DESCRIBING IDEALS OF ENDOMORPHISM RINGS

Brendan Goldsmith and Simone Pabst

1. Introduction

It is well known that the ring of linear transformations of a finite dimensional vector space is simple, i.e. it has no non-trivial proper two-sided ideals. It is, perhaps, not so well known that the (twosided) ideals in the ring of linear transformations of an infinite dimensional vector space can be characterized by a single cardinal invariant, [1]. It is therefore reasonably natural to ask if there is a generalization of Baer's result to ideals in the endomorphism ring of a wider class of modules. The purpose of this present work is to explore this possibility.

A first generalization is to replace the underlying field of the vector space by a ring. A natural extension of the concept of a field is a discrete valuation ring since a discrete valuation ring modulo its Jacobson radical is a field. Recall (see e.g. [5]) that R is a discrete valuation ring if R is a principal ideal ring with exactly one maximal ideal or, alternatively, with one prime element p. In particular the ring of p-adic rationals, \mathbb{Z}_p , is a discrete valuation rings with the p-adic rationals without any serious loss in generality. Also, recall that if E is a ring then the Jacobson radical of E is defined to be the intersection of all maximal ideals of E. It is well known that this is equivalent to the set of all elements $x \in E$ such that rxs is quasi-regular for all r and s in E, i.e. those elements x for which 1 - rxs is a unit.

Since a vector space over a field F is a free F-module, an obvious question to ask is whether a corresponding characterization of ideals in the endomorphism ring of a free module over a

14

discrete valuation ring exists. We address this problem in §3 and obtain Baer's Theorem for vector spaces as a corollary to our main result Theorem 3.3.

Whilst free modules over a discrete valuation ring are an obvious generalization of vector spaces it is, perhaps, not so obvious that complete modules over a complete discrete valuation ring Rhave many similar properties to vector spaces (cf. [4]). Recall that a complete discrete valuation ring is a discrete valuation ring which is complete in its p-adic topology (i.e. the linear topology with basis of neighbourhoods of 0 given by $p^n R$, $n \ge 0$), where pis the only prime element of R. In §4 we discuss the ideal structure of the endomorphism ring of such modules and achieve a complete characterization modulo the Jacobson radical.

We conclude this introduction by reviewing a number of standard concepts in module/abelian group theory. If R is discrete valuation ring with prime element p then we say that an R-submodule H of the R-module G is pure in G if $H \cap p^n G = p^n H$ for all $n \geq 0$. If we consider the module G as a topological module furnished with the p-adic topology (i.e. a basis of neighbourhoods of 0 is given by $p^n G$, $n \geq 0$), then H is pure in G precisely if the p-adic topology on H coincides with the induced subspace topology. Also an R-module D is divisible if given any $d \in D$ we can solve the equation $p^n x = d$ in D; a module is reduced if it has no non-trivial divisible submodules. (It is well known that a torsion-free divisible R-module is a direct sum of copies of the quotient field Q of R.) Notice that if $H \subseteq G$ then G/H divisible is equivalent to H being dense in the p-adic topology on G.

Finally note that maps are written on the right and the word ideal will always mean a two-sided ideal.

2. Preliminaries

In this section we state a few well-known results on modules over complete discrete valuation rings. Throughout the section R shall be a complete discrete valuation ring with prime element p. In considering torsion-free R-modules, the concept of a basic submodule is useful; a submodule B of a torsion-free R-module A is called a *basic submodule* of A if B is a free R-module such that A/B is divisible and B is pure in A.

16

The first lemma is due to R. B. Warfield, [8]; it tells us how to obtain a basic submodule from the R/pR-vector space A/pA.

Lemma 2.1 Let A be a torsion-free R-module and $\pi : A \rightarrow$ A/pA the natural epimorphism. Let $\{x_i \mid i \in I\}$ be an R/pRbasis of A/pA and choose $y_i \in A$ $(i \in I)$ such that $y_i \pi = x_i$. Then the submodule B generated by $\{y_i \mid i \in I\}$ is a basic submodule of A. Moreover every basic submodule of A arises in this way. \blacksquare

The lemma ensures the existence of a basic submodule B and the uniqueness of its rank rk(B) where rk(B) is the usual rank of a free R-module. Hence we may define the rank of a torsion-free Rmodule A as the rank of its basic submodule, i.e. rk(A) = rk(B). Since the divisibility of the quotient module A/B is equivalent to the density of B in A in the p-adic topology we obtain the following well-known characterization of complete reduced torsion-free Rmodules; (2) is essentially due to I. Kaplansky, [5], and (3) is similar to a result proved for p-groups by H. Leptin, [6].

Proposition 2.2 The following properties of a reduced torsionfree R-module A are equivalent:

(1) A is complete.

(2) If B is a basic submodule of A, then A is the completion of B.

(3) If B is a basic submodule of A, then every R-homomorphism $B \longrightarrow A$ extends uniquely to an *R*-endomorphism of *A*.

Next we state a few facts on complete reduced torsion-free R-modules; the proofs can be found in [2], [5], and [7].

Lemma 2.3 Let A and A' be complete reduced torsion-free Rmodules.

(1) If θ is an endomorphism of A, then both ker θ and im θ are complete.

(2) If S is a pure submodule of A and is complete, then S is a direct summand of A.

(3) A is isomorphic to A' if and only if rk(A) = rk(A').

We finish this section with a standard result on the Jacobson radical of the endomorphism ring of a complete reduced torsionfree R-module; a proof may be found in [7].

Proposition 2.4 Let E denote the endomorphism ring End(A) of the complete reduced torsion-free R-module A. Then

(1) J(E) = pE = Ep;(2) $E/J(E) \cong \operatorname{End}_{R/pR}(A/pA);$ (3) $J(E) = \{\phi \in E \mid A\phi \subseteq pA\}.$

3. Free modules over discrete valuation rings

Here we shall discuss ideals of endomorphism rings of free R-modules over discrete valuation rings R. We will deduce Baer's Theorem on vector spaces as a corollary to our main result. Before we restrict our attention to modules over discrete valuation rings we prove a result (Proposition 3.2) which is true for modules in general. The definition of a direct endomorphism will be useful. An endomorphism μ of A is called k-direct [im-direct] if ker(μ) [Im(μ)] is a direct summand of A, and μ is said to be a direct endomorphism if it is both k-direct and im-direct. First we need:

Lemma 3.1 If σ is a direct endomorphism of A, then there exists an endomorphism η of A such that

(a) $\sigma\eta$ and $\eta\sigma$ are both idempotent, and

(b) $\operatorname{Im}(\sigma) = \operatorname{Im}(\eta\sigma)$, $\operatorname{Im}(\sigma\eta) = \operatorname{Im}(\eta)$, $\ker(\eta) = \ker(\eta\sigma)$, and $\ker(\sigma\eta) = \ker(\sigma)$.

Proof: By our assumption, we may write

$$A = \operatorname{Im}(\sigma) \oplus S \text{ and } A = \ker \sigma) \oplus T.$$

Then the restriction $\sigma_T : T \longrightarrow \operatorname{Im}(\sigma)$ is an isomorphism. Hence there exists $\tau : \operatorname{Im}(\sigma) \longrightarrow T$ such that

$$\tau(\sigma_T) = \mathrm{id}_{\mathrm{Im}(\sigma)}$$
 and $(\sigma_T)\tau = \mathrm{id}_T$.

Now let $\eta: A \longrightarrow A$ be defined by

$$\eta_{\mathrm{Im}(\sigma)} = \tau$$
 and ker $\eta = S$.

We shall see that η is the required endomorphism.

First we show that $\sigma\eta$ and $\eta\sigma$ are idempotent. Let x be an arbitrary element of A. Then

$$x(\sigma\eta)^2 = x\sigma\eta\sigma\eta = x\sigma\tau\sigma\eta = x\sigma\eta,$$

since $\tau\sigma$ is the identity on $\text{Im}(\sigma)$. So $(\sigma\eta)^2 = \sigma\eta$. Now let $x = a\sigma + s \in A$, where $a \in A$ and $s \in S$. Then

$$x(\eta\sigma)^2 = x\eta\sigma\eta\sigma = a\sigma\eta\sigma\eta\sigma = (a\sigma)\eta\sigma = x\eta\sigma$$

Thus, $(\eta \sigma)^2 = \eta \sigma$, as required.

To prove part (b) we make the following calculations:

$$\underline{\operatorname{Im}(\eta\sigma)} = A\eta\sigma = A\sigma\eta\sigma = A\sigma\tau\sigma = A\sigma = \underline{\operatorname{Im}(\sigma)};$$

$$\underline{\operatorname{Im}(\sigma\eta)} = A\sigma\eta = A\sigma\tau = T = \underline{\operatorname{Im}(\eta)};$$

$$\underline{\operatorname{ker}(\eta\sigma)} = \{x \in A | x\eta\sigma = 0\} = \{x \in A | x\eta \in \operatorname{ker}(\sigma)\}$$

$$= \{x \in A | x\eta \in \operatorname{ker}(\sigma) \cap T = 0\} = \underline{\operatorname{ker}(\sigma)};$$

$$\underline{\operatorname{ker}(\sigma\eta)} = \{x \in A | x\sigma\eta = 0\} = \{x \in A | x\sigma\tau = 0\}$$

$$= \{x \in A | x\sigma = 0\} = \operatorname{ker}(\sigma).$$

This completes the proof. \blacksquare

Proposition 3.2 Let I be an ideal of the endomorphism ring $\operatorname{End}(A)$ of A such that all $\mu \in I$ are k-direct. Moreover assume that I contains a direct endomorphism σ . If α is an im-direct endomorphism of A such that $\operatorname{Im}(\alpha)$ is isomorphic to a direct summand of $\operatorname{Im}(\sigma)$, then α belongs to the ideal I.

Proof: Let I, σ , and α be as above. Then we can write

$$A = \operatorname{Im}(\sigma) \oplus S = \operatorname{Im}(\alpha) \oplus T$$
 and $\operatorname{Im}(\sigma) = R \oplus C$,

where $R \cong_{\phi'} \operatorname{Im}(\alpha)$. We extend ϕ' to an endomorphism ϕ of A by

$$\phi_R = \phi' \text{ and } \phi_{C \oplus S} = 0$$

Now consider the endomorphism $\sigma\phi \in I$. Since $\sigma\phi$ belongs to I it is k-direct. Moreover,

$$A\sigma\phi = (R \oplus C)\phi = R\phi = R\phi' = \operatorname{Im}(\alpha),$$

which is a direct summand of A. Hence $\sigma\phi$ is direct and we may apply Lemma 3.1 to $\sigma\phi$. Thus there exists $\eta \in \text{End}(A)$ such that

19

 $\eta\sigma\phi$ is an idempotent and $\operatorname{Im}(\eta\sigma\phi) = \operatorname{Im}(\sigma\phi) = \operatorname{Im}(\alpha)$. Therefore, for any $x \in A$, there is $y \in A$ with $x\alpha = y\eta\sigma\phi$. Hence,

$$(x\alpha)\eta\sigma\phi = y(\eta\sigma\phi)^2 = y\eta\sigma\phi = x\alpha,$$

which implies that $\alpha = \alpha \eta \sigma \phi$ is in *I*, since *I* is an ideal.

Now let R be a discrete valuation ring and A a free R-module. The next theorem tells us something about ideals I containing a direct endomorphism of a given rank. Recall that the *rank* of an endomorphism σ is defined to be the rank of the free R-module Im (σ) .

Theorem 3.3 Let I be an ideal of End(A). If I contains a direct endomorphism of rank κ , then I contains all endomorphisms of rank less than or equal to κ .

Proof: First we show that all endomorphisms of A are k-direct. Let μ be any endomorphism of A. Then $A/\ker(\mu) \cong \operatorname{Im}(\mu)$, where $\operatorname{Im}(\mu)$ is free and hence projective. Thus there exists a homomorphism $\phi : \operatorname{Im}(\mu) \longrightarrow A$ with $\phi\mu = \operatorname{id}_A$. We show that $A = \ker(\mu) \oplus (\operatorname{Im}(\mu))\phi$. Let $x \in \ker(\mu) \cap (\operatorname{Im}(\mu))\phi$. Then there is $y \in A$ such that $x = y\mu\phi$ and

$$0 = x\mu = y\mu\phi\mu = y\mu,$$

since $\phi \mu = \mathrm{id}_A$, and thus $x = y \mu \phi = 0\phi = 0$. Also,

$$a = a\mu\phi + (a - a\mu\phi)$$
, with $(a - a\mu\phi)\mu = a\mu - a\mu\phi\mu = 0$

for any $a \in A$, again since $\phi \mu = id_A$. Thus ker (μ) is a direct summand of A, implying that μ is k-direct.

Now let $\sigma \in I$ be a direct endomorphism of A of rank κ , i.e. $A = \operatorname{Im}(\sigma) \oplus S$ and $\operatorname{rk}(\operatorname{Im}(\sigma)) = \kappa$. Next we prove that all direct (im-direct) endomorphisms α with $\operatorname{rk}(\alpha) \leq \kappa$ are elements of I. Let α be such an endomorphism. Then

$$A = \operatorname{Im}(\alpha) \oplus T$$
 and $\operatorname{rk}(\alpha) = \operatorname{rk}(\operatorname{Im}(\alpha)) \le \kappa$.

Since $\operatorname{Im}(\alpha)$ and $\operatorname{Im}(\sigma)$ are free *R*-modules with $\operatorname{rk}(\operatorname{Im}(\alpha)) \leq \operatorname{rk}(\operatorname{Im}(\sigma))$, there exists a direct summand of $\operatorname{Im}(\sigma)$ which is isomorphic to $\operatorname{Im}(\alpha)$. Thus we may apply Proposition 3.2, which implies that $\alpha \in I$.

Finally let ϕ be any endomorphism of A with $\operatorname{rk}(\phi) \leq \kappa$. Since ϕ is k-direct, we may express A as $A = \operatorname{ker}(\phi) \oplus C$, where $C \cong A/\operatorname{ker}(\phi) \cong \operatorname{Im}(\phi)$. Thus

$$\operatorname{rk}(C) = \operatorname{rk}(\phi) \le \kappa.$$

Let π be the projection of A onto C with $\ker(\pi) = \ker(\phi)$. Obviously π is a direct endomorphism with $\operatorname{rk}(\pi) = \operatorname{rk}(C) \leq \kappa$. Thus $\pi \in I$. Hence $\phi = \pi \phi$ is an element of I and this completes proof.

Note that the previous theorem holds for free modules over any ring R having the property that submodules of free modules are free; e.g. all principal ideal domains have this property. So, in particular, Theorem 3.3 holds for a field. In this case we get even more, namely, we can characterize the ideals of the endomorphism ring End(A) of a vector space A.

Corollary 3.4 Let A be a vector space over a field R. Then the only ideals of End(A) are the ideals E_{κ} ($\kappa \geq \aleph_0$) defined by $E_{\kappa} = \{\alpha \in \text{End}(A) | \operatorname{rk}(\alpha) < \kappa\}.$

Proof: Note first that all endomorphisms of a vector space A are direct. Hence, in this case Theorem 3.3 reads as:

If σ is an element of an ideal I, then I contains every endomorphism α with $\operatorname{rk}(\alpha) \leq \operatorname{rk}(\sigma)$.

It is easy to check that, for each $\kappa \geq \aleph_0$, E_{κ} is an ideal of $\operatorname{End}(A)$. Write E_0 for E_{\aleph_0} , the ideal of all finite rank endomorphisms.

Now, let $I \neq 0$ be an arbitrary ideal which is properly contained in End(A). Since I is non-trivial, there exists a non-zero endomorphism $\sigma \in I$. If σ is of infinite rank then, obviously, $E_0 \subseteq I$. So suppose σ is of finite rank $n \geq 1$. In this case, I contains all endomorphisms of rank less than or equal to n. Thus if e is an element of a given basis B, then I contains the projection π_e onto the one-dimensional subspace generated by e along the subspace generated by the remaining basis elements. Therefore all finite sums $\sum_{i=1}^{k} \pi_{e_i}$ ($e_i \in B$) of such projections belong to Iand hence, for any $k \in \mathbf{N}$, there is an endomorphism of rank kbelonging to I. This implies that all endomorphisms of finite rank are contained in the ideal I and so in either case we deduce that

21

 $E_0 \subseteq I$. Moreover $E_{\kappa+1} \subseteq I$ whenever $\eta \in I$ for some η of rank κ . Let $\tau + 1$ be the smallest cardinal with $E_{\tau+1} \not\subseteq I$ (we may consider a successor cardinal since the ideals E_{κ} form a smooth increasing chain). Then all $\eta \in I$ have rank less than τ and hence $I \subseteq E_{\tau}$. Also $E_{\tau} \subseteq I$ by the minimality of $\tau + 1$, thus $I = E_{\tau}$.

4. Complete modules over complete discrete valuation rings

In the last section we turn our attention to complete reduced torsion-free R-modules A over complete discrete valuation rings R. Recall that the rank of a reduced torsion-free R-module over a complete discrete valuation ring is the rank of a basic submodule B of A (see Section 2). Again we define the rank of an endomorphism as the rank of its image. Moreover we call an endomorphism α of A a pure endomorphism if $\text{Im}(\alpha)$ is a pure submodule of A.

First we present a result which is similar to Theorem 3.3: for a complete reduced torsion-free R-module A over a complete discrete valuation ring R we can prove

Theorem 4.1 Let I be an ideal of End(A). If I contains a pure endomorphism σ of rank κ then I contains all endomorphisms α with $rk(\alpha) \leq \kappa$.

Proof: Firstly we show that any endomorphism μ of A is k-direct. By Lemma 2.3 it suffices to show that ker(μ) is pure in A for any $\mu \in \text{End}(A)$. If $x = p^n a$ with $x \in \text{ker } \mu$ and $a \in A$, we have $(p^n a)\mu = x\mu = 0$. Hence $p^n(a\mu) = 0$, which implies $a\mu = 0$ since A is torsion-free. So,

$$p^n A \cap \ker(\mu) = p^n \ker(\mu),$$

that is, $\ker(\mu)$ is pure in A and thus μ is k-direct for any $\mu \in \operatorname{End}(A)$.

Let σ be a pure endomorphism in I and assume first that α is a pure endomorphism of A. Then, by Lemma 2.3, both $\text{Im}(\sigma)$ and $\text{Im}(\alpha)$ are direct summands of A, i.e. we may write A as

$$A = \operatorname{Im}(\sigma) \oplus S = \operatorname{Im}(\alpha) \oplus T.$$

If B_{α} , B_{σ} are basic submodules of $\operatorname{Im}(\alpha)$ and $\operatorname{Im}(\sigma)$ respectively, then there exists a direct summand D of B_{σ} of rank

$$\operatorname{rk}(\alpha) = \operatorname{rk}(B_{\alpha}) \le \operatorname{rk}(B_{\sigma}) = \operatorname{rk}(\sigma),$$

which is isomorphic to B_{α} . We may extend this isomorphism to an isomorphism of the completions $\operatorname{Im}(\alpha)$ and \widehat{D} of B_{α} and Drespectively. Moreover, since D is pure in B_{σ} , the completion \widehat{D} is pure in $\operatorname{Im}(\sigma)$, hence \widehat{D} is a direct summand of $\operatorname{Im}(\sigma)$ which is isomorphic to $\operatorname{Im}(\alpha)$. Thus we may apply Proposition 3.2 which implies that $\alpha \in I$. We have shown that all pure endomorphisms α with $\operatorname{rk}(\alpha) \leq \operatorname{rk}(\sigma)$ are contained in I. So, in particular, all idempotents π with $\operatorname{rk}(\pi) \leq \operatorname{rk}(\sigma)$ belong to I.

Finally, let ϕ be any endomorphism of A with $\operatorname{rk}(\phi) \leq \operatorname{rk}(\sigma)$. Then $A = \operatorname{ker}(\phi) \oplus C$, where $C \cong A/\operatorname{ker}(\phi) \cong \operatorname{Im}(\phi)$, and so $\operatorname{rk}(C) = \operatorname{rk}(\alpha)$. If π denotes the projection onto C with $\operatorname{ker}(\pi) = \operatorname{ker}(\phi)$ then $\pi \in I$ since

$$\operatorname{rk}(\pi) = \operatorname{rk}(C) = \operatorname{rk}(\phi) \le \operatorname{rk}(\sigma).$$

Therefore $\phi = \pi \phi$ is an element of *I*.

The previous theorem, however, does not characterize the ideals of $\operatorname{End}(A)$ since there are ideals which do not contain a pure endomorphism, for example, $p \operatorname{End}(A)$. Instead of using similar arguments as in the case of free R-modules we shall now use Corollary 3.4 on vector spaces to determine the ideals I of $\operatorname{End}(A)$ modulo their Jacobson radicals. First we consider the Jacobson radicals $J(E_{\kappa})$ of the ideals E_{κ} where

$$E_{\kappa} = \{\eta \in \operatorname{End}(A) | \operatorname{rk}(\eta) < \kappa\}$$

for $\kappa \geq \aleph_0$.

Lemma 4.2 Let E_{κ} be an ideal as defined above. Then the Jacobson radical $J(E_{\kappa})$ coincides with the ideal pE_{κ} .

Proof: First we show that $pE_{\kappa} = E_{\kappa} \cap p\text{End}(A)$. Let $p\alpha \in E_{\kappa}$ with $\alpha \in \text{End}(A)$. Then $A = A_1 \oplus \ker(p\alpha)$ and $\operatorname{rk}(A_1) < \kappa$. Since A is torsion-free, $\ker(p\alpha) = \ker(\alpha)$. Hence $A\alpha = A_1\alpha$ and $\operatorname{rk}(\alpha) < \kappa$.

23

Thus $\alpha \in E_{\kappa}$. By Proposition 2.4, $p \operatorname{End}(A) = J(\operatorname{End}(A))$ and so it follows that

$$E_{\kappa} \cap p \operatorname{End}(A) = E_{\kappa} \cap J(\operatorname{End}(A)).$$

But $E_{\kappa} \cap J(\text{End}(A)) = J(E_{\kappa})$ since E_{κ} is an ideal of End(A). Therefore

$$pE_{\kappa} = E_{\kappa} \cap p \operatorname{End}(A) = E_{\kappa} \cap J(\operatorname{End}(A)) = J(E_{\kappa}).$$

This completes the proof. \blacksquare

Next we will show that $E_{\kappa}/J(E_{\kappa})$ is isomorphic to a corresponding ideal of the vector space A/pA over the field R/pR.

Lemma 4.3 For any cardinal $\kappa \geq \aleph_0$, $E_{\kappa}/J(E_{\kappa}) \cong E_{\kappa}(A/pA)$. Proof: Every $\alpha \in E_{\kappa}$ induces an R/pR-endomorphism on A/pA since $pA\alpha \subseteq pA$. So we may define a map

$$\Delta: E_{\kappa} \longrightarrow \operatorname{End}_{R/pR}(A/pA)$$

by

$$\alpha \Delta = \overline{\alpha} : A/pA \longrightarrow A/pA$$
 with $(a + pA)\overline{\alpha} = a\alpha + pA$

It is easy to check that Δ is a ring homomorphism. Moreover, the kernel of Δ is $pE_{\kappa} = J(E_{\kappa})$. We show that $\operatorname{Im}(\Delta) = E_{\kappa}(A/pA)$. Certainly, $\operatorname{Im}(\Delta) \subseteq E_{\kappa}(A/pA)$ since the vector space rank of an endomorphism $\overline{\alpha}$ of A/pA cannot be greater than $\operatorname{rk}(\alpha)$. Now let $\eta : A \longrightarrow A/pA$ and $\rho : R \longrightarrow R/pR$ be the endomorphisms defined by

$$a\eta = a + pA$$
 and $r\rho = r + pR$.

Let us consider an endomorphism ϕ of A/pA of rank less than κ . We can pick an R/pR-basis $\{x_i | i \in I\}$ of A/pA such that $x_i\phi = 0$ for all but less than κ of the x_i . Choose $y_i \in A$ such that $y_i\eta = x_i$ for all $i \in I$. Then the module generated by $\{y_i | i \in I\}$ is a basic submodule of A by Lemma 2.1. However

$$x_i\phi = \sum_{i\in I} r_{ij}x_j,$$

where $r_{ij} \in R/pR$ with $r_{ij} = 0$ for all but finitely many j. Choose $s_{ij} \in R$ with $s_{ij}\phi = r_{ij}$ and $s_{ij} = 0$ whenever $r_{ij} = 0$. Finally, define $\beta : B \longrightarrow B$ by

$$y_i\beta = \sum_{i\in I} s_{ij}y_j,$$

so that $y_i\beta = 0$ for all but less than κ of the y_i . Thus the unique extension of β to an endomorphism of A has rank $\operatorname{rk}(B\beta) < \kappa$ and satisfies $\beta\Delta = \phi$. Hence $\Delta : E_{\kappa} \longrightarrow E_{\kappa}(A/pA)$ is surjective, with ker $\Delta = pE_{\kappa} = J(E_{\kappa})$. Thus $E_{\kappa}/J(E_{\kappa}) \cong E_{\kappa}(A/pA)$, as required.

We finish the paper with the characterization of the ideals of the endomorphism ring of a complete reduced torsion-free Rmodule A over a complete discrete valuation ring R: modulo their Jacobson radical they are characterized by a single cardinal κ .

Theorem 4.4 If I is an arbitrary ideal of the endomorphism ring of a complete reduced torsion-free R-module A, then either $I \subseteq J(\text{End}(A))$ or

$$I/J(I) \cong E_{\kappa}/J(E_{\kappa}) \cong E_{\kappa}(A/pA)$$

for some cardinal κ .

Proof: Let I be any ideal of End(A). We consider the mapping $\Delta: I \longrightarrow End(A/pA)$ defined by

$$\alpha \Delta = \overline{\alpha}$$
 with $(a + pA)\overline{\alpha} = a\alpha + pA$.

This defines a ring homomorphism with

$$\ker(\Delta) = J(I) = I \cap J(\operatorname{End}(A))$$

which is either equal to I (i.e. $I \subseteq J(\text{End}(A))$) or is properly contained in I. In the latter case $I/J(I) \cong K$ for some non– zero ideal K of End(A/pA). Thus $K = E_{\kappa}(A/pA)$ for some κ by Corollary 3.4. Therefore $I/J(I) \cong E_{\kappa}/J(E_{\kappa})$ by Lemma 4.3.

Q

References

- [1] R. Baer, Linear Algebra and Projective Geometry. Academic Press: New York, 1952.
- [2] L. Fuchs, Infinite Abelian Groups, vol. I. Academic Press: New York, 1970.
- [3] L. Fuchs, Infinite Abelian Groups, vol. II. Academic Press: New York, 1973.
- [4] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, to appear.
- [5] I. Kaplansky, Infinite Abelian Groups. The University of Michigan, Press, 1962.
- [6] H. Leptin, Zur Theorie der überabzählbaren abelschen p-Gruppen, Abh. Math. Sem. Univ. Hamburg 24 (1960), 79-90.
- [7] W. Liebert, Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings, Pacific J. Math. 37 (1971), 141-170.
- [8] R. B. Warfield, Homomorphisms and duality for torsion-free groups, Math. Z. 107 (1968), 189-200.

Brendan Goldsmith and Simone Pabst Department of Mathematics, Statistics and Computer Science, Dublin Institute of Technology, Kevin Street, Dublin 8.