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Research Announcement

THE MIDPOINT UPWIND SCHEME
Martin Stynes and Hans-Gérg Roos

A modified upwind scheme is considered for a singularly perturbed
two-point boundary value problem whose solution has a single
boundary layer. The scheme is analysed on an arbitrary mesh.
It is then analysed on a Shishkin mesh and precise convergence
bounds are obtained, which show that the scheme is superior to
the standard upwind scheme. A variant of the scheme on the
same Shishkin mesh is proved to achieve even better convergence
behaviour. Full details appear in [1].
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Reviewedlby Pat Fitzpatrick

Coding Theory will soon be 50 years old: it dates precisely back
to Claude Shannon’s fundamental 1948 paper, [14]. For such a
young subject it has achieved a great deal, particularly in estab-
lishing connections with fundamental mathematics in a wide vari-
ety of areas encompassing group theory, finite geometries, com-
binatorics, number theory, algebraic geometry, algebraic function
fields, computational algebra, and complexity theory. These rela-
tionships are mainly in the sense that mathematics from other
areas is applied to inform the coding theory, for instance in the
development of the theory of geometric Goppa codes from curves
over Fy, but there have also been some notable applications in
the opposite direction, such as in the proof of the non-existence
of a projective plane of order 10, [8], and in classical sphere-
packing problems, [2]. Coding theory is, in essence, an area of
applied mathematics, although it makes use of mathematics which
has, until recently, appeared only on the “pure” gyllabus. Many
researchers in coding theory are engineers and many of the funda-
mental concerns are with specifically engineering questions such
as the implementation of finite field arithmetic in logic or the
complexity of decoding algorithms.

Not so the present volume! This is a book about mathemat-
ics, written for mathematicians. The presentation is condensed
almost to the point of terseness, but the writing is superb, remi-
niscent in style of what one finds in the poet’s quintessential “slim
volume.” The book began life as a set of lecture notes, with the
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first published edition written in 1981 and one is immediately
impressed by the obvious qualities of elegance and precision that
must have imbued those lectures {given not only by the author but
also by A. E. Brouwer, H. W. Lenstra, and I. C. A. van Tilborg,
among others). It is also apparent that the audience required
what the author refers to as a “fairly thorough mathematical back-
ground,” in abstract algebra certainly, as well as in certain topics
from number theory, probability, and combinatorics. Van Lint
provides a whirlwind tour through the necessary background in
the first chapter, setting up notation and quoting results with-
out proof on algebraic structures, finite fields, combinatorics and
probability, but giving a litile more detail on the rather less well
known theory of Krawtchouk polynomials (of which more later).
He then sets cut a basic five chapter course in coding theory fol-
lowed by five further chapters on what he regards as important
topics (and we have every reason to be convinced of the soundness
of his judgement)..

An [n, M, d] block code C over the finite field F, is a subset of
size M of the n-dimensional vector space FY'. In general the code
is not required to have any structure, but if it forms a subspace of
dimension k (so.that |M| = ¢*) then it is called an [n, k,d] linear
codes. The ambient space is equipped with the Hamming distance

dH(u,v) = |{E UG ;é 'U,;}l

and the parametér d denotes the minimum distance between code-
words in C. The value of log, M/n (or k/n) is known as the rate
of the code as it represents the rate at which information can be
transmitted via an embedding ¢ — Fy. It is easy to see that a
codeword ¢ € C sent over a noisy channel (in which errors are
introduced independently of position) and received as é can be
decoded uniquely to ¢ with maximum likelihood provided that
the number of errors dg(é,¢) < L‘iz;lj. This begs the guestion of
whether any deceding algorithm can be carried out effectively—
direct comparison of & with every codeword is of exponential com-
plexity and therefore useless in practice. Consequently, two of the
major themes in coding theory research are to define and analyse
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classes of good codes having relatively large minimum distance,
and to find codes for which one can construct polynomial time
decoding algorithms.

Shannon’s main theorem establishes the existence of good
random codes that for sufficiently large values of n can be used in
principle to make decoding error probability arbitrarily small (at
appropriate rates). This is clearly the cornerstone of the theory
and van Lint makes sure that it has a prominent place in his treat-
ment. However, since Shannon’s codes are completely unstruc-
tured, considerations of practicality form a competing requirement
and it has proved difficult to find codes with practical decod-
ing algorithms that achieve anything like the error probability
promised by Shannon’s theorem.

After the introduction of some analytical tools such as weight
enumerators {essentially generating functions for the numbers of
codewords of given weights in a code), the dual code, and the fun-
damental MacWilliams identities relating a weight enumerator of
a code with that of its dual, some specific classes of codes are
described. The ubiguitous Golay codes are included, of course.
Next come Beed—Muller codes which are not as good as some,
but whose advantage is that they are easy to decode. More impor-
tantly from van Lint’s mathematical perspective they link coding
theory with finite geometries and Boolean functions and we are
introduced to the automorphism group of a code (the coordinate
permutations that preserve it). A short section (added in the
second edition) on Kerdock codes, which are subcodes of certain
Reed—Muller codes, confirms our belief in the author’s instincts,
since one of the major developments of the 1990’s is the discovery
by Hammons et al, [6], that the (nonlinear, binary) Kerdock codes
can be represented as images of linear codes over Zg4.

A restricted version of the decoding problem for a code with
minimun distance d is to decode up to t = [ #51] errors for some
4 < d (and record a decoding error if any received word does not
lie within £ errors of a codeword). One type of code for'which such
a bounded distance, incomplete decoding algorithm is the class of
BCH codes, a subset of which is formed by the Reed-Solomon
codes that are widely used in terrestrial and satellite communi-
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cations, compact disks and computer disk drives. A BCH code
C over Fy may be conveniently defined as an ideal in the poly-
nomial algebra A = F [z]/(z™ — 1), where n and g are relatively
prime to avold repeated factors in the decomposition of z" — 1
into irreducibles. Thus, C is generated by a polynomial g dividing
z® — 1 and this means that the code is cyclic in the sense that
every cyclic shift of a codeword is again a codeword. The theory
of general cyclic codes is ultimately derived from the decomposi-
tion of the semisimple algebra 4 as a sum of minimal ideals based
on a system of orthogonal primitive idempotents. Van Lint cov-
ers this—as do most coding theory books— from first principles,
without appealing to general results. The BUH theorem says that
if 7 is a primitive n-th oot of unity in an extension of F, and
if g contains the consecutive set vy, v, ..., 7~ among its roots
then the code € has minimum distance at least §. Extensions of
this result, proved by Hartmann and Tzeng, [5], and Roos, [13],
are based on the existence of several consecutive sets of powers
of v being among the roots of g. The best known bound of this
type was proved by van Lint and Wilson, [10]; it is included in
-the section on BUH codes and the earlier results are derived as
“special cases. : . :

In general the problem of finding the minimum distance of
a given code or class of codes (and hence their exact error cor-
recting capability) is difficult and the determination of upper and
lower bounds is another principal theme of the theory. Linearity
is not assumed and the function A{n,d) is defined as the maxi-
muin value of M for which an [n, M, d] code exists. A code C with
|C| = A{n,d) is said to be optimal. The study of this function is
the central problem of combinatorial coding theory and van Lint
provides an overview of the known bounds. Of particular inter-
est is the construction of classes of asymptotically good codes
with parameters {n;, M;, d;] such that the rate &;/n; and the rel-
ative distance d;/n; are both bounded away from zero as i = co.
None of the classes used in practice (such as the BCH codes) have
this property, but an outstanding example discovered by Juste-
sen, [7], and representing a major achievement of the 1570’s, has
its place in van Lint’s treatment. The introduction of Justesen
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codes requires the author to develop the notion of concatenation
of codes which is valuable in itself, since this technique (in which
the codewords of an inner code are used as information vectors to
a second outer code) is widely used in practice (in compact disk
and deep space telemetry, for example). Also, the recent general-
ization to what are known as turbo-codes, [1], [4], has produced
some of the potentially best performing practical coding schemes
known today.

Perhaps the most significant of the distance bounds, espe-
cially in terms of motivating new research, is the Gilbert (or
Gilbert-Varshamov) bound. This concerns the asymptotic rate

a(%) = limy o0 SUP n~! logq Aln, %)

: . -1
of an optimal code and establishes the existence for 1 < % <=

of codes with
o) > 1- Hy(9),

where H is the entropy function
Hy(z) = zlog, (g — 1) - zlog, z — (1 — z) log, (1 ~ 7).

For many years this bound on a(2) was thought to be best pos-
sible, until 1982, when in a remarkable development Tsfasman,
Viddut and Zink, [17], discovered a class of codes improving the
bound for g > 49. Their codes, constructed from algebraic curves
over F,, are based on the pioneering work of Goppa in the carly
1980’s (see [3]) and as a consequence of their discovery there has
been an enormous amount of research over the past ten years
in the development of new algebraic geometry (or AG) codes
and the search for efficient decoding algorithms. An alternative
function field approach to these codes is the subject of a book
by Stichtenoth, [15], reviewed recently in these pages by Gary
McGuire, [11}. Van Lint manages to give a good flavour of the
geometric ideas in just a few pages appended to the original first
edition section on Reed-Solomon codes, of which the algebraic
geometry codes are a natural generalization.
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A notable feature of van Lint’s overall treatment of coding
theory is the prominent position given to the Krawtchouk poly-
nomials. For fixed values of n and ¢, this class of orthogonal
polynomials is defined as

Ki(z;n,q) = ;iﬂ G) (: ~ j) (g — 1)k

(m) _zla=1)(@=j+1)

J 3!

where

, = €R.

Properties of these polynomials are used in several places, such as
in the analysis of weight enumerators, referred to earlier, and in
the classification of perfect codes. Defining a code over a general
alphabet @ rather than just over ¥, a perfect t-error correct-
ing code C of length n has the the property that the Hamming
spheres Si(z) = {c¢ € {|d{c,z) < ¢} are disjoint and completely
fill the space Q™. It was shown by Tietdviinen, [16], and van
Lint, [9], that the only nontrivial t-error correcting perfect codes
with ¢ > 1 and || a prime power are the Gelay codes. In the
book van Lint proves the binary case using a remarkable suffi-
cient condition; known-as Lloyd’s Theorem (see [9]), that if a
binary perfect t-error correcting code of length n exists then the
polynomial ¥,(z) = K;(z — 1;n — 1,2) has ¢ distinct zeros among
the integers 1, 2, ..., n. This chapter also contains a study of
binary uniformly packed codes {which generalize perfect codes)
- using certain sequences of numbers defined from linear function-
als on the group algebra CF%, as well as further properties of the
Krawtchouk polynomials. : '
In the last two chapters of the book van Lint departs from
the prevailing theme of block codes to introduce the reader to
topics with radically different flavours. First there is a brief look
at arithmetic codes which are used in the detection and correc-
tion of errors in ordinary arithmetic computations. Much more
important from a practical point of view, convolutional codes are
considered. In these codes the information sequence is potentially
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infinite and the encoded stream is formed by interleaving the con-
volutions of the input stream with two or more finite sequences (in
practice of length no more than about 10). As van Lint notes in
his introduction to this chapter “the mathematical theory of con-
volutional codes is not well developed ...[and this is] one of the rea-
sons that mathematicians find it difficult to become interested [in
them].” But convolutional codes are widely used in practice, often
concatenated with an outer Reed—Solemon code, and moreover,
the well known Viterbi decoding algorithm that is used for convo-
lutional codes also plays a significant role in getting rid of inter-
gymbol interference in the read-write channel for computer disk
drives, (Permitting such intersymbol interference in a controlled
manner is essentially what has led to the enormous increases over
recent years in the density of data storage.) So these codes are not
only very open to mathematical analysis but also very important
in view of their applications. A particularly interesting and poten-

tially fruitful avenue is in the investigation of the automorphism

groups of convolutional codes pioneered by Piret, [12], and true
to form van Lint hits the right note by dealing with that aspect
in a short final section of this last chapter.

Van Lint’s book might almost be regarded as a collection of
“adited highlights” of coding theory, in many of which he has been
personally involved. One wants to read and re-read in order to
fully digest and savour their excellence. There is no doubt that
the reader will have to work at this book, but the rewards are
handsome.
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