Comments on Two Papers by R. Gow
in the December 1995 IMS Bulletin

Concerning the article on Bourbaki’s problem in the December
1995 issue of the IMS Bulletin, I discovered that a theorem of L.
K. Hua (On the automorphisms of a field, Proc. Nat. Acad. Sci.
U.S.A. 35 (1949), 386-389) answers the problem that I raised. I
am grateful to my colleagues Fergus Gaines and David Lewis for
information on the problem, and also to Professor Larry Harris for
related correspondence. If I had remembered an earlier paper by
Fergus Gaines (How to compose a problem for the International
Mathematical Olynpiad?, Irish Math. Soc. Bulletin 28 (1992),
20-29), I would not have written the article.

Concerning another article written by us in the same issue
of the Bulletin (Some Galway professors of mathematics and of
natural philosophy), Professor ‘Alastair Wood has kindly informed
me that Morgan Crofton’s father was not the successor of G. G.
Stokes’s father as Rector of Skreen, Co. Sligo, as stated in the
article. His successor was -the Rev.- George Trulock, who was
Rector from 1834 until 1847. The Rev. W. Crofton was in fact
the successor of Trulock, and died in Skreen in 1851.

Rod Gow,
Department of Mathematics, -
University College Dublin.

A LINEAR SYSTEM OF IMPULSIVE
DIFFERENTIAL EQUATIONS

Michael Brennan and Finbarr Holland

Abstract A linear system of impulsive differential equations that mod-
els an example from pharmacokinetics is investigated. The example is
where a drug is administered periodically at certain fixed times result-
ing in a jump (called an smpulse) in the concentration level of the drug.
The case where the same dosage is applied at each of these fixed times
is considered. Both mnecessary and sufficient conditions are sought to
guarantee that an effective concentration level of the drug is maintained
in the body. s

Introduction

Impulsive differential equations are used to describe physical pro-
cesses that undergo instantaneous perturbations. As in the study
of ordinary differential equations, the study of impulsive differ-
ential equations is motivated by many practical examples from
the physical sciences, (1, 2]. In this paper, we look at a linear
system of impulsive differential equations, a special case of which
may model the concentration of a drug in the bloodstream and
an organ, like the heart or liver. Qur results here generalize those
obtained by Stewart, [3, pp. 758-759], who considered the scalar
case. :
The paper begins by describing a first order linear system of
imnpulsive differential equations in terms of a constant real matrix
K. We call the solution vector ¢ of the system an admissible solu-
tion when it lies in the region between two specified concentric
spheres in R?. The initial dosage vector ¢ and the time T (length
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of time between consecutive impulses) form a pair of parame-
ters which are critical in determining the admissibility of ¢. The
paper’s main result requires that X be both positive definite and
symmetric, combined with a method of choosing first T' and then
c¢. The way we choose T’ and ¢ depends on the eigenvalues of K
and the radii of the two spheres.

1. Preliminaries

Consider the following linear system of impulsive differential equa-
tions:

i(t) = —Kz(t), t£T,2T,. ..,
Azt) =z(tt) —z(t™ ) =¢, t=T,2T,..., (1)
z(0) =¢,

where K is a constant real d x d matrix, ¢ a vector in R? and
T>0. :

Definition 1 A solution to (1) is a piecewise continuous function
¢ : [0,00) = R such that

(i) é(t) = K¢(t), for t € R\ {T,2T,...};

(i) at times nT', where n € N, it is the case that ¢((nT)") =
¢((nT)7) +c;

(iii) ¢(07) = ¢;

(iv) , lim ¢(t) = ¢(nT) for n € N.

—(nT)+

Note that the existence and uniqueness of a solution to the
linear system above is well known (see [2] for details). We now
make some more definitions that will be needed later.
Definition 2 Let B be a real d x d matrix. Then B is said to be
positive definite if for any a € R4 we have a'Ba > 0 with equality
occurring if and only if ¢ = 0.1

Here the transpose of the vector a is denoted by a®. As usual,
B is said to be symmetric if B = B*. A consequence of B being

! We adhere to this definition throughout the paper, but readers
should be warned that unlike other authors we do not require that a
positive definite matrix be symmetric.
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positive definite and symmetric is that its eigenvalues are both
real and positive.

Definition 3 Given two parameters L and H where 0 < L <
H < oo we say that ¢ is an edmissible solution of (1) if, for some
choice of parameters T' and ¢, ¢ solves the linear impulsive system
(1) and, for all £ > 0, ¢(t) lies in the set {a € R?: L < ||a|| < H}.
For convenience we call this set A(0; L, H).

Note that ||a|| is the length of the vector a:

d
lall® = a'a =" |asf*.
i=1

To describe the solution of (1) we define sequences of vectors
An, B, in R® as follows: Let

A4 =0,
Ap=c+e et e TEeq ... e T8y n=0,1,2...,
and

B,=eTK4, ;, n=0,12,....
Note that
An=T+e TK 4. f e TH)e

= (I - " HITHY (] — o~ TH) g,

where [ is the unit matrix.
The solution of the differential equation is then given by

w(t) = e C--UDE Y fte[n-)T,nT), n=12,....

Our objective is to determine (practical) necessary and suf-
ficient conditions on the various parameters defining the system
that ensure the solution z(t) is admissible.
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2. Necessary and sufficient conditions for admissibility

Theorem 1 Suppose that K is positive definite. Then z(t) €

A(0; L, H) for all t € (0, c0) if and only if

L <inf||By|| and sup||4,|| < H.

Proof: From the differential equation we see that
d 2 ts t
d—t|]z(t)|| =2r's = 22" Kz <0,

forallt € (n—1)T,nT),n=1,2,...,and so ||z(t)|| is decreasing
on the intervals ((n — 1)T,nT), n =1, 2, .... It follows that

1Ball < llz@If < | An—1l],
for all t € ((n — 1)T,nT). Hence, if
L < inf||By,|| and sup [|4,]] < H,

then
L<||lz@®)] < H, forall t > 0.

Conversely, if this holds, then

|Bnll = l[z((nT)7)|| = L
and
lAnll = llz((rD))]| < H

forn =1, 2, .... Hence the given condition is also necessary. e

Different aspects of the following example have been stud-
ied by various authors, [1, 2, 4]. The example below consists of
a two-compartment model for the distribution of a drug in the
body, say the gastro-intestinal tract and the bloodstream. The
components z; and z, stand for the quantity of the drug in the
gastro-intestinal tract and the bloodstream, respectively, and k;
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and k&, are the respective rate constants. The differential equa-
tions and associated boundary conditions governing this model
are given by the following:

:i"‘l(‘t) = _kl‘r(t)a 0<t # T: 2T1 i
:L‘Z(t) = k]_fb'](t) - k2$2(t)1 0<t # T)ZTJ e oy
zi(tT) -z (7)) =¢,i=1,2,t =T,2T, ...
and
mz(o) = :’Ei(0+) = Cy, i= 1a2

Theorem 1 applies to this system once we know for what values
of k; and %k, the matrix of the system is positive definite. The
answer is provided by the following.

Example 1 Suppose that 4ky > ki > 0. Then the 2 x 2 matrix

_ kL O
“=(k &)
is positive definite, but not symmetric.
Proof: For, if a € R?, then '
a'Ka = kia? — kiayaz + kyal
= kl(ﬂ‘% B (110.2) -+ kzﬂ.g
= ki{e1— a2/2)" + (ks — k1 /4)a)
>0
and equality holds if and only if a; = a3 = 0. Thus K is positive
definite. Clearly, K # K¢ o

It is also clear that this matrix is not positive definite if 0 <
dko < k.

Returning to the general situation, the fact that K is positive
definite implies that

1Ball € {[Anall, n=1,2,...,
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as we have just seen. We wish to investigate the monotonicity
of these sequences under some additional assumptions about K.
In what follows, we suppose that X is symmetric. This, coupled
with the fact it is positive definite, implies that K is unitarily
equivalent to a diagonal matrix. Thus K = U*DU, where U is
unitary, U*U = I, and D = diag[\1,Ag, ..., Ad], where A; > 0,
t=1,2,...,d, and so

e TK = Ute TPy = Utdiagle ™17, e~ 22T, .. ,E_A'IT]U.
Next,
An1 = (I —e"TK)y, wherey = (I — e TK) 1,
and so
||An“1||2 = Af«.—lAnﬂ
- yt(_I _ e—nTK)t(I_ e—nTK)y
— tht(I _ e—nTD)2Uy

= 21(I - e ™TP)2;, where z = Uy
= Z(l _ e—nA;T)zlziF‘

But the sequence (1—e™™*T) is increasing if A > 0. Hence ||4,_1||
is increasing. But it is also clear that the positive definiteness of
K implies that

lim A4, =y,

so that
sup || An| = [lyll = (T — e= %) ¢l].

In the same way it can be seen that ||By,|| is increasing, and so
inf || Byl = [|Bull = [le™"*¢]).

These considerations enable us to express the conclusion of The-
orem 1 in the following form.

& Impulsive Differential Equations 15

Theorem 2 Suppose that K is positive definite and symmetric.
Then z(t) € A(0; L, H), for all £ € (0, 00) if and only if

L<|le”™ ¢l and ||(I - e™™ ) el < H.

Still supposing that K is unitarily equivalent to a diagonal
matrix, none of whose eigenvalues is zero, we have

|1E“TK(:”2 cte-—QTKC

= vte TPy, where v = Uc
= ot diagle™2T™, ..., e TRy
d
=D e
i=1

and
I~ e TF) el = T - T
' te 'U:(I—' e—_TD)—2,U

=t diag[(l ) A PO B
— Z l'Uzl
(1—e-TX)

Hence we can phrase the necessary and sufficient condition that
z(t) € A(0; L, H) as follows.

Theorem 3 Suppose that K = U'diag[)\s,..., ] U, where U
is unitary and the A;’s are positive. Let v = Ue. Then z(t) €
A(0; L, H) for all t € (0, c0) if and only if

*< Z —2TA; |v,|2 st z(l—lv‘——TW < H.
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3. Necessary conditions for admissibility

We deduce some coupled restrictions on the parameters K, L, H,
¢, T that must hold if the system has an admissible solution.

Theorem 4 Suppose that K is symmetric and positive definite.
Ifz(t) € A(0; L, H) for all t > 0, then

(i) 4L < H, with equality if and only ife™ =2,i=1, ..., d;
(i) Le™ < |||l < (1—e TAH, where

A=max{};:i=1,2,...} and A =min{};:i=1,2,...}.

Proof: Under our assﬂmptions,
2 —2T x|, |2 —T,\ —TH\12 Jvi]?
L < Z I'U I Z{B — € )} m

i
= 16 Z (1= e‘T"

. HZ?.

< T

— 16
since 4y(1 — y) < 1 for all y € R, with equality if and only if

= 1/2, and so 16e~2%(1 — e7%)2 < 1 for all z € [0,00).

H = 4L, then equality helds throughout, which clearly happens
ifand only if e=7* = 1,4 =1, 2, ..., d. This gives the first part.
As for the second part, we have

llell® = lJll?
d .
= Ze_
i=1
d
> ezT,\ Z e—zTA,- lez
i=1

> 62T)\L2
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and so eT*L < |||
Similarly,
llell* = ||’v||2
_ E(l . )2|z—i—|2“e)'2-

d 2
) —TANS Wil
<(L-e ) Z (1= eI
i=1
o~ efTA)sz

and so ||¢)| € (1—e TMH. o
4. Sufficient conditions for admissibility

For practical reasons it is essential to have easily verifiable condi-
tions that will guarantee that the system has an admissible solu-
tion. We proceed to give one such condition that guarantees that

z(t) € A(0; L, H) for all ¢ > 0. This will then enable us to give
a simple sufficient condition for adm1531b111ty, this is recorded in
Theorem 7.

Theorem 5 Suppose that K is symmetric and positive definite.
Let
Le™ < |le| < (1~ ™) H.

Then z(t) € A(0; L, H), for all t > 0.
Proof: It is enough to note that

L2 % e—2TA”C”2
e

d
=3 e Ay
i=1
d
s ZE—BTA.- ‘,Ud2_
i=1
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Similarly,

Ll
1 = AN
2 T e g S A=) e
1=
= (1-e ) 2|2
< H?.

The stated result now follows from Theorem 3. o

Before le_a.ving this result, we analyse the sufficient condition
more closely in an attempt to uncouple the relationship between
T and ¢. Our findings are summarized in the next theorem.

Theorem 6 Let r = H/L. Under the assumptions of the previous
theorem,

i)r> 4
(ii)
].Og D@ x log _‘b@
< T
D U R g
(iii) : :
[r — vr? —4r]L < [r+ \/ 4T]L
—_2'—— llell <

Proof: It follows from our assumptions that
Le™ <|le| < 1 —e"™)H

and so
e2T)\ < (eTA —- 1)7‘,

whence, by elementary methods, part (i) and the left-hand
inequality of part (ii) follow. But also,

Le™ <l < (1 — e~ ™I

and so
£2TA < (ETA —1)r,
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whence the right-hand inequality of part (ii) also follows. Equiv-
alently,

From this the left side of part (iii) follows. Using the right-hand
inequality in the previous display, we see that

—Tx 2
L-e =1 r /12 —d4r
_, -V
4r
_T+m
2r ’

which gives the right-hand side of the inequality in part (iii). e

Theorem 6 means that if any one of the conditions (i), (ii) and
(iii) fails to hold, then we do not have an admissible solution. But,
at the same time, the satisfaction of all three is no guarantee that
an admissible solution exists. The following example is intended
to illustrate this.
Example 2 Suppose that K = diag[1,2]. Let H/L =r = 9/2.
Choose T' = In+/3 and let ¢ be any vector whose first component
is zero and v/3L < ||c|| < 3L. Then the inequalities stated in The-
orem 6 are satisfied,-but the system has no admissible solutions.

Tt is clear that the inequalities in Theorem 6 hold. But, if the
system has an admissible solution for the given values of T' and ¢,
we see from Theorem 3 that

2
_ 23 - c
LE <e 2T|61|2 +e 4T‘C2|2 —e 4TIC2|2 == ”g“ ,

" which is false. e

The same example shows that the converse of Theorem 4 is
false.
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We now state a simple criterion for admissibility.
Theorem 7 Given a symmetric positive definite matrix K, whose
smallest and largest eigenvalues are A, A, respectively, and positive
constants H, L, with r = H/L such that

SIA

—':c-;20<$}51".

mm{l_e

Choose T so that €T < (1 — e~ T*)r. Having selected T, now
choose the vector ¢ so that

Le_TA <l £ (1—-eTHH.

Then the system (1) has an admissible solution.
Proof: This is a consequence of Theorem 5. o
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WHY PHONON LINES DON'T CROSS
John Gough

Abstract We report on recent developments in quantum stochastic
approximations of physical systems, the relative merits of Gauss and
Wigner distributions and the physical reasons one should arise rather
than the other in a model of an electron interacting with a phonon field.

1. Introduction

Eugene Wigner, [1], introduced ensembles of N x N real matri-
ces to model the spectra of complex nuclei and noticed that the
N — oo limit corresponds to a non-commutative central limit
theorem involving a non-gaussian distribution as the limit distri-
bution. The new distribution, called the Wigner or semi-circle
law, frequently appears in place of the gaussian when one departs
from ordinary probability to quantum probability, that is, when

- random variables are represented as non-commutative operators

and probability as a positive normalized functional.

In the 1980’s Hudson and Parthasarathy, [2], attempted to
construct quantum (i.e. non-commutative) stochastic analogues
to the brownian motion, and indeed Poisson, processes and the
calculi by using the inherent gaussianity of bose fields. Later
Voiculescu, [3], and Kiimmerer and Speicher, [4], used free fields
to construct free noise processes which are related to the Wigner
law, ‘

Here we report about the emergence of a new type of noise
from physical models which is closer to the Wigner class than the
Gauss class. It was first discovered by Lu by examining moments
and later proven in general in [5]. This report centres on the

_physical mechanism behind this, [6].
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