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AN APPROACH TO THE NATURAL
LOGARITHM FUNCTION

Finbarr Holland*

1. Introduction

In many, if not all, modern calculus texts, the logarithm function
is usually defined, and its properties developed, following a dis-
cussion of the Riemann integral. It seems to me, however, that, for
many students of the physical, engineering and biological sciences,
this is much too late, and a careful treatment of the elementary
functions should be given much earlier in any course aimed at
such students. The emphasis here is on the word ‘careful’: I mean
that every effort should be made to keep the technicalities to a
minimum, without sacrificing rigour, even if this means that some
results may have to be stated without proof. Instead, the utility
and importance of these should be pointed out at every opportu-
nity.

This note, then, is a contribution to the ongoing debate on
what material should be taught in a modern calculus course, how
it should be treated and at what stage it should be presented. Its
main purpose is to outline an approach to the natural logarithm
function that can be adopted in any a course that treats sequences
and series early on in a serious manner, starting with a discussion
of the completeness axiom for the real numbers. Its main novelty
is that it deals with sequences which are indexed on the dyadic

*The author acknowledges the warm hospitality extended to him
and his wife, Mae, by the staff of the Department of Mathematics and
Statistics, University of West Florida at Pensacola, during their visit
there in 1996 when the work was written up.
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integers. This simplifies many of the technical details that would
otherwise arise.

The paper is organized as follows: after first outlining in the
next section our philosophy of how limits might be treated in
such a course, we show how to define the dyadic root of a positive
number, employing an iterative procedure that the Babylonians
are credited with using to extract square roots, [Ev, Ne, Wa].
Next, we modify slightly the approach adopted by Euler, [Ed], to
define the natural logarithm function as a limit of a sequence of
functions, by passing to a dyadic subsequence, a suggestion I owe
to Pat McCarthy. Although this idea is not new (see [La, pp 39-
48], for instance), it doesn’t appear to have been exploited in any
of the recent popular textbooks. Finally, we relate the logarithm
to the area of a hyperbolic segment by utilizing the method of
exhaustion by triangles that Archimedes, [Ed, He, KL, To, Wa],
used in his quadrature of the parabola, something which seems to
have gone unnoticed before now.

In an Appendix, we show how to treat the number e in a
similar fashion and relate it to the logarithm.

2. Limits of Sequences

It seems to me that sequences and series should be introduced
early on in a calculus course; and that, in many courses, the treat-
ment should encompass sequences of complez numbers as well. A
course on limits of real sequences and series should begin by devel-
oping the students’ intuitive notion of a limit of a sequence and
they should be encouraged to use a calculator to study and pre-
dict the eventual behaviour of some standard sequences. At an
appropriate time, they should be told the definition of a limit,
and taught how to apply the definition in a few simple cases.
And, at the very least, it should be demonstrated for them that
a convergent sequence has a unique limit and that every conver-
gent sequence is bounded. The following basic results should be
stated for all students, with rigorous proofs supplied only to able
students.

L1: The sum rule. If a,, and b, are convergent, then a, + b, is
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convergent and
lim(a, + b,) = lima, + lim by,

L2: The product rule. If a, and b, are convergent, then a, b,
is convergent and

lim(a, b,) = lim a,, lim by,.

L3: The positivity rule. If e, > 0,n =1, 2, ..., and a, is
convergent, then lima, > 0. .
L4: The shift rule. If a,, is convergent, then so is an4; and

lim On41 = lim Qp.

L5: The quotient rule. Ifa, # 0,n =1, 2, ..., and ¢,

converges to a non-zero limit, then

= 1
lim — = = .
an, lima,

In other words, they should be told, in some form or other,
that the collection of convergent sequences is an algebra that is
invariant under the shift operator that maps a, to a1, and that
the limit function is a positive, linear and multiplicative functional
on this algebra.

Examples illustrating the usefulness of these rules should
be provided, stressing that they enable us to eveluate limits of
sequences in terms of limits of more elementary ones, once these
are recognized. Exercises should be given to ensure that students
become comfortable when dealing with rational expressions of con-
vergent sequences. Examples should also be given that alert them
to the possibility that there are convergent sequences whose limits
are not explicit quantities and motivate the following question: are
there criteria that can be used to test a sequence for convergence?
This and other questions should lead the classroom discussion to
bounded monotonic sequences and the completeness of the reals,
which we are content to state as the following axiom.
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Axiom 1 Every bounded monotonic sequence of real numbers ig
convergent.

We refine this a little bit by establishing the following result.
Theorem 1 Suppose that a, is increasing and bounded above,
with a = lima,,. Then

ey S @ B =120 .

Moreover, the inequality is strict, if a, is strictly increasing.
Proof: Suppose that this is not the case. Then there is an integer
n' > 1 such that an > a. Let € = a,y — a. Then € > 0. Since a,
is convergent, there is a positive integer ng such that

len, — a| < €, ¥n > np.
Since we're dealing with real sequences, this can be restated as
a—e<a, <a+te Vn>ng.

In particular, a, < a + € = ay,¥n > ng, which conflicts with the
fact that a,, > a, if n > n'. This contradiction ends the proof of
the main part. We leave it to the reader to supply the gloss.

3. Dyadic Roots

The Babylonians of old compiled tables of squares and extracted
square roots of positive numbers, apparently using essentially
the iterative scheme below, [Ev, Ne, Wa]. It's clear that by
repeated application of their methods they could have obtained
good approximations to fourth roots, eighth roots etc., of any
positive number.

In what follows, and throughout the rest of the article, N will
stand for a dyadic integer of the form N =2",n=1,2,...

Theorem 2 N be a dyadic integer. Let a > 0. Then there is a
unique real number x > 0 such that

r =a.
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=4

Proof: Let N = 2™, where m is a positive integer. We prove the
statement by induction on m. The key step is to show that the
equation z? = a has a unique nonnegative solution. This is clear
if ¢ = 0. So, suppose that a > 0 and consider the (Babylonian)

sequence an defined by

(an+i),n=1,2,...,

Gn+1 = -
™

(=R ]

where a1 is any positive number whose square is > al Ttis
clear that the sequence consists of positive terms. Also, a simple
computation shows that a2 ; > @, n =1, 2,..., independently of
the choice of ¢;. But now this implies that

(@ —a})

<0,n=1,2,...
2a2

dnp+1 — Cn =

In other words, a, is a decreasing sequence of positive numbers
and so, by Axiom 1, is convergent to z, say. By L3, z > 0. By L2,
z? = lima2. Hence, by an easy consequence of L3, 2 > a > 0.
So, ¢ > 0. Next, applying L1, L4 and L5, we see that

a

z =limany = %(liman + lin?a.n) = %(-’E + E)’
and so, £2 = a. It’s easy to see that this z is the only positive
solution of this equation.

It is also clear how to build an inductive argument on this
and establish the theorem. This ends the proof of Theorem 2.

The uniqueness part of this theorem enables us to define the
Nth root of any ¢ > 0. We use the notations ¥/a, a!/" inter-
changeably to denote the unique Nth root of zIV = a, where

L In other words, if ag is an approximation to the desired square
root, a better one is obtained by taking the arithmetic mean of aq and
a/ag, the square of one of which is bigger, and of the other, smaller
than a.
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N =1, 2, 4,8, .... Uniqueness also guarantees that ¥ab =
Ya Vb, Ya,b > 0, a fact that will be needed below.

Experimentation with a hand-calculator that has a square-
root key should lead students to the truth of the following.

Lemma 1 Suppose that a > 0. Then

lim Y¥a=1.

n—00

Proof: First, suppose that ¢ > 1 and put a, = {4, n =1, 2,
..., S0 that the terms of the sequence are v/a, ¥/a, ¥a, .... We
wish to show that the sequence is decreasing. But it is clear that
an > 1,and a2, = a,. Hence a2, = a, < a2, whence it follows
that a,41 < a,. Thus lima, exists. Denote the limit by b. Then,
by L2 and L4, b = lima, = (lima,41)?> = b*. But, by L3, b > 1.
Hence b = 1. This proves the result when e > 1. Using this and
L5 we see that 1

i N ot =
luss ¥/ lim §/1/a !

if 0 < a < 1. This completes the proof.

4. The logarithm function

Euler, [Ed], established that the sequence n({/z—1),n =1, 2,...,
has a limit for every x > 0, and that the limit function satisfies the
law of the logarithm. We consider the subsequence of this based
on the dyadic integers, which we've just seen makes sense. Again,
students should be encouraged to use a calculator to examine the
behaviour of this for different values of = before being shown the
following.

Theorem 3 Let = > 0. Then the limit

. N
o F(VE=1)

exists. Denoting this limit by £(z) we have that
(a) £(1) = 0;

(b) £(zy) = &(z) + £(y), Yo and y > O;

() (z—1/z<{l(x)<z-1Vz>0
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Proof: We will show that the sequence
L) =N(¥z—-1),N=2",n=12,...,
is decreasing. But this is an immediate consequence of the simple

inequality
2(vz-1)< (z-1),

which holds for all # > 0, with equality when and only when

z = 1. Thus we have
o1 (z) <lu(z) <z -1,n=12,...

To continue, suppose that z > 1. Then the terms of £,(z) are
also nonnegative. Hence the sequence is decreasing and bounded
below, and, so, it is convergent. We can remove the restriction on
z by noting that

N(¥z-1)=-N(¥/1/z-1) ¥z,

and using Lemma 1 and L2. Thus, in all cases, the limit exists.
It emerges, too, that £(z) = —£(1/z) and 4(z) < = — 1. Hence (a)
and (c) follow. Finally, (b) follows from the identity

N(YEg-1) = N(Va - 1) ¥5+ N(¥5 - 1),

on applying L1, L2 and Lemma 1.

5. The area of a hyperbolic segment

In 250 BC or thereabouts, Archimedes, [He, K1, To, Wa|, devised
two rigorous methods—the method of compression and the method
of ezhaustion—to measure the area of a parabolic segment. He
proved that the area of such a region is four thirds the area of
the largest triangle that can be inscribed in it. Some 1800 years
later, Cavalieri, [Ed, To], built on the method of compression to
find the area under the curves y = z*, k = 3, 4,..., 9, and paved
the way for Riemann’s development of the integral. In between, in
1647, the Belgian Jesuit Fr. Gregorius a Santo Vincentio, [Ed, To],



46 IMS Bulletin 38, 1997 B

used similar ideas to make the following connection between the
logarithm function and the area under an arc of the rectangulay
hyperbola y = 1/z, = > 0. Denote by A(e,b) the area of the
region {(z,y):a <z <b,0<y<1/z}. Let t > 0. Then

Ata,ib) = Aa,b).

Had he used the second method of Archimedes, which we're noy
going to apply, Gregorius might have discovered the following
result.

Theorem 4 Let 0 < a < b.
hyperbolic segment

S(a,b) = {(:J:,y) ra<z<bl/z <y}

Then the area, H(a,b), of the

is given by
b—a 1 1 1. b .

{2 + 3} - S {lim ba(2) ~ lim (P}
In particular, H(ta,tb) = H(a,b) if t > 0.
Proof: The set S(a,b) is clearly convex, and for any ¢ € [a, b] the
triangle, T'(a, b)(c), with vertices A(a,1/a), C(e, 1/¢), B(b,1/b),
is contained in S(a,b). The area of T'(a, b)(c) is easily seen to be
given by

b=-a 1 1
7 g t™

H(a,b) =

b—

a 1 1 b—a
2

¢ 1 b—a 2

LA P F i N Nt A s | =
BTG -G
with equality if and only if ¢ = v/ab, the geometric mean of a and
b.2 Thus, the area of the largest triangle that can be inscribed in
the hyperbolic segment is given by

b—a 1 1 b—a

2
e+ g

el Loyt s

2 This result should be contrasted with the corresponding
statement for the parabola y = z2, when ¢ turns out to be the
arithmetic mean of a,b, as Archimedes discovered using purely
geometric reasoning.

A(a,b) =
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Geometrically, just as for the parabola, the largest triangle occurs
when C is the point on the arc joining 4 and B where the tangent
is parallel to the chord AB.)

Note the homogeneity property:

A(ta, tb) = A(a,b), ¥t > 0.

We've thus obtained a decomposition of S(a, b) into three dis-
joint regions—which is optimal in a certain sense: a triangle, which
we label T(0,0), with area A(a,b), and two segments S(a, vab)
and S(vab, b).

Next, we consider the segments S(a, v/ab) and S(v/ab, b). The
triangles of largest area that can be inscribed in these segments
have areas A(a,+/ab) and A(+/ab,b), respectively. We have

A(a, Vab) = A(va, Vb) = A(Vab,b),

by homogeneity.?

Up to this point, we have obtained a decomposition of
S(a,b) into seven disjoint regions consisting of three triangles,
T(0,0),T(1,0),T(1,1), say, with corresponding areas A(a,b),
A(/a,vb), A(Va, v/b), and four segments. Next we partition
each of these residual segments in the same way into a triangle
and two segments, noting that the triangles have the same area
equal to A(#/a,vb). Continuing in this way, we partition the
segment S(a, b) into a countable union of triangles T'(n, k), k =0,
1, ..., N—=1,n =0, 1, ... with corresponding areas A(n,k),
k=0,1,...,N-1,n=0,1, ..., where

An, k) = A(Va, Vb),k=0,1,...,N-1,n=0,1,....

We conclude that the area of S(a,b) is given by the sum of
the infinite series of nonnegative terms

oo N-1 [o's)

H(a,b)=3_ > Aln,k) =3 NA(Va, V5).

n=0 k=0 n=0

3 In light of his success with the parabola, it seems inconceiv-
able that Archimedes didn’t know these facts about the hyperbola,
but I haven’t encountered any mention of them in the literature.
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To establish the convergence of the series and determine its sum,
consider its sequence of partial sums s,. Since the terms arg
nonnegative, this sequence is increasing: s, > 3,,n=0,1, ...,

We have
so = A(0,0) = &(a,b) = p —} {\/j“\/‘}
and
s = A(0,0) + A(1, 0)+A(1 1)
=Ala )+2A(\/-=
T +- z{\ﬁ - /5
Inductively, we see that
b—a 1 1 arzntifb apifa
=—{-+3=-2"" /-~ =
= 2526 + ) - 3 (b/0) - tua(a/B),

n=20,1,.... Already, this tells us that the increasing sequence
s, is bounded above by

b—a,1 1
7 &t

a

and so, by Axiom 1, lim s,, exists. (From this, of course, we can
deduce also that the sequence

N{”{/g—”{/%},n=0,17...,

is convergent, if we didn’t already know that fact.) In any event,
the claimed result follows. This ends the proof of Theorem 4.
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Of course, we have that

=% _b-a =
H(a,b)— 1 S = 5

~lim N{”\ﬂ— /2

R L ) — &(a/b))
b—a 1l
=3 {E+ 5} —E(b/a)-

Readers will recognize that the first term- represents the area of
the trapezium with vertices (a,0), (b,0), (b,1/b), (a,1/a). Since
H(a,b) > so = A(a,b), Kepler’s inequality :

E(b)—ﬂ(a)< 1
b—a ~ +/ab

follows, [To].

5.1 Exercises

1. Show that S(a,b) is a subset of the parallelogram formed by
the chord AB, the tangent parallel to this and the ordinates
z=a,z=>0

2. Deduce from the previous exercise that H(a,b) < 2A(a,b).
3. Now use this to obtain the inequality:
2 1.1 1,  £0) —£a)
vab 2(a+b)< b—a ’

a companion for Kepler’s. (Readers will observe, inter alin,
that an independent proof of this and Kepler's inequality
implies the arithmetic-geometric mean inequality, which, of
course, we've used in our derivation of the expression for
H(a,b).)

4. Let a < e < b. Show directly from the definition that

(b—a)(c—a)(b— c)
2abc

H(a,b) = H(a,c) + H(e,b) +
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5. Suppose that f(z,y) is defined and continuous on (0, c0) x
(0,00) and satisfies the homogeneity condition: f(tz,ty) =
flz,y), Vz,y,t > 0, and the functional equation:

£@,2) = fa)+ )+ EZDEEDEZD) vy 5

Determine f.

6. Appendix

For those interested in relating the number e to the treatment of

the logarithm given here, we describe how to introduce e using
similar ideas, and to show that £(e) = 1.
Since :z: '
(1+ 5)2 >14x

for all real z it is easy to see that the sequences

1.~ 1.\~ 1.~
a+% a-P% a-m"%
where N =27 n=1, 2, ..., are increasing. The second and third
are clearly bounded, since

g
<(1--=)"<
-t <,

and

1 :
9/165(1—ﬁ)N<1,n=1,2,...,

and hence are convergent to non-zero limits. (We can deduce at
this stage, if we want to, that the first is also convergent because

i 1-g)¥ 1 '
(1+_)N:—N <—=4n=12 )
N (1—%)” 1/4 : —
We show that g
¢ =lim(1 — ﬁ)N =1.

8 @
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To see this, note that
¢ =lim(1 - L)ZN = lim(1 — - )4
N? 4N?2’

by L2 and L4. But

5 (96 — 16z + 22)

556 > (1-1z), V¥z € (—o0,00).

(1_.:_:_)4=1—.'5+$

Hence 1
¢? > lim(1 — F)N =
But 0 < ¢ <1, Thus ¢ = 1. It now follows that
! Ly _q A= g2
A+ ) =T e
_ lim(1 - w2)Y
~ lim(1- )N
_ 1
C lim(1- )N
So, following Euler, and setting
= 1i (1 _lu)N
ESamAE T

we see that 1 i
] 1 [ N_
- lim(1 N)

But, since the sequences are increasing, Theorem 1 tells us that

1.~ 1 N
= < = =1,2....
(1+N) Se_(]_-‘%)N (N—l) in b R | ¥
whence it results that
N
1<) € i n =12,
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Appealing once more to L3 we deduce that £(e) = 1.
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TORONTO SPACES, MINIMALITY,
AND A THEOREM OF SIERPINSKI.

Eoin Coleman?!

In this note we gather together some theorems in the literature
to resolve a problem suggested by P. J. Matthews and T. B. M.
McMaster in a recent article, [1]. We also make an observation
which allows one to deduce within ordinary set theory that neither
the real line nor the Sorgenfrey line contains a Toronto space of
cardinality the continuum (improving one of their results), and
we establish some relative consistency results. To conclude the
paper, we explain how a similar question arising from a theorem
of Sierpinski (can every subset of the unit interval I of cardinality
the continuum be mapped continuously onto I?) is independent
of ordinary set theory.

1. Toronto spaces and minimality

Matthews and McMaster ask whether there are any reasonable
set-theoretic assumptions which will enable one to prove or dis-
prove the assertion Qmin(x) where & is an uncountable limit car-
dinal. Recall that the assertion Qmin(x) says:

(a) neither T'(x) nor T(x) N T is supported by its weakly quasi-
minimal members,

and

(b) any subfamily of T(k) or T(k) N T, which does support the
whole family has more than k members.

T am very grateful to Dr Peter Collins for an invitation to present
this and related material to the seminar in Analytic Topology at the
Mathematical Institute, Oxford, in November 1996.
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