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We now state a simple criterion for admissibility.
Theorem 7 Given a symmetric positive definite matrix K, whose
smallest and largest eigenvalues are A, A, respectively, and positive
constants H, L, with r = H/L such that

SIA

—':c-;20<$}51".

mm{l_e

Choose T so that €T < (1 — e~ T*)r. Having selected T, now
choose the vector ¢ so that

Le_TA <l £ (1—-eTHH.

Then the system (1) has an admissible solution.
Proof: This is a consequence of Theorem 5. o
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WHY PHONON LINES DON'T CROSS
John Gough

Abstract We report on recent developments in quantum stochastic
approximations of physical systems, the relative merits of Gauss and
Wigner distributions and the physical reasons one should arise rather
than the other in a model of an electron interacting with a phonon field.

1. Introduction

Eugene Wigner, [1], introduced ensembles of N x N real matri-
ces to model the spectra of complex nuclei and noticed that the
N — oo limit corresponds to a non-commutative central limit
theorem involving a non-gaussian distribution as the limit distri-
bution. The new distribution, called the Wigner or semi-circle
law, frequently appears in place of the gaussian when one departs
from ordinary probability to quantum probability, that is, when

- random variables are represented as non-commutative operators

and probability as a positive normalized functional.

In the 1980’s Hudson and Parthasarathy, [2], attempted to
construct quantum (i.e. non-commutative) stochastic analogues
to the brownian motion, and indeed Poisson, processes and the
calculi by using the inherent gaussianity of bose fields. Later
Voiculescu, [3], and Kiimmerer and Speicher, [4], used free fields
to construct free noise processes which are related to the Wigner
law, ‘

Here we report about the emergence of a new type of noise
from physical models which is closer to the Wigner class than the
Gauss class. It was first discovered by Lu by examining moments
and later proven in general in [5]. This report centres on the

_physical mechanism behind this, [6].

21
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2. Wigner versus Gauss

Let h be a separable Hilbert space. The Fock space over h is
defined to be H = &2 ,{®"h}, where ®°h = C. An operator
a'(f), with argument f € h, is defined by linearity from the map-
ping : ®"h — @" 1A with

)P @ @Pn fOP1®..® pn (2.1)

The operator af(f) is called a creator; its adjoint a(f), called an
annihilator, can then be defined as the mapping : ®"h = ®@"~'h
with

a(f )1 @ ... ® ¢ =< f, 01 > P2 R ... @ Pp.. (2.2)

They satisfy the relation

a(f)a*(g) =< f,9>. (2.3)

This relation is often called the free relation. The vacuum vector
is defined to be the vector = 18 03¢ 0® .... The vacuum
expectation of an observable X is then taken as

EX]|=<¥,XT>.

In particular, let X(f) = a(f) +af(f): the distribution p of X (f)
is obtained via the characteristic formula '

Ble®X(N] = /09 e*®p(z)dz (2.4)

—CO

In order to calculate an expression like
< ¥,a*(gn)...a%(91)¥ >,

where a(g;) denotes either a(g;) or af(g;), we note that n must

be even and that the number of creators équals the number of

annihilators in order that the expression is non-zero. Furthermore

there must exist a non-crossing pair partition for the sequence €.,
.., €1 as outlined below.
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et

Following the well-known notation we write

A.a(f).B.a'(g).C =< f,g > A.B.C (2.5)

for arbitrary operators A4, B and €. This is a contraction and we
reserve the notation for the case of an annihilator with a creator
only, with the annihilator to the left of the creator.

The relation (2.3) and the fact that a(g)¥ = 0, Vg € h,
is enough to calculate the vacuum expectation of any product
of creators and annihilators. However we may give the rule of
thumb that any such expression equals the complete contraction
decomposition where none of the contraction lines are allowed to
cross (if no such non-crossing set of contractions exists then the
expression vanishes). :

Thus

Ela(gs)a' (g7)a(gs)algs)alga)a’ (gs)at (g2)a! (g1)] =

VAN

f@f(97)a(96)ﬂ(95)a(94)aT(93)01(92)ﬂf(91) -

< 93,97 >< 94,93 >< g5, 92 >< g6, 1 > - (2.6)

We note that, if a product of creators and annihilators admits a
non-crossing contraction decomposition, then it is unique. So

BIX(£)*"] = eallFIP,

where ¢, is the number of non-crossing n contractions, that is

_ 1 2n
‘= nriln )

n

which is also known as the Catalan number.
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One may then show that
1 T
ple) = (o),
TRk
where

w(z) = % 4 — 22x(_9,9)(). (2.7)

This is the so-called Wigner semi-circle! law.

If we symmetrize the n-space by means of the projector P
defined by

P$1®..840) == 3 6, 8. B0,

cES,

where S, denctes the symmetric group of degree n, consisting of
all permutations on {1,...,n}, then we may define the Bose Fock
space over h to be ®32,{P ®" h}. The Bose Fock space over C,
for instance, is Hardy space. .Bose creators and annihilators are
defined by

v*(g) =Pa‘(g) P (2.8)
and one has the commutationTelations .
[6(£), b (9)] = b(£)bl(g) — BN (B(F) =< f,g>. . (2.9)

The self-adjoint operator Y (f) := b(f) + bt(f), as is well-known,
is gaussian distributed with mean zero and variance ||f|| in the
vacuum state, i.e.

E[eis}’(f)] — e—%-*z“f”z' (210)

In fact, expressions of the type E[b* (f,)...b(g1)] can be calcu-
lated by summing over all sets of decompositions into pair con-
tractions. So

E[Y(£)*"] = dul|fII?,

where

1 The mathematically correct terminology of semi-elliptic distribu-
tion is often used.
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1 (2n)!
= ga

The number of crossing diagrams with n contractions is then equal
to d,, — c,. Note that
Cn 2n

dn  (n+ 1)

so the crossing contraction diagrams quickly out-proliferate the
non-crossing ones, see figure 1, p. 28,

3, Quantum Damping

Consider a quantum mechanical system 5 consisting of a single
electron in a metal. If the electron is close to the edge of a con-
duction band we may treat it as a free particle: if its momentum
is p, then its energy is

p2

e(p) e 2m:
where m is the effective mass. As a model of electric resistance we
couple the electron to a reservoir R which damps the motion: R
will be a field of quantum particles called phonons. We describe

the dynamical evolution using the Hamiltonian H) acting on the

combined state space Hs ® Hr (where Hg is the Hilbert state

space of the system and Hp is the Hilbert state space of the
reservoir):

HA={H5®IR+13®HR}+AHI, (3.1)

where ) is a coupling constant. The system Hamiltenian is Hs =
e(p), where p denotes canonical momentum, while

Hp= [ Bk wk)bl (k)b(k)
Hp= i/d%{ﬂ(k) @bt (k) - 01 (k) ® b(k)}

and the operators b°(k) satisfy the relations

[b(k), bt (K)] = 6*(k — '), [b(R),b(A)] =0.  (3.2)
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Here, bt (k) is the operator describing the creation of a phonon of
momentum .

The operators 8(k) act on Hg and should take the form
B(k) = e *¢ (3.3)

where ¢ is canonical position. This is the responsive part of the
interaction Hy. It is responsible for recording the recoil of the
electron when it emits or absorbs a phonon. For instance, in
figure 2, p. 28, we have an emission and absorption vertex. The
presence of the response ensures momentum conservation: so for
both diagrams p' = p— k. Note that associated with the emission
vertex is the the energy non-conservation by an amount A(p, k) =
e(p— k) +w(k) — e(p) and there is an equal and opposite amount
for the absorption vertex.

In some situations it is possible to make an approximation of
the type

g(k)= Dg(k) (3.4)

where D is independent-of % and-g is a scalar function (say
Schwartz on R32): this is the responseless approximation®. In
this case the interaction simplifies:to:.

Hr =4#{D® B'(g) - D! ® B(g)}

where
Bi(g) = f P g(R)B ().

The operators B®(g) are in fact creators/annihilators on the Bose
Fock space over L2(R*). Under the responseless approximation
one has p = p’ for D diagonal in p in figure 2, p. 28.

It is known that under a van Hove scaling limit (where time
is rescaled by 3;'1'-'_7 and one takes the limit A — 0), the response-
less interaction leads to a quantum brownian motion, [2], as limit

noise. This is due to the underlying gaussianity of the bose fields

2 In quantum electro-dynamics, this is known as the dipole approx-
imation; however, here the damping vanishes in general.
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and the simplicity of the responseless interaction. We now wish
to give an indication of why the same scaling limit for the proper
responsive interaction leads to a limit noise which is closer in spirit
to Wigner type than to gaussian type.

The key to understanding the limit noise in general is the
fact that the van Hove limit extracts the behaviour predicted by
the Golden Rule approximation of quantum physics. Consider
the diagram in figure 3, p. 28, which shows a crossing of phonon
lines. The phonons are virtual particles of momentum k and &'
respectively: it is implicit that in order to calculate the coefficient
associated with this diagram we integrate over all k and k'. How-
ever we must include the terms §(A; + Az) x (A + A4), where
A; is the energy non-conservation at the j*! vertex:

Ag+As = {e(p—k)+w(k) —e(p)} +{e(p—k') —elp—k—k)—w(k)}

_ —%k.k’ (3.5)

5o there is a restriction of the k, &’ integration to a set of mea-
sure zero in R®. As a rule, all diagrams which are crossing vanish
identically, while all non-crossing diagrams give a non-trivial coef-
ficient.

Thus the combination of the Golden Rule applied to each pair
of contracted vertices and the constraint of momentum conserva-
tion leads to the non-triviality of only the non-crossing diagrams.

The effect is of a universal nature. It even holds if the reser-
voir quanta are fermionic: in fact we may change the relations
(3.2) to anti-commutation relations b(k)bt (k) + b (k)b(k) without
changing the final numerical result as the non-crossing diagrams
do not have an associated sign change.
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