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1. Introduction

It is well known that the ring of linear transformations of a finite
dimensional vector space is simple, i.e. it has no non—trivial proper
two-sided ideals. It is, perhaps, not so well known that the (two—
sided) ideals in the ring of linear transformations of an infinite
dimensional vector space can be characterized by a single cardinal
invariant, [1]. It is therefore reasonably natural to ask if there is a
generalization of Baer’s result to ideals in the endomorphism ring
of a wider class of modules. The purpose of this present work is
to explore this possibility.

A first generalization is to replace the underlying field of the
vector space by a ring. A natural extension of the concept of a
field is a discrete valuation ring since a discrete valuation ring
modulo its Jacobson radical is a field. Recall (see e.g. [5]) that
R is a discrete valuation ring if R is a principal ideal ring with
exactly one maximal ideal or, alternatively, with one prime element
p. In particular the ring of p-adic rationals, Z,, is a discrete
valuation ring and the reader may replace all references to discrete
valuation rings with the p—adic rationals without any serious loss
in generality. Also, recall that if E is a ring then the Jacobson
radical of E is defined to be the intersection of all maximal ideals
of E. It is well known that this is equivalent to the set of all
elements z € E such that rzs is quasi-regular for all r and s in
E, i.e. those elements x for which 1 — rzs is a unit.

Since a vector space over a field F' is a free F—module, an
obvious question to ask is whether a corresponding characteriza-
tion of ideals in the endomorphism ring of a free module over a
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discrete valuation ring exists. We address this problem in §3 and
obtain Baer’s Theorem for vector spaces as a corollary to our main
result Theorem 3.3.

Whilst free modules over a discrete valuation ring are an obvi-
ous generalization of vector spaces it is, perhaps, not so obvious
that complete modules over a complete discrete valuation ring R
have many similar properties to vector spaces (cf. [4]). Recall
that a complete discrete valuation ring is a discrete valuation ring
which is complete in its p—adic topology (i.e. the linear topology
with basis of neighbourhoods of 0 given by p"R, n > 0), where p
is the only prime element of R. In §4 we discuss the ideal structure
of the endomorphism ring of such modules and achieve a complete
characterization modulo the Jacobson radical.

We conclude this introduction by reviewing a number of
standard concepts in module/abelian group theory. If R is dis-
crete valuation ring with prime element p then we say that an R—
submodule H of the R—module G is pure in G if H Np"G = p"H
for all n > 0. If we consider the module G as a topological module
furnished with the p—adic topology (i.e. a basis of neighbourhoods
of 0 is given by p"G, n > 0), then H is pure in G precisely if
the p—adic topology on H coincides with the induced subspace
topology. Also an R-module D is divisible if given any d € D
we can solve the equation p"x = d in D; a module is reduced if
it has no non—trivial divisible submodules. (It is well known that
a torsion—free divisible R—module is a direct sum of copies of the
quotient field @ of R.) Notice that if H C G then G/H divisible
is equivalent to H being dense in the p—adic topology on G.

Finally note that maps are written on the right and the word
ideal will always mean a two—sided ideal.

2. Preliminaries

In this section we state a few well-known results on modules over
complete discrete valuation rings. Throughout the section R shall
be a complete discrete valuation ring with prime element p. In
considering torsion—free R—modules, the concept of a basic sub-
module is useful; a submodule B of a torsion—free R—module A is
called a basic submodule of A if B is a free R—module such that
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A/B is divisible and B is pure in A.
The first lemma is due to R. B. Warfield, [8]; it tells us how
to obtain a basic submodule from the R/pR-vector space A/pA.

Lemma 2.1 Let A be a torsion—free R-module and w : A —»
A/pA the natural epimorphism. Let {z; | i € I} be an R/pR-
basis of A/pA and choose y; € A (i € I) such that y;m = x;. Then
the submodule B generated by {y; | i € I} is a basic submodule of
A. Moreover every basic submodule of A arises in this way. ®

The lemma ensures the existence of a basic submodule B and
the uniqueness of its rank rk(B) where rk(B) is the usual rank of a
free R—module. Hence we may define the rank of a torsion—{ree R—
module A as the rank of its basic submodule, i.e. tk(A4) = rk(B).
Since the divisibility of the quotient module A/B is equivalent to
the density of B in A in the p—adic topology we obtain the following
well-known characterization of complete reduced torsion—free R—
modules; (2) is essentially due to I. Kaplansky, [5], and (3) is
similar to a result proved for p—groups by H. Leptin, [6].

Proposition 2.2 The following properties of a reduced torsion—

free R—module A are equivalent:

(1) A is complete.

(2) If B is a basic submodule of A, then A is the completion of B.

(3) If B is a basic submodule of A, then every R—homomorphism

B —» A extends uniquely to an R—endomorphism of A. =
Next we state a few facts on complete reduced torsion—free

R-modules; the proofs can be found in [2], [5], and [7].

Lemma 2.3 Let A and A' be complete reduced torsion—free R—
modules.

(1) If 8 is an endomorphism of A, then both ker® and im@ are
complete.

(2) If S is a pure submodule of A and is complete, then S is a
direct summand of A.

(3) A is isomorphic to A’ if and only if tk(A) = rk(A’). m

We finish this section with a standard result on the Jacobson
radical of the endomorphism ring of a complete reduced torsion—
free R—module; a proof may be found in [7].
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Proposition 2.4 Let E denote the endomorphism ring End(A) of
the complete reduced torsion—free R—module A. Then

(1) J(E) = pE = Ep;

(2) E/J(E) = Endppn(A/pA);

(3) J(E) = {¢ € E | A6 C pA}. m

3. Free modules over discrete valuation rings

Here we shall discuss ideals of endomorphism rings of free R—
modules over discrete valuation rings R. We will deduce Baer’s
Theorem on vector spaces as a corollary to our main result. Before
we restrict our attention to modules over discrete valuation rings
we prove a result (Proposition 3.2) which is true for modules in
general. The definition of a direct endomorphism will be useful.
An endomorphism p of A is called k-direct [im—direct] if ker(u)
[Im(p)] is a direct summand of A, and p is said to be a direct
endomorphism if it is both k—direct and im—direct. First we need:

Lemma 3.1 If ¢ is a direct endomorphism of A, then there exists
an endomorphism n of A such that

(a) on and no are both idempotent, and

(b) Im(o) = Im(no), Im(on) = Im(n), ker(n) = ker(no), and
ker(on) = ker(o).

Proof: By our assumption, we may write

A=Im(o)® S and A =kero) & T.

Then the restriction o7 : T — Im(o) is an isomorphism. Hence
there exists 7 : Im(0) — T such that

T(UT) = idIm(U) and (O'T)T =idrp.
Now let n : A — A be defined by
Mm(s) = 7 and kern = S.

We shall see that 7 is the required endomorphism.
First we show that on and no are idempotent. Let z be an
arbitrary element of A. Then

z(on)? = zonon = xoTon = xon,
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since 7o is the identity on Im(o). So (on)? = on. Now let z =
ac+s € A, wherea € A and s € S. Then

z(no)? = znono = aonono = (ao)no = xno.

Thus, (no)? = no, as required.
To prove part (b) we make the following calculations:

Im(no) = Ano = Aono = Aoto = Ao = Im(o);

Im(on) = Aon = Ao =T = Im(n);

ker(no) = {z € Alzno =0} = {z € Alzn € ker(o)}
= {x € Alzn € ker(o) NT =0} = ker(o);

ker(on) = {z € Alzon =0} = {z € AlzoT =0}

= {x € Alxzo =0} = ker(o).

This completes the proof. m

Proposition 3.2 Let I be an ideal of the endomorphism ring
End(A) of A such that all u € T are k—direct. Moreover assume
that I contains a direct endomorphism o. If o is an im—direct
endomorphism of A such that Im(«) is isomorphic to a direct
summand of Im(c), then « belongs to the ideal I.

Proof: Let I, o, and « be as above. Then we can write

A=Im(oc)®S =Im(a) T and Im(c) = R® C,
where R 24 Im(a). We extend ¢’ to an endomorphism ¢ of A by
¢r = ¢' and pogs = 0.

Now consider the endomorphism o¢ € I. Since ¢ belongs to I it
is k—direct. Moreover,

Aoy = (R® C)¢ = Rp = R$' = Im(a),

which is a direct summand of A. Hence o¢ is direct and we may
apply Lemma 3.1 to o¢. Thus there exists n € End(A) such that
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no@ is an idempotent and Im(no¢) = Im(o¢) = Im(a). Therefore,
for any z € A, there is y € A with za = yno¢. Hence,

(za)nod = y(nod)* = ynod = za,

which implies that « = ano¢ is in I, since [ is an ideal. m

Now let R be a discrete valuation ring and A a free R—module.
The next theorem tells us something about ideals I containing a
direct endomorphism of a given rank. Recall that the rank of an
endomorphism ¢ is defined to be the rank of the free R—module
Im(o).
Theorem 3.3 Let I be an ideal of End(A). If I contains a direct
endomorphism of rank k, then I contains all endomorphisms of
rank less than or equal to k.
Proof: First we show that all endomorphisms of A are k—direct.
Let p be any endomorphism of A. Then A/ker(u) = Im(u),
where Im(u) is free and hence projective. Thus there exists a
homomorphism ¢ : Im(u) — A with ¢u = ida. We show that
A =ker(u) ® (Im(p))¢. Let x € ker(u) N (Im(p))¢. Then there is
y € A such that z = yu¢ and

0=zp=yupp = yu,
since ¢u = id 4, and thus © = yu¢ = 0¢ = 0. Also,

a=apd + (a — apg), with (a — aud)p = ap — apdp =0

for any a € A, again since ¢u = ida. Thus ker(u) is a direct
summand of A, implying that u is k—direct.

Now let o € I be a direct endomorphism of A of rank &, i.e.
A =Tm(o) ® S and rk(Im(o)) = k. Next we prove that all direct
(im—direct) endomorphisms a with rk(a) < k are elements of I.
Let a be such an endomorphism. Then

A =TIm(a) ®T and rk(a) = rk(Im(a)) < &.

Since Im(«) and Im(o) are free R—modules with rk(Im(a)) <
rk(Im(o)), there exists a direct summand of Im(o) which is iso-
morphic to Im(«). Thus we may apply Proposition 3.2, which
implies that o € I.
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Finally let ¢ be any endomorphism of A with rk(¢) < k.
Since ¢ is k—direct, we may express A as A = ker(¢) ® C, where
C = A/ker(¢) = Im(¢). Thus

rk(C) = rk(¢) < k.

Let 7 be the projection of A onto C' with ker(n) = ker(¢). Obvi-
ously 7 is a direct endomorphism with rk(7) = rk(C) < k. Thus
m € I. Hence ¢ = mw¢ is an element of I and this completes
proof. m

Note that the previous theorem holds for free modules over
any ring R having the property that submodules of free modules
are free; e.g. all principal ideal domains have this property. So, in
particular, Theorem 3.3 holds for a field. In this case we get even
more, namely, we can characterize the ideals of the endomorphism
ring End(A) of a vector space A.

Corollary 3.4 Let A be a vector space over a field R. Then
the only ideals of End(A) are the ideals E, (k > Ng) defined by
E, = {a € End(4)|rk(a) < k}.
Proof: Note first that all endomorphisms of a vector space A are
direct. Hence, in this case Theorem 3.3 reads as:
If o is an element of an ideal I, then I contains every endomorph-
ism a with tk(a) < k(o).
It is easy to check that, for each k > Vg, E, is an ideal of End(A).
Write Ey for Ey,, the ideal of all finite rank endomorphisms.
Now, let I # 0 be an arbitrary ideal which is properly con-
tained in End(A). Since I is non—trivial, there exists a non—zero
endomorphism ¢ € I. If ¢ is of infinite rank then, obviously,
Ep C I. So suppose o is of finite rank n > 1. In this case, I con-
tains all endomorphisms of rank less than or equal to n. Thus if
e is an element of a given basis B, then I contains the projection
me onto the one—dimensional subspace generated by e along the
subspace generated by the remaining basis elements. Therefore
all finite sums Zle me, (e; € B) of such projections belong to I
and hence, for any k € N, there is an endomorphism of rank k&
belonging to I. This implies that all endomorphisms of finite rank
are contained in the ideal I and so in either case we deduce that
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Ey C I. Moreover E,.11 C I whenever n € I for some 7 of rank &.
Let 741 be the smallest cardinal with E,,1 € I (we may consider
a successor cardinal since the ideals E,, form a smooth increasing
chain). Then all € I have rank less than 7 and hence I C E;.
Also E; C I by the minimality of 7+ 1, thus I = E.. =

4. Complete modules over complete discrete valuation
rings

In the last section we turn our attention to complete reduced
torsion—free R-modules A over complete discrete valuation rings
R. Recall that the rank of a reduced torsion—free R—module over
a complete discrete valuation ring is the rank of a basic submodule
B of A (see Section 2). Again we define the rank of an endomorph-
ism as the rank of its image. Moreover we call an endomorphism
a of A a pure endomorphism if Im(«) is a pure submodule of A.

First we present a result which is similar to Theorem 3.3:
for a complete reduced torsion—free R—module A over a complete
discrete valuation ring R we can prove

Theorem 4.1 Let I be an ideal of End(A). If I contains a pure
endomorphism o of rank x then I contains all endomorphisms o
with rk(a) < k.

Proof: Firstly we show that any endomorphism g of A is k—direct.
By Lemma 2.3 it suffices to show that ker(u) is pure in A for any
p € End(A4). If x = p"a with € kerp and a € A, we have
(p"a)u = zp = 0. Hence p™(ap) = 0, which implies ap = 0 since
A is torsion—free. So,

p"ANker(p) = p"ker(p),

that is, ker(u) is pure in A and thus u is k-direct for any p €
End(A).

Let o be a pure endomorphism in I and assume first that «
is a pure endomorphism of A. Then, by Lemma 2.3, both Im(¢)
and Im(a) are direct summands of A, i.e. we may write A as

A=Im(o)®S =Im(a) B T.



22 IMS Bulletin 39, 1997 I

If B,, B, are basic submodules of Im(«) and Im(o) respectively,
then there exists a direct summand D of B, of rank

rk(a) = rk(B,) < rk(B,) = rk(o),

which is isomorphic to B,. We may extend this isomorphism to
an isomorphism of the completions Im(a) and D of B, and D

respectively. Moreover, since D is pure in B, the completion D
is pure in Im(o), hence D is a direct summand of Im(o) which is
isomorphic to Im(a). Thus we may apply Proposition 3.2 which
implies that & € I. We have shown that all pure endomorphisms
a with rk(a) < rk(o) are contained in I. So, in particular, all
idempotents m with rk(7) < rk(o) belong to I.

Finally, let ¢ be any endomorphism of A with rk(¢) < rk(o).
Then A = ker(¢) ® C, where C = A/ker(¢) = Im(¢), and so
rk(C') = rk(a). If = denotes the projection onto C' with ker(w) =
ker(¢) then 7 € I since

rk(m) = rk(C) = rk(¢) < rk(o).

Therefore ¢ = w¢ is an element of I. m

The previous theorem, however, does not characterize the
ideals of End(A) since there are ideals which do not contain a
pure endomorphism, for example, p End(A). Instead of using sim-
ilar arguments as in the case of free R—modules we shall now use
Corollary 3.4 on vector spaces to determine the ideals I of End(A)
modulo their Jacobson radicals. First we consider the Jacobson
radicals J(E) of the ideals E, where

By, = {n € End(A)|rk(n) < x}

for k > Ng.

Lemma 4.2 Let E,, be an ideal as defined above. Then the Jac-
obson radical J(E,) coincides with the ideal pE,.

Proof: First we show that pE, = E,NpEnd(A). Let pa € E,, with
a € End(A). Then A = A; & ker(pa) and rk(4;) < k. Since A is
torsion—free, ker(pa) = ker(a). Hence Aa = Aja and rk(a) < k.
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Thus a € E,. By Proposition 2.4, pEnd(A) = J(End(A4)) and so
it follows that

E.NpEnd(4) = E, N J(End(A4)).

But E, N J(End(A4)) = J(E,) since Ey is an ideal of End(A).
Therefore

pE, = E, NpEnd(A) = E, N J(End(A)) = J(Ey).

This completes the proof. m

Next we will show that E,/J(Ey) is isomorphic to a corres-
ponding ideal of the vector space A/pA over the field R/pR.
Lemma 4.3 For any cardinal k > N, E,/J(E,) & E,(A/pA).
Proof: Every a € E; induces an R/pR—endomorphism on A/pA
since pAa C pA. So we may define a map

A E., — EndR/pR(A/pA)
by
aA =a: A/pA — A/pA with (a + pA)@ = ax + pA.

It is easy to check that A is a ring homomorphism. Moreover, the
kernel of A is pE,, = J(E,). We show that Im(A) = E,;(4/pA).
Certainly, Im(A) C E,(A/pA) since the vector space rank of an
endomorphism @ of A/pA cannot be greater than rk(«). Now let
n:A— A/pA and p : R — R/pR be the endomorphisms
defined by

an =a+ pA and rp =r + pR.

Let us consider an endomorphism ¢ of A/pA of rank less than x.
We can pick an R/pR-basis {z;|i € I'} of A/pA such that z;¢ =0
for all but less than s of the x;. Choose y; € A such that y;n = z;
for all ¢ € I. Then the module generated by {y;|i € I'} is a basic
submodule of A by Lemma 2.1. However

T =Y rijx;,

icl
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where r;; € R/pR with r;; = 0 for all but finitely many j. Choose
sij € R with s;;¢ = r;; and s;; = 0 whenever r;; = 0. Finally,
define 8 : B — B by

yif = Z 5i5Yj,

i€l

so that y;8 = 0 for all but less than & of the y;. Thus the unique
extension of 8 to an endomorphism of A has rank rk(Bfg) < &
and satisfies BA = ¢. Hence A : E, — E,(A/pA) is surjective,
with ker A = pE,, = J(E,). Thus E./J(E,) = E.(A/pA), as
required. m

We finish the paper with the characterization of the ideals
of the endomorphism ring of a complete reduced torsion—free R—
module A over a complete discrete valuation ring R: modulo their
Jacobson radical they are characterized by a single cardinal «.
Theorem 4.4 If I is an arbitrary ideal of the endomorphism ring

of a complete reduced torsion—free R—module A, then either I C
J(End(A)) or

I/J(I) = E./J(Ey) = Ex(A/pA)
for some cardinal k.
Proof: Let I be any ideal of End(A). We consider the mapping
A: ] — End(A/pA) defined by

aA =@ with (a + pA)a@ = aa + pA.

This defines a ring homomorphism with

ker(A) = J(I) = In J(End(A4))
which is either equal to I (i.e. I C J(End(A))) or is properly
contained in I. In the latter case I/J(I) = K for some non—

zero ideal K of End(A/pA). Thus K = E,(A/pA) for some k by
Corollary 3.4. Therefore I/.J(I) = E,;/J(Ey) by Lemma 4.3. m



KA Ideals of Endomorphism rings 25

References

R. Baer, Linear Algebra and Projective Geometry. Academic Press:
New York, 1952.

L. Fuchs, Infinite Abelian Groups, vol. I. Academic Press: New York,
1970.

L. Fuchs, Infinite Abelian Groups, vol. II. Academic Press: New York,
1973.

B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and
modules, to appear.

I. Kaplansky, Infinite Abelian Groups. The University of Michigan,
Press, 1962.

H. Leptin, Zur Theorie der iiberabzahlbaren abelschen p—Gruppen,
Abh. Math. Sem. Univ. Hamburg 24 (1960), 79-90.

W. Liebert, Characterization of the endomorphism rings of divisible tor-
sion modules and reduced complete torsion—free modules over complete
discrete valuation rings, Pacific J. Math. 37 (1971), 141-170.

R. B. Warfield, Homomorphisms and duality for torsion—free groups,
Math. Z. 107 (1968), 189-200.

Brendan Goldsmith and Simone Pabst

Department of Mathematics, Statistics and Computer Science,
Dublin Institute of Technology,

Kevin Street,

Dublin 8.



