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1. Introduction

It is well known that the ring of linear transformations of a �nite

dimensional vector space is simple, i.e. it has no non{trivial proper

two{sided ideals. It is, perhaps, not so well known that the (two{

sided) ideals in the ring of linear transformations of an in�nite

dimensional vector space can be characterized by a single cardinal

invariant, [1]. It is therefore reasonably natural to ask if there is a

generalization of Baer's result to ideals in the endomorphism ring

of a wider class of modules. The purpose of this present work is

to explore this possibility.

A �rst generalization is to replace the underlying �eld of the

vector space by a ring. A natural extension of the concept of a

�eld is a discrete valuation ring since a discrete valuation ring

modulo its Jacobson radical is a �eld. Recall (see e.g. [5]) that

R is a discrete valuation ring if R is a principal ideal ring with

exactly one maximal ideal or, alternatively, with one prime element

p. In particular the ring of p{adic rationals, Z

p

, is a discrete

valuation ring and the reader may replace all references to discrete

valuation rings with the p{adic rationals without any serious loss

in generality. Also, recall that if E is a ring then the Jacobson

radical of E is de�ned to be the intersection of all maximal ideals

of E. It is well known that this is equivalent to the set of all

elements x 2 E such that rxs is quasi{regular for all r and s in

E, i.e. those elements x for which 1� rxs is a unit.

Since a vector space over a �eld F is a free F{module, an

obvious question to ask is whether a corresponding characteriza-

tion of ideals in the endomorphism ring of a free module over a
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discrete valuation ring exists. We address this problem in x3 and

obtain Baer's Theorem for vector spaces as a corollary to our main

result Theorem 3.3.

Whilst free modules over a discrete valuation ring are an obvi-

ous generalization of vector spaces it is, perhaps, not so obvious

that complete modules over a complete discrete valuation ring R

have many similar properties to vector spaces (cf. [4]). Recall

that a complete discrete valuation ring is a discrete valuation ring

which is complete in its p{adic topology (i.e. the linear topology

with basis of neighbourhoods of 0 given by p

n

R, n � 0), where p

is the only prime element of R. In x4 we discuss the ideal structure

of the endomorphism ring of such modules and achieve a complete

characterization modulo the Jacobson radical.

We conclude this introduction by reviewing a number of

standard concepts in module/abelian group theory. If R is dis-

crete valuation ring with prime element p then we say that an R{

submodule H of the R{module G is pure in G if H \ p

n

G = p

n

H

for all n � 0. If we consider the module G as a topological module

furnished with the p{adic topology (i.e. a basis of neighbourhoods

of 0 is given by p

n

G, n � 0), then H is pure in G precisely if

the p{adic topology on H coincides with the induced subspace

topology. Also an R{module D is divisible if given any d 2 D

we can solve the equation p

n

x = d in D; a module is reduced if

it has no non{trivial divisible submodules. (It is well known that

a torsion{free divisible R{module is a direct sum of copies of the

quotient �eld Q of R.) Notice that if H � G then G=H divisible

is equivalent to H being dense in the p{adic topology on G.

Finally note that maps are written on the right and the word

ideal will always mean a two{sided ideal.

2. Preliminaries

In this section we state a few well{known results on modules over

complete discrete valuation rings. Throughout the section R shall

be a complete discrete valuation ring with prime element p. In

considering torsion{free R{modules, the concept of a basic sub-

module is useful; a submodule B of a torsion{free R{module A is

called a basic submodule of A if B is a free R{module such that
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A=B is divisible and B is pure in A.

The �rst lemma is due to R. B. War�eld, [8]; it tells us how

to obtain a basic submodule from the R=pR{vector space A=pA.

Lemma 2.1 Let A be a torsion{free R{module and � : A �!

A=pA the natural epimorphism. Let fx

i

j i 2 Ig be an R=pR{

basis of A=pA and choose y

i

2 A (i 2 I) such that y

i

� = x

i

. Then

the submodule B generated by fy

i

j i 2 Ig is a basic submodule of

A. Moreover every basic submodule of A arises in this way.

The lemma ensures the existence of a basic submodule B and

the uniqueness of its rank rk(B) where rk(B) is the usual rank of a

free R{module. Hence we may de�ne the rank of a torsion{free R{

module A as the rank of its basic submodule, i.e. rk(A) = rk(B).

Since the divisibility of the quotient module A=B is equivalent to

the density of B in A in the p{adic topology we obtain the following

well{known characterization of complete reduced torsion{free R{

modules; (2) is essentially due to I. Kaplansky, [5], and (3) is

similar to a result proved for p{groups by H. Leptin, [6].

Proposition 2.2 The following properties of a reduced torsion{

free R{module A are equivalent:

(1) A is complete.

(2) If B is a basic submodule of A, then A is the completion of B.

(3) If B is a basic submodule of A, then every R{homomorphism

B �! A extends uniquely to an R{endomorphism of A.

Next we state a few facts on complete reduced torsion{free

R{modules; the proofs can be found in [2], [5], and [7].

Lemma 2.3 Let A and A

0

be complete reduced torsion{free R{

modules.

(1) If � is an endomorphism of A, then both ker � and im � are

complete.

(2) If S is a pure submodule of A and is complete, then S is a

direct summand of A.

(3) A is isomorphic to A

0

if and only if rk(A) = rk(A

0

).

We �nish this section with a standard result on the Jacobson

radical of the endomorphism ring of a complete reduced torsion{

free R{module; a proof may be found in [7].
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Proposition 2.4 Let E denote the endomorphism ring End(A) of

the complete reduced torsion{free R{module A. Then

(1) J(E) = pE = Ep;

(2) E=J(E)

�

=

End

R=pR

(A=pA);

(3) J(E) = f� 2 E j A� � pAg.

3. Free modules over discrete valuation rings

Here we shall discuss ideals of endomorphism rings of free R{

modules over discrete valuation rings R. We will deduce Baer's

Theorem on vector spaces as a corollary to our main result. Before

we restrict our attention to modules over discrete valuation rings

we prove a result (Proposition 3.2) which is true for modules in

general. The de�nition of a direct endomorphism will be useful.

An endomorphism � of A is called k{direct [im{direct ] if ker(�)

[Im(�)] is a direct summand of A, and � is said to be a direct

endomorphism if it is both k{direct and im{direct. First we need:

Lemma 3.1 If � is a direct endomorphism of A, then there exists

an endomorphism � of A such that

(a) �� and �� are both idempotent, and

(b) Im(�) = Im(��), Im(��) = Im(�), ker(�) = ker(��), and

ker(��) = ker(�):

Proof: By our assumption, we may write

A = Im(�)� S and A = ker�)� T:

Then the restriction �

T

: T �! Im(�) is an isomorphism. Hence

there exists � : Im(�) �! T such that

�(�

T

) = id

Im(�)

and (�

T

)� = id

T

:

Now let � : A �! A be de�ned by

�

Im(�)

= � and ker � = S:

We shall see that � is the required endomorphism.

First we show that �� and �� are idempotent. Let x be an

arbitrary element of A. Then

x(��)

2

= x���� = x���� = x��;
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since �� is the identity on Im(�). So (��)

2

= ��. Now let x =

a� + s 2 A, where a 2 A and s 2 S. Then

x(��)

2

= x���� = a����� = (a�)�� = x��:

Thus, (��)

2

= ��, as required.

To prove part (b) we make the following calculations:

Im(��) = A�� = A��� = A��� = A� = Im(�);

Im(��) = A�� = A�� = T = Im(�);

ker(��) = fx 2 Ajx�� = 0g = fx 2 Ajx� 2 ker(�)g

= fx 2 Ajx� 2 ker(�) \ T = 0g = ker(�);

ker(��) = fx 2 Ajx�� = 0g = fx 2 Ajx�� = 0g

= fx 2 Ajx� = 0g = ker(�):

This completes the proof.

Proposition 3.2 Let I be an ideal of the endomorphism ring

End(A) of A such that all � 2 I are k{direct. Moreover assume

that I contains a direct endomorphism �. If � is an im{direct

endomorphism of A such that Im(�) is isomorphic to a direct

summand of Im(�), then � belongs to the ideal I.

Proof: Let I , �, and � be as above. Then we can write

A = Im(�) � S = Im(�) � T and Im(�) = R � C;

where R

�

=

�

0

Im(�): We extend �

0

to an endomorphism � of A by

�

R

= �

0

and �

C�S

= 0:

Now consider the endomorphism �� 2 I . Since �� belongs to I it

is k{direct. Moreover,

A�� = (R � C)� = R� = R�

0

= Im(�);

which is a direct summand of A. Hence �� is direct and we may

apply Lemma 3.1 to ��. Thus there exists � 2 End(A) such that
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��� is an idempotent and Im(���) = Im(��) = Im(�). Therefore,

for any x 2 A, there is y 2 A with x� = y���. Hence,

(x�)��� = y(���)

2

= y��� = x�;

which implies that � = ���� is in I , since I is an ideal.

Now let R be a discrete valuation ring and A a free R{module.

The next theorem tells us something about ideals I containing a

direct endomorphism of a given rank. Recall that the rank of an

endomorphism � is de�ned to be the rank of the free R{module

Im(�).

Theorem 3.3 Let I be an ideal of End(A). If I contains a direct

endomorphism of rank �, then I contains all endomorphisms of

rank less than or equal to �.

Proof: First we show that all endomorphisms of A are k{direct.

Let � be any endomorphism of A. Then A= ker(�)

�

=

Im(�),

where Im(�) is free and hence projective. Thus there exists a

homomorphism � : Im(�) �! A with �� = id

A

. We show that

A = ker(�)� (Im(�))�. Let x 2 ker(�) \ (Im(�))�. Then there is

y 2 A such that x = y�� and

0 = x� = y��� = y�;

since �� = id

A

, and thus x = y�� = 0� = 0. Also,

a = a��+ (a� a��); with (a� a��)� = a�� a��� = 0

for any a 2 A, again since �� = id

A

. Thus ker(�) is a direct

summand of A, implying that � is k{direct.

Now let � 2 I be a direct endomorphism of A of rank �, i.e.

A = Im(�) � S and rk(Im(�)) = �. Next we prove that all direct

(im{direct) endomorphisms � with rk(�) � � are elements of I .

Let � be such an endomorphism. Then

A = Im(�)� T and rk(�) = rk(Im(�)) � �:

Since Im(�) and Im(�) are free R{modules with rk(Im(�)) �

rk(Im(�)), there exists a direct summand of Im(�) which is iso-

morphic to Im(�). Thus we may apply Proposition 3.2, which

implies that � 2 I .
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Finally let � be any endomorphism of A with rk(�) � �.

Since � is k{direct, we may express A as A = ker(�) � C, where

C

�

=

A= ker(�)

�

=

Im(�). Thus

rk(C) = rk(�) � �:

Let � be the projection of A onto C with ker(�) = ker(�). Obvi-

ously � is a direct endomorphism with rk(�) = rk(C) � �. Thus

� 2 I . Hence � = �� is an element of I and this completes

proof.

Note that the previous theorem holds for free modules over

any ring R having the property that submodules of free modules

are free; e.g. all principal ideal domains have this property. So, in

particular, Theorem 3.3 holds for a �eld. In this case we get even

more, namely, we can characterize the ideals of the endomorphism

ring End(A) of a vector space A.

Corollary 3.4 Let A be a vector space over a �eld R. Then

the only ideals of End(A) are the ideals E

�

(� � @

0

) de�ned by

E

�

= f� 2 End(A)j rk(�) < �g.

Proof: Note �rst that all endomorphisms of a vector space A are

direct. Hence, in this case Theorem 3.3 reads as:

If � is an element of an ideal I, then I contains every endomorph-

ism � with rk(�) � rk(�).

It is easy to check that, for each � � @

0

, E

�

is an ideal of End(A).

Write E

0

for E

@

0

, the ideal of all �nite rank endomorphisms.

Now, let I 6= 0 be an arbitrary ideal which is properly con-

tained in End(A). Since I is non{trivial, there exists a non{zero

endomorphism � 2 I . If � is of in�nite rank then, obviously,

E

0

� I . So suppose � is of �nite rank n � 1. In this case, I con-

tains all endomorphisms of rank less than or equal to n. Thus if

e is an element of a given basis B, then I contains the projection

�

e

onto the one{dimensional subspace generated by e along the

subspace generated by the remaining basis elements. Therefore

all �nite sums

P

k

i=1

�

e

i

(e

i

2 B) of such projections belong to I

and hence, for any k 2 N, there is an endomorphism of rank k

belonging to I . This implies that all endomorphisms of �nite rank

are contained in the ideal I and so in either case we deduce that
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E

0

� I . Moreover E

�+1

� I whenever � 2 I for some � of rank �.

Let �+1 be the smallest cardinal with E

�+1

6� I (we may consider

a successor cardinal since the ideals E

�

form a smooth increasing

chain). Then all � 2 I have rank less than � and hence I � E

�

.

Also E

�

� I by the minimality of � + 1, thus I = E

�

.

4. Complete modules over complete discrete valuation

rings

In the last section we turn our attention to complete reduced

torsion{free R{modules A over complete discrete valuation rings

R. Recall that the rank of a reduced torsion{free R{module over

a complete discrete valuation ring is the rank of a basic submodule

B of A (see Section 2). Again we de�ne the rank of an endomorph-

ism as the rank of its image. Moreover we call an endomorphism

� of A a pure endomorphism if Im(�) is a pure submodule of A.

First we present a result which is similar to Theorem 3.3:

for a complete reduced torsion{free R{module A over a complete

discrete valuation ring R we can prove

Theorem 4.1 Let I be an ideal of End(A). If I contains a pure

endomorphism � of rank � then I contains all endomorphisms �

with rk(�) � �.

Proof: Firstly we show that any endomorphism � of A is k{direct.

By Lemma 2.3 it su�ces to show that ker(�) is pure in A for any

� 2 End(A). If x = p

n

a with x 2 ker� and a 2 A, we have

(p

n

a)� = x� = 0. Hence p

n

(a�) = 0, which implies a� = 0 since

A is torsion{free. So,

p

n

A \ ker(�) = p

n

ker(�);

that is, ker(�) is pure in A and thus � is k{direct for any � 2

End(A).

Let � be a pure endomorphism in I and assume �rst that �

is a pure endomorphism of A. Then, by Lemma 2.3, both Im(�)

and Im(�) are direct summands of A, i.e. we may write A as

A = Im(�) � S = Im(�)� T:
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If B

�

, B

�

are basic submodules of Im(�) and Im(�) respectively,

then there exists a direct summand D of B

�

of rank

rk(�) = rk(B

�

) � rk(B

�

) = rk(�);

which is isomorphic to B

�

. We may extend this isomorphism to

an isomorphism of the completions Im(�) and

b

D of B

�

and D

respectively. Moreover, since D is pure in B

�

, the completion

b

D

is pure in Im(�), hence

b

D is a direct summand of Im(�) which is

isomorphic to Im(�). Thus we may apply Proposition 3.2 which

implies that � 2 I . We have shown that all pure endomorphisms

� with rk(�) � rk(�) are contained in I . So, in particular, all

idempotents � with rk(�) � rk(�) belong to I .

Finally, let � be any endomorphism of A with rk(�) � rk(�).

Then A = ker(�) � C, where C

�

=

A= ker(�)

�

=

Im(�), and so

rk(C) = rk(�). If � denotes the projection onto C with ker(�) =

ker(�) then � 2 I since

rk(�) = rk(C) = rk(�) � rk(�):

Therefore � = �� is an element of I .

The previous theorem, however, does not characterize the

ideals of End(A) since there are ideals which do not contain a

pure endomorphism, for example, pEnd(A). Instead of using sim-

ilar arguments as in the case of free R{modules we shall now use

Corollary 3.4 on vector spaces to determine the ideals I of End(A)

modulo their Jacobson radicals. First we consider the Jacobson

radicals J(E

�

) of the ideals E

�

where

E

�

= f� 2 End(A)j rk(�) < �g

for � � @

0

.

Lemma 4.2 Let E

�

be an ideal as de�ned above. Then the Jac-

obson radical J(E

�

) coincides with the ideal pE

�

.

Proof: First we show that pE

�

= E

�

\pEnd(A). Let p� 2 E

�

with

� 2 End(A). Then A = A

1

� ker(p�) and rk(A

1

) < �. Since A is

torsion{free, ker(p�) = ker(�). Hence A� = A

1

� and rk(�) < �.
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Thus � 2 E

�

. By Proposition 2.4, pEnd(A) = J(End(A)) and so

it follows that

E

�

\ pEnd(A) = E

�

\ J(End(A)):

But E

�

\ J(End(A)) = J(E

�

) since E

�

is an ideal of End(A).

Therefore

pE

�

= E

�

\ pEnd(A) = E

�

\ J(End(A)) = J(E

�

):

This completes the proof.

Next we will show that E

�

=J(E

�

) is isomorphic to a corres-

ponding ideal of the vector space A=pA over the �eld R=pR.

Lemma 4.3 For any cardinal � � @

0

, E

�

=J(E

�

)

�

=

E

�

(A=pA).

Proof: Every � 2 E

�

induces an R=pR{endomorphism on A=pA

since pA� � pA. So we may de�ne a map

� : E

�

�! End

R=pR

(A=pA)

by

�� = � : A=pA �! A=pA with (a+ pA)� = a�+ pA:

It is easy to check that � is a ring homomorphism. Moreover, the

kernel of � is pE

�

= J(E

�

). We show that Im(�) = E

�

(A=pA).

Certainly, Im(�) � E

�

(A=pA) since the vector space rank of an

endomorphism � of A=pA cannot be greater than rk(�). Now let

� : A �! A=pA and � : R �! R=pR be the endomorphisms

de�ned by

a� = a+ pA and r� = r + pR:

Let us consider an endomorphism � of A=pA of rank less than �.

We can pick an R=pR{basis fx

i

j i 2 Ig of A=pA such that x

i

� = 0

for all but less than � of the x

i

. Choose y

i

2 A such that y

i

� = x

i

for all i 2 I . Then the module generated by fy

i

j i 2 Ig is a basic

submodule of A by Lemma 2.1. However

x

i

� =

X

i2I

r

ij

x

j

;
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where r

ij

2 R=pR with r

ij

= 0 for all but �nitely many j. Choose

s

ij

2 R with s

ij

� = r

ij

and s

ij

= 0 whenever r

ij

= 0. Finally,

de�ne � : B �! B by

y

i

� =

X

i2I

s

ij

y

j

;

so that y

i

� = 0 for all but less than � of the y

i

. Thus the unique

extension of � to an endomorphism of A has rank rk(B�) < �

and satis�es �� = �. Hence � : E

�

�! E

�

(A=pA) is surjective,

with ker� = pE

�

= J(E

�

). Thus E

�

=J(E

�

)

�

=

E

�

(A=pA), as

required.

We �nish the paper with the characterization of the ideals

of the endomorphism ring of a complete reduced torsion{free R{

module A over a complete discrete valuation ring R: modulo their

Jacobson radical they are characterized by a single cardinal �.

Theorem 4.4 If I is an arbitrary ideal of the endomorphism ring

of a complete reduced torsion{free R{module A, then either I �

J(End(A)) or

I=J(I)

�

=

E

�

=J(E

�

)

�

=

E

�

(A=pA)

for some cardinal �.

Proof: Let I be any ideal of End(A). We consider the mapping

� : I �! End(A=pA) de�ned by

�� = � with (a+ pA)� = a�+ pA:

This de�nes a ring homomorphism with

ker(�) = J(I) = I \ J(End(A))

which is either equal to I (i.e. I � J(End(A))) or is properly

contained in I . In the latter case I=J(I)

�

=

K for some non{

zero ideal K of End(A=pA). Thus K = E

�

(A=pA) for some � by

Corollary 3.4. Therefore I=J(I)

�

=

E

�

=J(E

�

) by Lemma 4.3.
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