomial p. Then certainly
{z,Tx,T?z,...} would form a linearly independent set. Letting
V' denote the subspace of X spanned by these vectors, we could
define @Q to be the linear operator on V for which QT?"z = T?"x,
and QT?" 'tz = T?"*2x — T?"z, (n > 0). Then we should have
Q? = @ and it is easy to check that Ty + Iy — @ would be inverse
to Ty — @Q in L(V), where Iy would denote the identity oper-
ator on V and Ty the restriction of T to V. It would follow that
YaoV,PdQ) €S, yet again contradicting the maximality of
(Y, P).

We must conclude that Y = X. Then T — P is bijective and
therefore invertible in £(X). o

In conclusion, let me add one observation which might be of
interest. This is that, in many cases, we must look for a perturb-
ing idempotent with infinite range. Indeed, if the index ind(T") of
an operator 7' is defined to be the difference between the dimen-
sion of its kernel and the co-dimension of its range whenever these
quantities are finite, it can be shown that ind(T'+ F') = ind(T") for
every operator of finite rank F. (The reader who is not familiar
with this result might like to while away a little time in providing a
proof.) Since every invertible operator has zero index and the uni-
lateral shift has index —1, it is easy to check that the observation
is correct.
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