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NOTES ON APPLYING
FOR 1.M.S. MEMBERSHIP

1. The Irish Mathematical Society has reciprocity agreements
with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

2. The current subscription fees are given below.

Institutional member ir£50.00
Ordinary member R.£15.00
Student member IR£6.00
I.M.T.A. reciprocity member IR£5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in

the Irish Republic, a Eurocheque, or an international money-
order.

3. The subscription fee for ordinary membership can also be

paid in a currency other than Irish pounds using a cheque
drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$25.00.

If paid in sterling then the subscription fee is £15.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$25.00.

The amounts given in the table above have been set for the

current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.
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10.

Any ordinary member who has reached the age of §5 years
and has been a fully paid up member for the previous ﬁve
years may pay at the student membership rate of subscrip-

tion.

. Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical

Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

. Any application for membership must be presented to the

Committee of the LM.S. before it can be accepted. This
Committee meets twice each year.

Please send the completed application form with one year’s
subscription fee to :

The Treasurer, LM.S.

Department of Math. Physics

University College, Dublin

Treland
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
20th December 1996

The Irish Mathematical Society held an Ordinary Meeting at
12,15pm on Friday 20th December 1996 in the Dublin Institute for
Advanced Studies, 10 Burlington Road. There were 16 members
present. The Vice-President, C. Nash was in the chair. Apologies
were received from D. Hurley (President) and P. Mellon (Secre-
tary).

1. Minutes

The minutes of the meeting of April 1996 were approved and
signed. .

2! Matters arising

It was noted that D. Hurley has a contact who can sculpt the
proposed LM.S. Mathematics Olympiad trophy. This will be dis-
cussed at the next meeting. S v Tigg s

Concern was expressed by members from U.C.D. about the nar-
rowly won decision of the U.C.D. Academic Council to dispense

.with the bonus points for Honours Leaving Certificate Mathemat-

ics. :

The joint I.M.S.~Irish Mathematics Teachers’ Association venture
to organize a lecture for transition (4th) year secondary school stu-
dents took place successfully at U.C.D. The speakers were Martin
Newell and Phil Boland.

3. Bulletin

It was noted that the Christmas 1996 edition of the Bulletin is
now available and is being distributed by G. Lessells.

R. Gow (editor) appealed for articles for consideration for the next
issue.

It was agreed that the Bulletin should include a reference to the
IMS web-page URL http://www.maths.tcd.ie/pub/ims

1
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The Society recorded its gratitude to R. Gow (editor) for his efforts
in producing the Bulletin.

4. Treasurer’s Business

The Treasurer presented his interim report for 1996. The surplus
for the year stands at £2,812 but this includes many U.S. members
who have paid $50 in advance for five years’ membership.

The Treasurer reported that he has invested £2,000 in a 5-year
Saving Certificate. )

The Society is £300 in arrears with its E.M.S. subscription. In
view of the improved financial situation of the Society, it was
agreed that this should now be paid in full. However, some con-
cern was expressed about the fact that there are only seven L.M.S.
members who are also in the E.M.S. and that the benefit of mem-
bership includes just a newsletter.

It was agreed to allocate £800 towards the costs of organizing the
1997 September Meeting in D.IVT.**

It was agreed that £600 be set.aside.in each year 1997 and 1998
to cover the projected.costs-of the:proposed joint meeting with
the L.M.S. in May 1998. s

5. Septehlber Meetings -

It was noted that the September 1996 meeting at the Queen’s
~ University of Belfast was very successful and, thanks to the spon-
sorship of QUB, was self-financing. The Society recorded its grat-
itude to the organizers, and especially to Prof. D. Armitage and
Prof. A. Wickstead.

The 1997 September meeting will take place at D.L.T. on Thursday
and Friday, 4th and 5th September 1997. J. M. Golden is the main
organizer. -

It was agreed that the 1998 September meeting will take place
in the University of Ulster, Jordanstown or Coleraine, with K.
Houston as the main organizer.

6. Elections

Tt was noted that D. Hurley, C. Nash, M. Clancy, B. Goldsmith,
K. Hutchinson, G. Lessells and M, Tuite have all reached the end
of their two-year terms of office on the committee.

&

Minutes of IMS meeting
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An election took place to fill the six vacant committee positions.
The nominations were as follows:

Position Nominee Proposer Seconder
President C.Nashtt J.Pulé D.0O Mathina
Vice-Pres | D.Armitage C.Nash N.Buttimore
Ordinary | G.Lessellstt D.0 Mathiina | R.Timoney
Members D.Hurley{{ D.0 Mathina | R.Dark
K Hutchinsoni | D.O Mathtina | R.Dark
M.Clancyt D.O Mathiina | R. Dark

Since there was only one candidate for each position all six nomi-
nees were elected. Each { denotes a previous term of office. It was
noted that P. Mellon (Secretary), J. Pulé (Treasurer), E. Gath,
R. Gow and A. Wickstead each has one more year remaining in
their current term of office. It was proposed that the committee
consider coopting J. M. Golden and M. Tuite as members.

7. Any other business
7.1 Proposal for joint IMS/LMS meeting

R. Timoney recalled that in 1986 the I.M.5. and the London Math-
ematical Society hosted a joint meeting in Dublin. He proposed
that a joint meeting take place in London in May 1998, with
the title Complexr Analysis and Dynamical Systems. Six speakers
would be invited, four from outside the U.K. and Ireland, and
two from within. The I.M.S. would nominate two of these speak-
ers. The estimated cost is .£3,500. R. Timoney proposed that the
LM.S. contribute £1,200 of this (vide Treasurer’s Report). The
L.M.S. has nominated a subcommittee consisting of Alan Beardon
and Shaun Bullett to organize this event. R. Timoney and D. Hur-
ley are the I.LM.S. local orgamizers. The proposal was approved.
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It was suggested that sponsorship in the form of travel grants eic
should be sought from the British Council and the Department of
Foreign Affairs.

7.2 White Paper on Science, Technology and Innovation

N. Buttimore drew to the attention of the meeting, the recent
government White Paper on Science, Technology and Innovation.
The L.M.S. made a submission in advance of this white paper
two years ago. It was agreed that the Society should write to
the Minister for Commerce, Science and Technology, in advance
of the 1997 budget, outlining the need for government support
for fundamental research in Mathematics and Science. It was
suggested that the letter be short (about one page) and that it
avoid using international comparisons. |

The meeting closed at 1.20pm.

Eugene Gath
University of Limerick:

THE IMS SEPTEMBER MEETING 1996
D. H. Armitage and A. W. Wickstead

The ninth September meeting of the Irish Mathematical Soci-
ety took place on 2nd and 3rd September 1996 at the Queen’s
University of Belfast. The lectures were held in the David Bates
Building, adjacent to the Botanic Gardens. About 50 people
attended, including participants from all parts of Ireland, from
Britain, and from further afield. Visitors were accommodated in
Queen’s Elms Halls of Residence, about one kilometre from the
main campus.

Queen’s Senior Pro-Vice-Chancellor, Professor R. G. Shanks,
delivered a welcoming address, and the Vice-President of the
IM.S., Dr. C. Nash, opened the proceedings. The guest speak-
ers were Dr T. A. Gillespie (University of Edinburgh), Professor
S. K. Houston (UU), Professor S. J. Tobin (UCG), Professor
T. T. West (TCD) and Professor A. D. Wood (DCU). The hosts
received an almost overwhelming response to their call for vol-
unteered lectures. A wide range of topics was covered: algebra,
analysis, geometry, topology, mathematics in computer science,
history of mathematics, and mathematics education. The full
programime is reproduced below.

A very enjoyable conference banquet was held in the Uni-
versity’s Great Hall. Professor Shanks, Professor A. E. Kingston
(Provost of the College of Science and Agriculture, QUB) and
Professor D. G. Walmsley (Director of the School of Mathematics
and Physics, QUB) were guests at the banquet.

We are grateful to the School of Mathematics and Physics at
QUB for financial support which covered most expenses. A small
remaining deficit was met by our Department of Pure Mathemat-
ics. We thank colleagues who helped with the organization of the

5
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meeting, especially Miss 5. O’Brien whose secretarial work was
invaluable. We also extend our thanks to all the speakers and
everyone who contributed to the success of the meeting.

The full program was:

Monday 2nd September, 1996

Professor R. G. Shanks, Senior Pro-Vice Chancellor, QUB
Welcoming address

Dr C. Nash (IMS Vice-President)
Opening Remarks

Professor T. T. West, (Trinity College Dublin)
Perron-Frobenius theorems for positive matrices

Professor 1. Diintsch (University of Ulster)
Introduction to the rough set model for data analysis

M. Marjoram (University College Dublin)
Irreducible characters of Sylow p-subgroups of classical
groups

Professsor S. J. Tobin (University College Galway) -
The Burnside sage ' :

A. Hughes (Trinity College Dublin)
A connection between Constructive Mathematics
and Pure Mathematics

Professor A. G. O’Farrell (St Patrick’s College, Maynooth)
Algebras of smooth functions

Professor A. D. Wood (Dublin City University)
G. G. Stokes: the man and his phenomenon today

] IMS September Meeting

Tuesday 3rd September, 1996

Dr C. Nash (St Patrick’s College, Maynooth)
Modular inveriance of topological quantum
field theories

Dr M. Mac an Airchinnigh (Trinity College Dublin)
Some applications of algebraic topology
in compuier science

Professor P. D. Barry (University College Cork)
Cross-currents in the development of geometry

Dr T. A. Gillespie (University of Edinburgh)
Making the most of quality assessment

Professor 8. K. Houston (University of Ulster)
The role of mathematical modelling
in undergraduate courses

Dr S. T. Swift (Southampton)
Spaces of symplectic submanifolds

K. Abodayeh
Semigroups essociated to dynamical systems

Dr 8. Pabst (Dublin Institute of Technology)
On almost free abelian groups with trivial duel

Professor M. Nishihara (Fukuoka University)
On holomorphic mappings of weak type

D. H. Armitage and A. W. Wickstead,
Department of Pure Mathematics,
Queen’s University,

Belfast BT7 1NN.



Comments on Two Papers by R. Gow
in the December 1995 IMS Bulletin

Concerning the article on Bourbaki’s problem in the December
1995 issue of the IMS Bulletin, I discovered that a theorem of L.
K. Hua (On the automorphisms of a field, Proc. Nat. Acad. Sci.
U.S.A. 35 (1949), 386-389) answers the problem that I raised. I
am grateful to my colleagues Fergus Gaines and David Lewis for
information on the problem, and also to Professor Larry Harris for
related correspondence. If I had remembered an earlier paper by
Fergus Gaines (How to compose a problem for the International
Mathematical Olynpiad?, Irish Math. Soc. Bulletin 28 (1992),
20-29), I would not have written the article.

Concerning another article written by us in the same issue
of the Bulletin (Some Galway professors of mathematics and of
natural philosophy), Professor ‘Alastair Wood has kindly informed
me that Morgan Crofton’s father was not the successor of G. G.
Stokes’s father as Rector of Skreen, Co. Sligo, as stated in the
article. His successor was -the Rev.- George Trulock, who was
Rector from 1834 until 1847. The Rev. W. Crofton was in fact
the successor of Trulock, and died in Skreen in 1851.

Rod Gow,
Department of Mathematics, -
University College Dublin.

A LINEAR SYSTEM OF IMPULSIVE
DIFFERENTIAL EQUATIONS

Michael Brennan and Finbarr Holland

Abstract A linear system of impulsive differential equations that mod-
els an example from pharmacokinetics is investigated. The example is
where a drug is administered periodically at certain fixed times result-
ing in a jump (called an smpulse) in the concentration level of the drug.
The case where the same dosage is applied at each of these fixed times
is considered. Both mnecessary and sufficient conditions are sought to
guarantee that an effective concentration level of the drug is maintained
in the body. s

Introduction

Impulsive differential equations are used to describe physical pro-
cesses that undergo instantaneous perturbations. As in the study
of ordinary differential equations, the study of impulsive differ-
ential equations is motivated by many practical examples from
the physical sciences, (1, 2]. In this paper, we look at a linear
system of impulsive differential equations, a special case of which
may model the concentration of a drug in the bloodstream and
an organ, like the heart or liver. Qur results here generalize those
obtained by Stewart, [3, pp. 758-759], who considered the scalar
case. :
The paper begins by describing a first order linear system of
imnpulsive differential equations in terms of a constant real matrix
K. We call the solution vector ¢ of the system an admissible solu-
tion when it lies in the region between two specified concentric
spheres in R?. The initial dosage vector ¢ and the time T (length

AMS (MOS) 1991 Mathematics classification: 34A37.
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of time between consecutive impulses) form a pair of parame-
ters which are critical in determining the admissibility of ¢. The
paper’s main result requires that X be both positive definite and
symmetric, combined with a method of choosing first T' and then
c¢. The way we choose T’ and ¢ depends on the eigenvalues of K
and the radii of the two spheres.

1. Preliminaries

Consider the following linear system of impulsive differential equa-
tions:

i(t) = —Kz(t), t£T,2T,. ..,
Azt) =z(tt) —z(t™ ) =¢, t=T,2T,..., (1)
z(0) =¢,

where K is a constant real d x d matrix, ¢ a vector in R? and
T>0. :

Definition 1 A solution to (1) is a piecewise continuous function
¢ : [0,00) = R such that

(i) é(t) = K¢(t), for t € R\ {T,2T,...};

(i) at times nT', where n € N, it is the case that ¢((nT)") =
¢((nT)7) +c;

(iii) ¢(07) = ¢;

(iv) , lim ¢(t) = ¢(nT) for n € N.

—(nT)+

Note that the existence and uniqueness of a solution to the
linear system above is well known (see [2] for details). We now
make some more definitions that will be needed later.
Definition 2 Let B be a real d x d matrix. Then B is said to be
positive definite if for any a € R4 we have a'Ba > 0 with equality
occurring if and only if ¢ = 0.1

Here the transpose of the vector a is denoted by a®. As usual,
B is said to be symmetric if B = B*. A consequence of B being

! We adhere to this definition throughout the paper, but readers
should be warned that unlike other authors we do not require that a
positive definite matrix be symmetric.

i Impulisive Differential Equations 11

positive definite and symmetric is that its eigenvalues are both
real and positive.

Definition 3 Given two parameters L and H where 0 < L <
H < oo we say that ¢ is an edmissible solution of (1) if, for some
choice of parameters T' and ¢, ¢ solves the linear impulsive system
(1) and, for all £ > 0, ¢(t) lies in the set {a € R?: L < ||a|| < H}.
For convenience we call this set A(0; L, H).

Note that ||a|| is the length of the vector a:

d
lall® = a'a =" |asf*.
i=1

To describe the solution of (1) we define sequences of vectors
An, B, in R® as follows: Let

A4 =0,
Ap=c+e et e TEeq ... e T8y n=0,1,2...,
and

B,=eTK4, ;, n=0,12,....
Note that
An=T+e TK 4. f e TH)e

= (I - " HITHY (] — o~ TH) g,

where [ is the unit matrix.
The solution of the differential equation is then given by

w(t) = e C--UDE Y fte[n-)T,nT), n=12,....

Our objective is to determine (practical) necessary and suf-
ficient conditions on the various parameters defining the system
that ensure the solution z(t) is admissible.




12 IMS Bulletin 38, 1997

5]

i
48

2. Necessary and sufficient conditions for admissibility

Theorem 1 Suppose that K is positive definite. Then z(t) €

A(0; L, H) for all t € (0, c0) if and only if

L <inf||By|| and sup||4,|| < H.

Proof: From the differential equation we see that
d 2 ts t
d—t|]z(t)|| =2r's = 22" Kz <0,

forallt € (n—1)T,nT),n=1,2,...,and so ||z(t)|| is decreasing
on the intervals ((n — 1)T,nT), n =1, 2, .... It follows that

1Ball < llz@If < | An—1l],
for all t € ((n — 1)T,nT). Hence, if
L < inf||By,|| and sup [|4,]] < H,

then
L<||lz@®)] < H, forall t > 0.

Conversely, if this holds, then

|Bnll = l[z((nT)7)|| = L
and
lAnll = llz((rD))]| < H

forn =1, 2, .... Hence the given condition is also necessary. e

Different aspects of the following example have been stud-
ied by various authors, [1, 2, 4]. The example below consists of
a two-compartment model for the distribution of a drug in the
body, say the gastro-intestinal tract and the bloodstream. The
components z; and z, stand for the quantity of the drug in the
gastro-intestinal tract and the bloodstream, respectively, and k;

Impulsive Differential Equations 13

and k&, are the respective rate constants. The differential equa-
tions and associated boundary conditions governing this model
are given by the following:

:i"‘l(‘t) = _kl‘r(t)a 0<t # T: 2T1 i
:L‘Z(t) = k]_fb'](t) - k2$2(t)1 0<t # T)ZTJ e oy
zi(tT) -z (7)) =¢,i=1,2,t =T,2T, ...
and
mz(o) = :’Ei(0+) = Cy, i= 1a2

Theorem 1 applies to this system once we know for what values
of k; and %k, the matrix of the system is positive definite. The
answer is provided by the following.

Example 1 Suppose that 4ky > ki > 0. Then the 2 x 2 matrix

_ kL O
“=(k &)
is positive definite, but not symmetric.
Proof: For, if a € R?, then '
a'Ka = kia? — kiayaz + kyal
= kl(ﬂ‘% B (110.2) -+ kzﬂ.g
= ki{e1— a2/2)" + (ks — k1 /4)a)
>0
and equality holds if and only if a; = a3 = 0. Thus K is positive
definite. Clearly, K # K¢ o

It is also clear that this matrix is not positive definite if 0 <
dko < k.

Returning to the general situation, the fact that K is positive
definite implies that

1Ball € {[Anall, n=1,2,...,
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as we have just seen. We wish to investigate the monotonicity
of these sequences under some additional assumptions about K.
In what follows, we suppose that X is symmetric. This, coupled
with the fact it is positive definite, implies that K is unitarily
equivalent to a diagonal matrix. Thus K = U*DU, where U is
unitary, U*U = I, and D = diag[\1,Ag, ..., Ad], where A; > 0,
t=1,2,...,d, and so

e TK = Ute TPy = Utdiagle ™17, e~ 22T, .. ,E_A'IT]U.
Next,
An1 = (I —e"TK)y, wherey = (I — e TK) 1,
and so
||An“1||2 = Af«.—lAnﬂ
- yt(_I _ e—nTK)t(I_ e—nTK)y
— tht(I _ e—nTD)2Uy

= 21(I - e ™TP)2;, where z = Uy
= Z(l _ e—nA;T)zlziF‘

But the sequence (1—e™™*T) is increasing if A > 0. Hence ||4,_1||
is increasing. But it is also clear that the positive definiteness of
K implies that

lim A4, =y,

so that
sup || An| = [lyll = (T — e= %) ¢l].

In the same way it can be seen that ||By,|| is increasing, and so
inf || Byl = [|Bull = [le™"*¢]).

These considerations enable us to express the conclusion of The-
orem 1 in the following form.

& Impulsive Differential Equations 15

Theorem 2 Suppose that K is positive definite and symmetric.
Then z(t) € A(0; L, H), for all £ € (0, 00) if and only if

L<|le”™ ¢l and ||(I - e™™ ) el < H.

Still supposing that K is unitarily equivalent to a diagonal
matrix, none of whose eigenvalues is zero, we have

|1E“TK(:”2 cte-—QTKC

= vte TPy, where v = Uc
= ot diagle™2T™, ..., e TRy
d
=D e
i=1

and
I~ e TF) el = T - T
' te 'U:(I—' e—_TD)—2,U

=t diag[(l ) A PO B
— Z l'Uzl
(1—e-TX)

Hence we can phrase the necessary and sufficient condition that
z(t) € A(0; L, H) as follows.

Theorem 3 Suppose that K = U'diag[)\s,..., ] U, where U
is unitary and the A;’s are positive. Let v = Ue. Then z(t) €
A(0; L, H) for all t € (0, c0) if and only if

*< Z —2TA; |v,|2 st z(l—lv‘——TW < H.
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3. Necessary conditions for admissibility

We deduce some coupled restrictions on the parameters K, L, H,
¢, T that must hold if the system has an admissible solution.

Theorem 4 Suppose that K is symmetric and positive definite.
Ifz(t) € A(0; L, H) for all t > 0, then

(i) 4L < H, with equality if and only ife™ =2,i=1, ..., d;
(i) Le™ < |||l < (1—e TAH, where

A=max{};:i=1,2,...} and A =min{};:i=1,2,...}.

Proof: Under our assﬂmptions,
2 —2T x|, |2 —T,\ —TH\12 Jvi]?
L < Z I'U I Z{B — € )} m

i
= 16 Z (1= e‘T"

. HZ?.

< T

— 16
since 4y(1 — y) < 1 for all y € R, with equality if and only if

= 1/2, and so 16e~2%(1 — e7%)2 < 1 for all z € [0,00).

H = 4L, then equality helds throughout, which clearly happens
ifand only if e=7* = 1,4 =1, 2, ..., d. This gives the first part.
As for the second part, we have

llell® = lJll?
d .
= Ze_
i=1
d
> ezT,\ Z e—zTA,- lez
i=1

> 62T)\L2

] Impulsive Differential Equations 17
and so eT*L < |||
Similarly,
llell* = ||’v||2
_ E(l . )2|z—i—|2“e)'2-

d 2
) —TANS Wil
<(L-e ) Z (1= eI
i=1
o~ efTA)sz

and so ||¢)| € (1—e TMH. o
4. Sufficient conditions for admissibility

For practical reasons it is essential to have easily verifiable condi-
tions that will guarantee that the system has an admissible solu-
tion. We proceed to give one such condition that guarantees that

z(t) € A(0; L, H) for all ¢ > 0. This will then enable us to give
a simple sufficient condition for adm1531b111ty, this is recorded in
Theorem 7.

Theorem 5 Suppose that K is symmetric and positive definite.
Let
Le™ < |le| < (1~ ™) H.

Then z(t) € A(0; L, H), for all t > 0.
Proof: It is enough to note that

L2 % e—2TA”C”2
e

d
=3 e Ay
i=1
d
s ZE—BTA.- ‘,Ud2_
i=1
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Similarly,

Ll
1 = AN
2 T e g S A=) e
1=
= (1-e ) 2|2
< H?.

The stated result now follows from Theorem 3. o

Before le_a.ving this result, we analyse the sufficient condition
more closely in an attempt to uncouple the relationship between
T and ¢. Our findings are summarized in the next theorem.

Theorem 6 Let r = H/L. Under the assumptions of the previous
theorem,

i)r> 4
(ii)
].Og D@ x log _‘b@
< T
D U R g
(iii) : :
[r — vr? —4r]L < [r+ \/ 4T]L
—_2'—— llell <

Proof: It follows from our assumptions that
Le™ <|le| < 1 —e"™)H

and so
e2T)\ < (eTA —- 1)7‘,

whence, by elementary methods, part (i) and the left-hand
inequality of part (ii) follow. But also,

Le™ <l < (1 — e~ ™I

and so
£2TA < (ETA —1)r,

8] Impulsive Differential Equations 19

whence the right-hand inequality of part (ii) also follows. Equiv-
alently,

From this the left side of part (iii) follows. Using the right-hand
inequality in the previous display, we see that

—Tx 2
L-e =1 r /12 —d4r
_, -V
4r
_T+m
2r ’

which gives the right-hand side of the inequality in part (iii). e

Theorem 6 means that if any one of the conditions (i), (ii) and
(iii) fails to hold, then we do not have an admissible solution. But,
at the same time, the satisfaction of all three is no guarantee that
an admissible solution exists. The following example is intended
to illustrate this.
Example 2 Suppose that K = diag[1,2]. Let H/L =r = 9/2.
Choose T' = In+/3 and let ¢ be any vector whose first component
is zero and v/3L < ||c|| < 3L. Then the inequalities stated in The-
orem 6 are satisfied,-but the system has no admissible solutions.

Tt is clear that the inequalities in Theorem 6 hold. But, if the
system has an admissible solution for the given values of T' and ¢,
we see from Theorem 3 that

2
_ 23 - c
LE <e 2T|61|2 +e 4T‘C2|2 —e 4TIC2|2 == ”g“ ,

" which is false. e

The same example shows that the converse of Theorem 4 is
false.
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[2]

[4]
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We now state a simple criterion for admissibility.
Theorem 7 Given a symmetric positive definite matrix K, whose
smallest and largest eigenvalues are A, A, respectively, and positive
constants H, L, with r = H/L such that

SIA

—':c-;20<$}51".

mm{l_e

Choose T so that €T < (1 — e~ T*)r. Having selected T, now
choose the vector ¢ so that

Le_TA <l £ (1—-eTHH.

Then the system (1) has an admissible solution.
Proof: This is a consequence of Theorem 5. o
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WHY PHONON LINES DON'T CROSS
John Gough

Abstract We report on recent developments in quantum stochastic
approximations of physical systems, the relative merits of Gauss and
Wigner distributions and the physical reasons one should arise rather
than the other in a model of an electron interacting with a phonon field.

1. Introduction

Eugene Wigner, [1], introduced ensembles of N x N real matri-
ces to model the spectra of complex nuclei and noticed that the
N — oo limit corresponds to a non-commutative central limit
theorem involving a non-gaussian distribution as the limit distri-
bution. The new distribution, called the Wigner or semi-circle
law, frequently appears in place of the gaussian when one departs
from ordinary probability to quantum probability, that is, when

- random variables are represented as non-commutative operators

and probability as a positive normalized functional.

In the 1980’s Hudson and Parthasarathy, [2], attempted to
construct quantum (i.e. non-commutative) stochastic analogues
to the brownian motion, and indeed Poisson, processes and the
calculi by using the inherent gaussianity of bose fields. Later
Voiculescu, [3], and Kiimmerer and Speicher, [4], used free fields
to construct free noise processes which are related to the Wigner
law, ‘

Here we report about the emergence of a new type of noise
from physical models which is closer to the Wigner class than the
Gauss class. It was first discovered by Lu by examining moments
and later proven in general in [5]. This report centres on the

_physical mechanism behind this, [6].

21
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2. Wigner versus Gauss

Let h be a separable Hilbert space. The Fock space over h is
defined to be H = &2 ,{®"h}, where ®°h = C. An operator
a'(f), with argument f € h, is defined by linearity from the map-
ping : ®"h — @" 1A with

)P @ @Pn fOP1®..® pn (2.1)

The operator af(f) is called a creator; its adjoint a(f), called an
annihilator, can then be defined as the mapping : ®"h = ®@"~'h
with

a(f )1 @ ... ® ¢ =< f, 01 > P2 R ... @ Pp.. (2.2)

They satisfy the relation

a(f)a*(g) =< f,9>. (2.3)

This relation is often called the free relation. The vacuum vector
is defined to be the vector = 18 03¢ 0® .... The vacuum
expectation of an observable X is then taken as

EX]|=<¥,XT>.

In particular, let X(f) = a(f) +af(f): the distribution p of X (f)
is obtained via the characteristic formula '

Ble®X(N] = /09 e*®p(z)dz (2.4)

—CO

In order to calculate an expression like
< ¥,a*(gn)...a%(91)¥ >,

where a(g;) denotes either a(g;) or af(g;), we note that n must

be even and that the number of creators équals the number of

annihilators in order that the expression is non-zero. Furthermore

there must exist a non-crossing pair partition for the sequence €.,
.., €1 as outlined below.
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et

Following the well-known notation we write

A.a(f).B.a'(g).C =< f,g > A.B.C (2.5)

for arbitrary operators A4, B and €. This is a contraction and we
reserve the notation for the case of an annihilator with a creator
only, with the annihilator to the left of the creator.

The relation (2.3) and the fact that a(g)¥ = 0, Vg € h,
is enough to calculate the vacuum expectation of any product
of creators and annihilators. However we may give the rule of
thumb that any such expression equals the complete contraction
decomposition where none of the contraction lines are allowed to
cross (if no such non-crossing set of contractions exists then the
expression vanishes). :

Thus

Ela(gs)a' (g7)a(gs)algs)alga)a’ (gs)at (g2)a! (g1)] =

VAN

f@f(97)a(96)ﬂ(95)a(94)aT(93)01(92)ﬂf(91) -

< 93,97 >< 94,93 >< g5, 92 >< g6, 1 > - (2.6)

We note that, if a product of creators and annihilators admits a
non-crossing contraction decomposition, then it is unique. So

BIX(£)*"] = eallFIP,

where ¢, is the number of non-crossing n contractions, that is

_ 1 2n
‘= nriln )

n

which is also known as the Catalan number.
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One may then show that
1 T
ple) = (o),
TRk
where

w(z) = % 4 — 22x(_9,9)(). (2.7)

This is the so-called Wigner semi-circle! law.

If we symmetrize the n-space by means of the projector P
defined by

P$1®..840) == 3 6, 8. B0,

cES,

where S, denctes the symmetric group of degree n, consisting of
all permutations on {1,...,n}, then we may define the Bose Fock
space over h to be ®32,{P ®" h}. The Bose Fock space over C,
for instance, is Hardy space. .Bose creators and annihilators are
defined by

v*(g) =Pa‘(g) P (2.8)
and one has the commutationTelations .
[6(£), b (9)] = b(£)bl(g) — BN (B(F) =< f,g>. . (2.9)

The self-adjoint operator Y (f) := b(f) + bt(f), as is well-known,
is gaussian distributed with mean zero and variance ||f|| in the
vacuum state, i.e.

E[eis}’(f)] — e—%-*z“f”z' (210)

In fact, expressions of the type E[b* (f,)...b(g1)] can be calcu-
lated by summing over all sets of decompositions into pair con-
tractions. So

E[Y(£)*"] = dul|fII?,

where

1 The mathematically correct terminology of semi-elliptic distribu-
tion is often used.
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1 (2n)!
= ga

The number of crossing diagrams with n contractions is then equal
to d,, — c,. Note that
Cn 2n

dn  (n+ 1)

so the crossing contraction diagrams quickly out-proliferate the
non-crossing ones, see figure 1, p. 28,

3, Quantum Damping

Consider a quantum mechanical system 5 consisting of a single
electron in a metal. If the electron is close to the edge of a con-
duction band we may treat it as a free particle: if its momentum
is p, then its energy is

p2

e(p) e 2m:
where m is the effective mass. As a model of electric resistance we
couple the electron to a reservoir R which damps the motion: R
will be a field of quantum particles called phonons. We describe

the dynamical evolution using the Hamiltonian H) acting on the

combined state space Hs ® Hr (where Hg is the Hilbert state

space of the system and Hp is the Hilbert state space of the
reservoir):

HA={H5®IR+13®HR}+AHI, (3.1)

where ) is a coupling constant. The system Hamiltenian is Hs =
e(p), where p denotes canonical momentum, while

Hp= [ Bk wk)bl (k)b(k)
Hp= i/d%{ﬂ(k) @bt (k) - 01 (k) ® b(k)}

and the operators b°(k) satisfy the relations

[b(k), bt (K)] = 6*(k — '), [b(R),b(A)] =0.  (3.2)



26 IMS Bulletin 38, 1997

Here, bt (k) is the operator describing the creation of a phonon of
momentum .

The operators 8(k) act on Hg and should take the form
B(k) = e *¢ (3.3)

where ¢ is canonical position. This is the responsive part of the
interaction Hy. It is responsible for recording the recoil of the
electron when it emits or absorbs a phonon. For instance, in
figure 2, p. 28, we have an emission and absorption vertex. The
presence of the response ensures momentum conservation: so for
both diagrams p' = p— k. Note that associated with the emission
vertex is the the energy non-conservation by an amount A(p, k) =
e(p— k) +w(k) — e(p) and there is an equal and opposite amount
for the absorption vertex.

In some situations it is possible to make an approximation of
the type

g(k)= Dg(k) (3.4)

where D is independent-of % and-g is a scalar function (say
Schwartz on R32): this is the responseless approximation®. In
this case the interaction simplifies:to:.

Hr =4#{D® B'(g) - D! ® B(g)}

where
Bi(g) = f P g(R)B ().

The operators B®(g) are in fact creators/annihilators on the Bose
Fock space over L2(R*). Under the responseless approximation
one has p = p’ for D diagonal in p in figure 2, p. 28.

It is known that under a van Hove scaling limit (where time
is rescaled by 3;'1'-'_7 and one takes the limit A — 0), the response-
less interaction leads to a quantum brownian motion, [2], as limit

noise. This is due to the underlying gaussianity of the bose fields

2 In quantum electro-dynamics, this is known as the dipole approx-
imation; however, here the damping vanishes in general.
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and the simplicity of the responseless interaction. We now wish
to give an indication of why the same scaling limit for the proper
responsive interaction leads to a limit noise which is closer in spirit
to Wigner type than to gaussian type.

The key to understanding the limit noise in general is the
fact that the van Hove limit extracts the behaviour predicted by
the Golden Rule approximation of quantum physics. Consider
the diagram in figure 3, p. 28, which shows a crossing of phonon
lines. The phonons are virtual particles of momentum k and &'
respectively: it is implicit that in order to calculate the coefficient
associated with this diagram we integrate over all k and k'. How-
ever we must include the terms §(A; + Az) x (A + A4), where
A; is the energy non-conservation at the j*! vertex:

Ag+As = {e(p—k)+w(k) —e(p)} +{e(p—k') —elp—k—k)—w(k)}

_ —%k.k’ (3.5)

5o there is a restriction of the k, &’ integration to a set of mea-
sure zero in R®. As a rule, all diagrams which are crossing vanish
identically, while all non-crossing diagrams give a non-trivial coef-
ficient.

Thus the combination of the Golden Rule applied to each pair
of contracted vertices and the constraint of momentum conserva-
tion leads to the non-triviality of only the non-crossing diagrams.

The effect is of a universal nature. It even holds if the reser-
voir quanta are fermionic: in fact we may change the relations
(3.2) to anti-commutation relations b(k)bt (k) + b (k)b(k) without
changing the final numerical result as the non-crossing diagrams
do not have an associated sign change.
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THE ROLE OF MATHEMATICAL MODELLING
IN UNDERGRADUATE COURSES

S. K. Houston

Abstract This paper examines the role of mathematical modelling
in undergraduate courses. After setting modelling in the context of
the three M’s of mathematics-methods, models and modelling-and
after describing the process of mathematical modelling, it suggests
that mathematical modelling can help achieve the following aims in a
course

have a unifying effect

create interest in novel applications.

develop interpersonal transferable skills

develop deep learning

develop self knowledge.

The implications for staff are that they will need to embrace radically
new methods of teaching and assessing.-

Introduction

It is my thesis that mathematical modelling is the way of life of a
professional applied mathematician. More than that, mathemat-
ical modelling is a way of life, full stop; a way of life for everyone
whether they realize it or not. So, it seems to me, every under-
graduate student, of mathematics or of something else, and every
pupil at school should meet the concept of a model, particularly a
mathematical model; they should be aware of the process of mod-
elling, and they should have some understanding of the philosophy
of modelling. It seems to me that if there were a more widespread
understanding and acceptance of the relationship between real-
ity and models of reality and how they are created, then funda-
mentalists, both scientific and religious, would cause us all fewer
problems.

30
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While I would describe mathematical modelling as an art
rather than a science because, at its best, it requires creative and
imaginative thinking, that is not to say that the scientific method
of investigating, conjecturing and proving is not valuable to the
mathematical modeller. Of course it is, and, indeed, it is possible
to take almost an algorithmic approach to modelling, but, as we
shall see, even this includes the verb “create.”

The three M’s of mathematics

Mathematical Modelling is one of what I describe as the “three
M’s” of mathematics-Mathematical Methods, Mathematical Mod-
els and Mathematical Modelling. (The reader may be able to
suggest some more.)

A mathematical model is a representation of some aspect of
reality which, however complex, is necessarily a simplified rep-
resentation. A model is used to describe and/or to predict the
aspect of reality. A mathematical model consists of some math-
ematical entity such as an equation together with a statement of
the simplifying assumptions that have been made in going from
the reality to the model. Perhaps I should say, in going from our
perception of the reality to the model. Thus Newton'’s second law
of motion is a model of planetary motion. It is a differential equa-
tion which describes and predicts the motion of a planet and it
embodies all sorts of assumptions such as the relationship between
acceleration and force and the nature of the force of gravity as
expressed in another model, Newton’s universal law of gravity. It
makes assumptions about planets being point masses in order to
simplify the calculation. Increasingly mathematical models are
being used in many walks of life and many academic disciplines.

Mathematical modelling is the activity of creating or modi-
fying a model and using it. It is, I believe, the essence of applied
mathematics. It requires a wide range of knowledge and skills.
We must know something about mathematics before we can start,
and similarly we need to know quite a lot about the aspect of real-
ity we want to model. A knowledge and understanding of other
models of this or other aspects of reality is also useful, as is an
appreciation of how other modellers have worked in the past. It
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is particularly useful if we can obtain some insights into the way
they went about it, the ideas they had, the questions they asked,
even the blind alleys they went up. And we need to develop the
same skills-reading, questioning, conjecturing and, indeed, prov-
ing. We need at least to attempt to validate or justify the model
we have created.

Mathematical methods are the tools we use to create models
and to answer questions about them. Arithmeiic, algebra, cal-
culus, geometry and so on-all are useful and some one, for some
aspect of reality, is necessary. We need to learn which tools to
use; we need to know of their existence and their scope; we may
have to invent new ones.

Learning methods, studying models and engaging in mod-
elling should all be part and parcel of an undergraduate course in
mathematics. Also they should be part and parcel of high school
mathematics. Enterprising primary school teachers might be able
to find ways of getting their pupils in on the act as well. But
there needs to be an awareness on the part of the student or pupil
as to what is going on. When they -are learning new tools they
need to know in what context this might be useful; when study-
ing models they need to look out for the assumptions made, the
questions asked, the methods used and the extent to which the
model is valid; when engaging in modelling they need to be aware
of what they are doing at any particular time, what they have
already done and what still remains to be done. In other words,
they need a methodology for modelling.

The process of mathematical modelling

I expect that this is generally well known. Let me summarize it
as an algorithm.

Study the aspect of reality
Identify main features
Define variables
Label 1 Make simplifying assumptions
Create model
Fstablish relationships between variables
Use model to answer questions

= Mathematical Modelling 33

Translate into mathematical problems
Use methods to find solutions
Interpret solutions
Attempt to validate solutions
If valid (or valid enough) finish cycle and report back
If not valid, revise model by returning to Label 1 or earlier.

To repeat what I wrote earlier, I believe it is important for mod-
ellers to know when they are making simplifying assumptions and
to articulate them always. This, if you like, qualifies the answer
they may give to a problem. It is important for them to be aware
of the range of validity of a solution and to be able to interpret
their solution in terms of the original aspect of reality. It helps if
they can say where they are in the modelling cycle when they are
engaged in any particular task.

The role of mathematical modelling

Mathematical modelling can contribute in a number of ways to
achieving the aim of a course.

Unifying effect

Modelling has a unifying effect on an undergraduate course in
applied mathematics. Whether the student is studying mechan-
ics or its derivatives, statistics or operational research, the ideas
behind methods, models and modelling can be applied in each of
those subject areas. Pure mathematics may be taught to give a
rigorous foundation to methods, or it may be taught for its own
sake, and in this case it may not be possible to link it to the theme
of modelling. But wherever possible, it is desirable to see a topic
as a study of a model, or a method to solve a problem deriving
from a modelling activity. The idea of learning about the way
of life of an applied mathematician can be used to bring those
diverse topics together.

Creating interest

When used in a novel situation, the theme of modelling can help
stimulate interest in an application area. Of course, some students

will not want to get involved with reality, but will want to stay
within the safe world of mathematics that they know and love.
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The trouble is that not very many people earn their livings as
pure mathematicians and at some stage (and the sooner the better
in my view) they will have to engage with problems out there in
physics, or economics, or society, or wherever. If they can bring
a trusted philosophy and methodology to a new situation, then it
will not be such a daunting task. Modelling provides opportunities
for the lecturer to introduce students to many areas of human
endeavour wherein mathematics is useful.

Developing persenal skills

In 1987 in the UK, the Department of Employment introduced the

Enterprise in Higher Education Initiative, [1]. The term enterprise

was defined widely and the proposed objectives of the initiative

included the ideas that students should

e be more ready to be enterprising

e have developed persconal transferable skills

® be better prepared to contribute to and take responsibility in
their professional and working lives.

Personal transferable skills are “the generic capabilities which
allow people to succeed in a wide range of different tasks and
jobs” and include the development of

group work skills-leadership and followership

verbal communication skills

written communication skills

problem solving skills

numeracy skills

computer literacy

the ability to achieve results

self assessment skills.

Mathematical modelling can help develop these skills and turn
passive receptors into active learners.

In industry, much work is accomplished by teams of people.
The mathematician may be only one person of several working on
a problem. Employers tell us that besides mathematical skills and
knowledge, they look particularly for good interpersonal skills in
those whom they employ. The ability to work with others, perhaps
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as a leader, perhaps as a follower, the ability to communicate
with others, especially “lay” men, the ability to write cogent and
persuasive English-these skills are highly valued by employers, [1].

Mathematical modelling provides opportunities for students
to learn and practise their skills. When students are involved
in creative modelling, it 1s best they do so in groups. They can
be taught about group dynamics and group work and they can
practise it. Yes, it takes up some time, but it is a more valuable
use of their time than studying yet another topic on an overlong
syllabus.

Students can report their group project work to the rest of the
class via a student-led seminar and this gives them experience and
practice at making presentations using an OHP or even, nowadays,
PowerPoint. They can also write up their work in a report which
is also assessed. Recently I have been experimenting with student
poster sessions, [2], wherein they present their work in a poster
instead of a seminar. This introduces students to yet another
aspect of professional life and it presents to a student different
challenges from a seminar.

Developing learning

Mathematical modelling helps convert students from being passive
receptors into active learners. It is all too easy for a student to
attend class, take notes and submit homeworks. They may use the
library only as a place to sit without ever opening any of its books
or consulting any hyper-media instructional packages. Their con-
versation with their peers may not extend beyond football, beer
and sex. They may pass their exams through having a good mem-
ory and through spotting guestions. I know that this caricature
is mythical to an extent, but the point I want to make is that stu-
dents learn more thoroughly and with a deeper understanding if
they are actively engaged with their learning and are prepared to
take responsibility for all aspects of it, [3]. Talking with their peers
about mathematics helps them express themselves more clearly;
teaching others (or explaining things to them) encourages a deeper
understanding (or else exposes their misconceptions, and this is
also an important aspect of learning).
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Through the requirement to carry out research, through the
use of comprehension tests, students are encouraged to read math-
ematics. More than that, they are encouraged to siudy mathemat-
ics independently. They begin to learn to take control of their own
lives and their own learning and this is a terribly important step
on the way to maturity.

Moreover, students learn from one another and this infor-
mal peer tutoring is a valuable learning resource for students to
have. Recently I have been experimenting with ways of using
peer tutoring to help students learn methods and models as well
as modelling, [4].

Developing self knowledge

Had some power the gift to gie us
To see ourselves as others see us Burns.

The ability to know one’s own capabilities and to assess one’s
own performance is an important one to develop, and modelling
provides opportunities for engaging in self and peer assessment.
Students will learn more and perform better if they know what the
assessment criteria are. To start with, students are inexperienced
assessors and so need to be taught how to construct assessment
criteria and they need practice in.applying this and in making
judgements. As they progress, they will engage more and more
in critical self-reflection (i.e. self assessment) before submitting
work for summative assessment by their lecturers and so should
perform better because they now have a better idea of what they
are striving to achieve. _

It is important to develop assessment criteria with students
so that, as far as possible, they belong to the students in that
they have made them their own, understand them and can apply
them. This involves discussion and the use of exemplar material.
Again, this is, in my view, time well spent. See [5] for examples
of such assessment criteria.

Implications for staff

It is of course possible to introduce mathematical modelling to one
or two modules of a course, but it is better if the whole course and
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the whole course team embrace the philosophy and the unifying
theme of modelling. This requires the head of department to
embrace this idea and to exercise leadership. It is not enough for
one or two enthusiasts at a junior level to get involved.

Radical changes are required

o from staff-centred to student-centred management of learning

e from precise (!) methods to more fuzzy methods of assessment.
Staff need to be prepared to “let go” to some extent and to func-
tion more as enablers of learning than as central performers. This
is, for many, a journey into uncharted waters, although they can of
course read the adventure tales of those who have explored these
ways before them. It requires people to do things differently and
to be prepared to embrace new ideas and methods.

Staff also have to get involved in assessing oral and written
work. Colleagues in the humanities have been doing this for years,
but it requires us to accept a greater measure of fuzziness in our
marking than before. Until people have had experience of assess-
ing oral and written work, they will find it hard to agree, as they
can do now, that a particular piece of work is worth (exactly) a
mark of 61, say, out of 100.

Accordingly, staff development is a necessary precursor to
the introduction of modelling on a widespread basis. Staff must
themselves engage in the same activities they are planning for their
students. They must learn how to develop assessment criteria and
to apply them consistently. Above all, they need an enthusiasm
for the job.

Conclusion

In this paper I have described the concept of mathematical mod-
elling and the role it can play in undergraduate courses. Modelling
can have a unifying theme and can create interest in novel areas
of application; it can develop interpersonal, transferable skills and
it can encourage deep learning and self assessment.

The implications for staff who wish to introduce modelling are
that they must be prepared to engage in continuing professional
development of their teaching and to adopt a new, different role
in relation to their students.
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AN APPROACH TO THE NATURAL
LOGARITHM FUNCTION

Finbarr Holland*

1. Introduction

In many, if not all, modern calculus texts, the logarithm function
is usually defined, and its properties developed, following a dis-
cussion of the Riemann integral. It seems to me, however, that, for
many students of the physical, engineering and biological sciences,
this is much too late, and a careful treatment of the elementary
functions should be given much earlier in any course aimed at
such students. The emphasis here is on the word ‘careful’: I mean
that every effort should be made to keep the technicalities to a
minimum, without sacrificing rigour, even if this means that some
results may have to be stated without proof. Instead, the utility
and importance of these should be pointed out at every opportu-
nity.

This note, then, is a contribution to the ongoing debate on
what material should be taught in a modern calculus course, how
it should be treated and at what stage it should be presented. Its
main purpose is to outline an approach to the natural logarithm
function that can be adopted in any a course that treats sequences
and series early on in a serious manner, starting with a discussion
of the completeness axiom for the real numbers. Its main novelty
is that it deals with sequences which are indexed on the dyadic

*The author acknowledges the warm hospitality extended to him
and his wife, Mae, by the staff of the Department of Mathematics and
Statistics, University of West Florida at Pensacola, during their visit
there in 1996 when the work was written up.
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integers. This simplifies many of the technical details that would
otherwise arise.

The paper is organized as follows: after first outlining in the
next section our philosophy of how limits might be treated in
such a course, we show how to define the dyadic root of a positive
number, employing an iterative procedure that the Babylonians
are credited with using to extract square roots, [Ev, Ne, Wa].
Next, we modify slightly the approach adopted by Euler, [Ed], to
define the natural logarithm function as a limit of a sequence of
functions, by passing to a dyadic subsequence, a suggestion I owe
to Pat McCarthy. Although this idea is not new (see [La, pp 39-
48], for instance), it doesn’t appear to have been exploited in any
of the recent popular textbooks. Finally, we relate the logarithm
to the area of a hyperbolic segment by utilizing the method of
exhaustion by triangles that Archimedes, [Ed, He, KL, To, Wa],
used in his quadrature of the parabola, something which seems to
have gone unnoticed before now.

In an Appendix, we show how to treat the number e in a
similar fashion and relate it to the logarithm.

2. Limits of Sequences

It seems to me that sequences and series should be introduced
early on in a calculus course; and that, in many courses, the treat-
ment should encompass sequences of complez numbers as well. A
course on limits of real sequences and series should begin by devel-
oping the students’ intuitive notion of a limit of a sequence and
they should be encouraged to use a calculator to study and pre-
dict the eventual behaviour of some standard sequences. At an
appropriate time, they should be told the definition of a limit,
and taught how to apply the definition in a few simple cases.
And, at the very least, it should be demonstrated for them that
a convergent sequence has a unique limit and that every conver-
gent sequence is bounded. The following basic results should be
stated for all students, with rigorous proofs supplied only to able
students.

L1: The sum rule. If a,, and b, are convergent, then a, + b, is
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convergent and
lim(a, + b,) = lima, + lim by,

L2: The product rule. If a, and b, are convergent, then a, b,
is convergent and

lim(a, b,) = lim a,, lim by,.

L3: The positivity rule. If e, > 0,n =1, 2, ..., and a, is
convergent, then lima, > 0. .
L4: The shift rule. If a,, is convergent, then so is an4; and

lim On41 = lim Qp.

L5: The quotient rule. Ifa, # 0,n =1, 2, ..., and ¢,

converges to a non-zero limit, then

= 1
lim — = = .
an, lima,

In other words, they should be told, in some form or other,
that the collection of convergent sequences is an algebra that is
invariant under the shift operator that maps a, to a1, and that
the limit function is a positive, linear and multiplicative functional
on this algebra.

Examples illustrating the usefulness of these rules should
be provided, stressing that they enable us to eveluate limits of
sequences in terms of limits of more elementary ones, once these
are recognized. Exercises should be given to ensure that students
become comfortable when dealing with rational expressions of con-
vergent sequences. Examples should also be given that alert them
to the possibility that there are convergent sequences whose limits
are not explicit quantities and motivate the following question: are
there criteria that can be used to test a sequence for convergence?
This and other questions should lead the classroom discussion to
bounded monotonic sequences and the completeness of the reals,
which we are content to state as the following axiom.
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Axiom 1 Every bounded monotonic sequence of real numbers ig
convergent.

We refine this a little bit by establishing the following result.
Theorem 1 Suppose that a, is increasing and bounded above,
with a = lima,,. Then

ey S @ B =120 .

Moreover, the inequality is strict, if a, is strictly increasing.
Proof: Suppose that this is not the case. Then there is an integer
n' > 1 such that an > a. Let € = a,y — a. Then € > 0. Since a,
is convergent, there is a positive integer ng such that

len, — a| < €, ¥n > np.
Since we're dealing with real sequences, this can be restated as
a—e<a, <a+te Vn>ng.

In particular, a, < a + € = ay,¥n > ng, which conflicts with the
fact that a,, > a, if n > n'. This contradiction ends the proof of
the main part. We leave it to the reader to supply the gloss.

3. Dyadic Roots

The Babylonians of old compiled tables of squares and extracted
square roots of positive numbers, apparently using essentially
the iterative scheme below, [Ev, Ne, Wa]. It's clear that by
repeated application of their methods they could have obtained
good approximations to fourth roots, eighth roots etc., of any
positive number.

In what follows, and throughout the rest of the article, N will
stand for a dyadic integer of the form N =2",n=1,2,...

Theorem 2 N be a dyadic integer. Let a > 0. Then there is a
unique real number x > 0 such that

r =a.
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=4

Proof: Let N = 2™, where m is a positive integer. We prove the
statement by induction on m. The key step is to show that the
equation z? = a has a unique nonnegative solution. This is clear
if ¢ = 0. So, suppose that a > 0 and consider the (Babylonian)

sequence an defined by

(an+i),n=1,2,...,

Gn+1 = -
™

(=R ]

where a1 is any positive number whose square is > al Ttis
clear that the sequence consists of positive terms. Also, a simple
computation shows that a2 ; > @, n =1, 2,..., independently of
the choice of ¢;. But now this implies that

(@ —a})

<0,n=1,2,...
2a2

dnp+1 — Cn =

In other words, a, is a decreasing sequence of positive numbers
and so, by Axiom 1, is convergent to z, say. By L3, z > 0. By L2,
z? = lima2. Hence, by an easy consequence of L3, 2 > a > 0.
So, ¢ > 0. Next, applying L1, L4 and L5, we see that

a

z =limany = %(liman + lin?a.n) = %(-’E + E)’
and so, £2 = a. It’s easy to see that this z is the only positive
solution of this equation.

It is also clear how to build an inductive argument on this
and establish the theorem. This ends the proof of Theorem 2.

The uniqueness part of this theorem enables us to define the
Nth root of any ¢ > 0. We use the notations ¥/a, a!/" inter-
changeably to denote the unique Nth root of zIV = a, where

L In other words, if ag is an approximation to the desired square
root, a better one is obtained by taking the arithmetic mean of aq and
a/ag, the square of one of which is bigger, and of the other, smaller
than a.
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N =1, 2, 4,8, .... Uniqueness also guarantees that ¥ab =
Ya Vb, Ya,b > 0, a fact that will be needed below.

Experimentation with a hand-calculator that has a square-
root key should lead students to the truth of the following.

Lemma 1 Suppose that a > 0. Then

lim Y¥a=1.

n—00

Proof: First, suppose that ¢ > 1 and put a, = {4, n =1, 2,
..., S0 that the terms of the sequence are v/a, ¥/a, ¥a, .... We
wish to show that the sequence is decreasing. But it is clear that
an > 1,and a2, = a,. Hence a2, = a, < a2, whence it follows
that a,41 < a,. Thus lima, exists. Denote the limit by b. Then,
by L2 and L4, b = lima, = (lima,41)?> = b*. But, by L3, b > 1.
Hence b = 1. This proves the result when e > 1. Using this and
L5 we see that 1

i N ot =
luss ¥/ lim §/1/a !

if 0 < a < 1. This completes the proof.

4. The logarithm function

Euler, [Ed], established that the sequence n({/z—1),n =1, 2,...,
has a limit for every x > 0, and that the limit function satisfies the
law of the logarithm. We consider the subsequence of this based
on the dyadic integers, which we've just seen makes sense. Again,
students should be encouraged to use a calculator to examine the
behaviour of this for different values of = before being shown the
following.

Theorem 3 Let = > 0. Then the limit

. N
o F(VE=1)

exists. Denoting this limit by £(z) we have that
(a) £(1) = 0;

(b) £(zy) = &(z) + £(y), Yo and y > O;

() (z—1/z<{l(x)<z-1Vz>0
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Proof: We will show that the sequence
L) =N(¥z—-1),N=2",n=12,...,
is decreasing. But this is an immediate consequence of the simple

inequality
2(vz-1)< (z-1),

which holds for all # > 0, with equality when and only when

z = 1. Thus we have
o1 (z) <lu(z) <z -1,n=12,...

To continue, suppose that z > 1. Then the terms of £,(z) are
also nonnegative. Hence the sequence is decreasing and bounded
below, and, so, it is convergent. We can remove the restriction on
z by noting that

N(¥z-1)=-N(¥/1/z-1) ¥z,

and using Lemma 1 and L2. Thus, in all cases, the limit exists.
It emerges, too, that £(z) = —£(1/z) and 4(z) < = — 1. Hence (a)
and (c) follow. Finally, (b) follows from the identity

N(YEg-1) = N(Va - 1) ¥5+ N(¥5 - 1),

on applying L1, L2 and Lemma 1.

5. The area of a hyperbolic segment

In 250 BC or thereabouts, Archimedes, [He, K1, To, Wa|, devised
two rigorous methods—the method of compression and the method
of ezhaustion—to measure the area of a parabolic segment. He
proved that the area of such a region is four thirds the area of
the largest triangle that can be inscribed in it. Some 1800 years
later, Cavalieri, [Ed, To], built on the method of compression to
find the area under the curves y = z*, k = 3, 4,..., 9, and paved
the way for Riemann’s development of the integral. In between, in
1647, the Belgian Jesuit Fr. Gregorius a Santo Vincentio, [Ed, To],
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used similar ideas to make the following connection between the
logarithm function and the area under an arc of the rectangulay
hyperbola y = 1/z, = > 0. Denote by A(e,b) the area of the
region {(z,y):a <z <b,0<y<1/z}. Let t > 0. Then

Ata,ib) = Aa,b).

Had he used the second method of Archimedes, which we're noy
going to apply, Gregorius might have discovered the following
result.

Theorem 4 Let 0 < a < b.
hyperbolic segment

S(a,b) = {(:J:,y) ra<z<bl/z <y}

Then the area, H(a,b), of the

is given by
b—a 1 1 1. b .

{2 + 3} - S {lim ba(2) ~ lim (P}
In particular, H(ta,tb) = H(a,b) if t > 0.
Proof: The set S(a,b) is clearly convex, and for any ¢ € [a, b] the
triangle, T'(a, b)(c), with vertices A(a,1/a), C(e, 1/¢), B(b,1/b),
is contained in S(a,b). The area of T'(a, b)(c) is easily seen to be
given by

b=-a 1 1
7 g t™

H(a,b) =

b—

a 1 1 b—a
2

¢ 1 b—a 2

LA P F i N Nt A s | =
BTG -G
with equality if and only if ¢ = v/ab, the geometric mean of a and
b.2 Thus, the area of the largest triangle that can be inscribed in
the hyperbolic segment is given by

b—a 1 1 b—a

2
e+ g

el Loyt s

2 This result should be contrasted with the corresponding
statement for the parabola y = z2, when ¢ turns out to be the
arithmetic mean of a,b, as Archimedes discovered using purely
geometric reasoning.

A(a,b) =
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Geometrically, just as for the parabola, the largest triangle occurs
when C is the point on the arc joining 4 and B where the tangent
is parallel to the chord AB.)

Note the homogeneity property:

A(ta, tb) = A(a,b), ¥t > 0.

We've thus obtained a decomposition of S(a, b) into three dis-
joint regions—which is optimal in a certain sense: a triangle, which
we label T(0,0), with area A(a,b), and two segments S(a, vab)
and S(vab, b).

Next, we consider the segments S(a, v/ab) and S(v/ab, b). The
triangles of largest area that can be inscribed in these segments
have areas A(a,+/ab) and A(+/ab,b), respectively. We have

A(a, Vab) = A(va, Vb) = A(Vab,b),

by homogeneity.?

Up to this point, we have obtained a decomposition of
S(a,b) into seven disjoint regions consisting of three triangles,
T(0,0),T(1,0),T(1,1), say, with corresponding areas A(a,b),
A(/a,vb), A(Va, v/b), and four segments. Next we partition
each of these residual segments in the same way into a triangle
and two segments, noting that the triangles have the same area
equal to A(#/a,vb). Continuing in this way, we partition the
segment S(a, b) into a countable union of triangles T'(n, k), k =0,
1, ..., N—=1,n =0, 1, ... with corresponding areas A(n,k),
k=0,1,...,N-1,n=0,1, ..., where

An, k) = A(Va, Vb),k=0,1,...,N-1,n=0,1,....

We conclude that the area of S(a,b) is given by the sum of
the infinite series of nonnegative terms

oo N-1 [o's)

H(a,b)=3_ > Aln,k) =3 NA(Va, V5).

n=0 k=0 n=0

3 In light of his success with the parabola, it seems inconceiv-
able that Archimedes didn’t know these facts about the hyperbola,
but I haven’t encountered any mention of them in the literature.
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To establish the convergence of the series and determine its sum,
consider its sequence of partial sums s,. Since the terms arg
nonnegative, this sequence is increasing: s, > 3,,n=0,1, ...,

We have
so = A(0,0) = &(a,b) = p —} {\/j“\/‘}
and
s = A(0,0) + A(1, 0)+A(1 1)
=Ala )+2A(\/-=
T +- z{\ﬁ - /5
Inductively, we see that
b—a 1 1 arzntifb apifa
=—{-+3=-2"" /-~ =
= 2526 + ) - 3 (b/0) - tua(a/B),

n=20,1,.... Already, this tells us that the increasing sequence
s, is bounded above by

b—a,1 1
7 &t

a

and so, by Axiom 1, lim s,, exists. (From this, of course, we can
deduce also that the sequence

N{”{/g—”{/%},n=0,17...,

is convergent, if we didn’t already know that fact.) In any event,
the claimed result follows. This ends the proof of Theorem 4.
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Of course, we have that

=% _b-a =
H(a,b)— 1 S = 5

~lim N{”\ﬂ— /2

R L ) — &(a/b))
b—a 1l
=3 {E+ 5} —E(b/a)-

Readers will recognize that the first term- represents the area of
the trapezium with vertices (a,0), (b,0), (b,1/b), (a,1/a). Since
H(a,b) > so = A(a,b), Kepler’s inequality :

E(b)—ﬂ(a)< 1
b—a ~ +/ab

follows, [To].

5.1 Exercises

1. Show that S(a,b) is a subset of the parallelogram formed by
the chord AB, the tangent parallel to this and the ordinates
z=a,z=>0

2. Deduce from the previous exercise that H(a,b) < 2A(a,b).
3. Now use this to obtain the inequality:
2 1.1 1,  £0) —£a)
vab 2(a+b)< b—a ’

a companion for Kepler’s. (Readers will observe, inter alin,
that an independent proof of this and Kepler's inequality
implies the arithmetic-geometric mean inequality, which, of
course, we've used in our derivation of the expression for
H(a,b).)

4. Let a < e < b. Show directly from the definition that

(b—a)(c—a)(b— c)
2abc

H(a,b) = H(a,c) + H(e,b) +
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5. Suppose that f(z,y) is defined and continuous on (0, c0) x
(0,00) and satisfies the homogeneity condition: f(tz,ty) =
flz,y), Vz,y,t > 0, and the functional equation:

£@,2) = fa)+ )+ EZDEEDEZD) vy 5

Determine f.

6. Appendix

For those interested in relating the number e to the treatment of

the logarithm given here, we describe how to introduce e using
similar ideas, and to show that £(e) = 1.
Since :z: '
(1+ 5)2 >14x

for all real z it is easy to see that the sequences

1.~ 1.\~ 1.~
a+% a-P% a-m"%
where N =27 n=1, 2, ..., are increasing. The second and third
are clearly bounded, since

g
<(1--=)"<
-t <,

and

1 :
9/165(1—ﬁ)N<1,n=1,2,...,

and hence are convergent to non-zero limits. (We can deduce at
this stage, if we want to, that the first is also convergent because

i 1-g)¥ 1 '
(1+_)N:—N <—=4n=12 )
N (1—%)” 1/4 : —
We show that g
¢ =lim(1 — ﬁ)N =1.

8 @
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To see this, note that
¢ =lim(1 - L)ZN = lim(1 — - )4
N? 4N?2’

by L2 and L4. But

5 (96 — 16z + 22)

556 > (1-1z), V¥z € (—o0,00).

(1_.:_:_)4=1—.'5+$

Hence 1
¢? > lim(1 — F)N =
But 0 < ¢ <1, Thus ¢ = 1. It now follows that
! Ly _q A= g2
A+ ) =T e
_ lim(1 - w2)Y
~ lim(1- )N
_ 1
C lim(1- )N
So, following Euler, and setting
= 1i (1 _lu)N
ESamAE T

we see that 1 i
] 1 [ N_
- lim(1 N)

But, since the sequences are increasing, Theorem 1 tells us that

1.~ 1 N
= < = =1,2....
(1+N) Se_(]_-‘%)N (N—l) in b R | ¥
whence it results that
N
1<) € i n =12,
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Appealing once more to L3 we deduce that £(e) = 1.
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TORONTO SPACES, MINIMALITY,
AND A THEOREM OF SIERPINSKI.

Eoin Coleman?!

In this note we gather together some theorems in the literature
to resolve a problem suggested by P. J. Matthews and T. B. M.
McMaster in a recent article, [1]. We also make an observation
which allows one to deduce within ordinary set theory that neither
the real line nor the Sorgenfrey line contains a Toronto space of
cardinality the continuum (improving one of their results), and
we establish some relative consistency results. To conclude the
paper, we explain how a similar question arising from a theorem
of Sierpinski (can every subset of the unit interval I of cardinality
the continuum be mapped continuously onto I?) is independent
of ordinary set theory.

1. Toronto spaces and minimality

Matthews and McMaster ask whether there are any reasonable
set-theoretic assumptions which will enable one to prove or dis-
prove the assertion Qmin(x) where & is an uncountable limit car-
dinal. Recall that the assertion Qmin(x) says:

(a) neither T'(x) nor T(x) N T is supported by its weakly quasi-
minimal members,

and

(b) any subfamily of T(k) or T(k) N T, which does support the
whole family has more than k members.

T am very grateful to Dr Peter Collins for an invitation to present
this and related material to the seminar in Analytic Topology at the
Mathematical Institute, Oxford, in November 1996.
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First of all, we show the following:

Proposition 1.

(1) Every infinite Hausdorff topological space X containg an infi-
nite discrete subset.

(2) If k is a singular strong limit cardinal or k = Ny, then
the discrete topological space D(&) of cardinality & jg strongly
quasi-minimal and supports the family T(k)N Ty. In particular,
Qmin(x) is false. :

Proof: (1) Since X is infinite and Hausdorff, and the inter-
section of a finite number of open sets is open, it follows that
one- can choose a discrete Sequence {z, € X : p ¢ w} by
induction, Alternatively, apply. Zorn’s lemma to the family
§={Y :Y is a discrete subset of X'} partially ordered by incly-
sion, to obtain a maxima] element D which must be infinite.

(2) Trivially, the discrete space D(r) is strongly quasi-minimal,
Le. it is homeomorphic to each of its subspaces of cardinality &,
and hence it is weakly quasi-minimal too. A theorem of Hajnal
and Juhdsz, [2, 4 or 5], says that if « ig 5 singular strong limit
cardinal, then every Hausdi:arff. space X of cardinality at least x
has a discrete subset ¥ of cardinality x. If x = Ng, then part (1)
applies. In either eventuality, D(x) supports the family T(k)NTs,
since any bijection from D(x) onto V is a homeomorphism. So
Qmin(x) is false. m ' "

Proposition 1.2 covers a proper class of singular cardinals: for

any cardinal A, define -

Ky = SUP{f\,eX_p()‘),exp(exp()\)), .}

where exp()) = 22, Proposition 1.2 implies that Qmin(x, ) is false
for all A. Note however that every k) has countable cofinality,
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if » is singular and has uncountable
all show further on that if & is singu . !
ngglity then there is a model of ZFC (01:d1na..ry set them_ry) 11;
COhich Qr;rlin(n) is true (although obviously in this model & is no
W
limit). . . o
: Str;;:eg remind the reader that a weakly 1naccess_1ble ca,rd‘mal is
regular limit cardinal, and a strongly inacc(::fssnble ;:?;/(\inlal 35
: i ch that (VA < & K).
countable regular cardinal & su : ' (27 <&
%‘iﬁ}eneraﬁzed Continuum Hypothesis (_GCH. (Vi) (2 = me);
implies that every weakly inaccessible cardinal is stroxllglly inace
;Iilkl)rl)e and that every singular cardinal  is a strong limit.

Corollary 2. Assume GCH. Then Qmin(x) is false for every
singular cardinal .

o inaccessible cardi-
llary 3. Assume GCH and there are 10 ir
ga‘;;loThei (Vx)(Qmin(k) is true if and only if k is an uncountable
regular cardinal). toal. then x — b
>roof: If k is an uncountable regular cardinal,
;fofnd now Qmin(x) holds by the theorem of Ma.tth(.ev‘vs alnc;
Mc’:Master [1]. If & is countable or singular, then Proposition 1.
7 * . ;
and Corollary 2 show that Qmin(x) is false. m N
Corollary 3 answers Problem 2 of _Matthews and c asSiS_,
[1]. It also establishes that if ZFC (ord.mary set theoryi) 15f cog =
tezit, then so is ZFC + ((VR)(QI)I;in(If:]) is t?e fi ani oixsl iy;ripz;s an
table successor cardinal)). particular, sibl
::l:- i)?:l(l)l\lre from ZFC the existence of an uncountable regular limit
inal for which Qmin(k) fails. . .
Cardl’;;e Hajnal-Juhész theorem to which we appea_led in prc_);;mg
Proposition 1.2 relies on a positive partition relatlon._ Tc;eltltllz—
idea: involved, we prove a simp -
trate the ideas and arguments involved, D oo
ini t notation. Suppose
orem, explaining first some convenien e, o ppae thist
d g are cardinals. The famllyl of pe :
n’s;\t, znis genoted by [A]#. The notation x — (x)} meaz:s. folll-
zver function f : [k]* — A, there exists a set H € [«] iuc
thatyf |[H]* is constant. In pictorial terms,hlf one'ﬁOI?u;S St b(:, ;az
i hen there will alway
nt subsets of « using A colours, t
ilfllcla‘:nent subset H all of whose i element subsets get the Is;xr)nﬂ(:
colour. In this notation, Ramsey’s theorem reads: ¥o — (Ro)7
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for all natural numbers m and k, where Ry is the cardinality of
the natural numbers. A relation of the form x = (k) is called
a positive partition relation, Weakly compact cardinals are often
defined as those cardinals & for which x —+ ()2 holds. We note
that k = (k)] implies & — ()7 for all n < w and X <& In
general, if an uncountable cardinal x satisfies a non-trivial posi-
tive partition relation, then « is a large cardinal, and its existence

cannot be proven in. ZFC (ordinary set theory). The reader can .

easily check that for example ¢ — (3)2 does not hold, where ¢ is
the cardinality of the real numbers (enumerate the set of rationals
Q={g :neuw} and for z < y € R, put

9({z,y}) = min{n: z < g, < y}).

The classic monograph of Erdds, Hajnal, Maté and Rado, [5],
provides detailed information on the partition caleulus.

Proposition 4. Suppose that  — (%)Z. If X is a first countable
Hausdorff space of cardinality &, then X has a discrete subset I
of cardinality . ‘ :

Proof: For each z € X, let {V(z,n) : n € w} be a shrinking
neighbourhood basis at z. Define a colouring f of the pairs of
elements of X as follows: ' ;

f({z,9}) = min{n : V(e,n) NV (y,n) = 0}.

Apply the partition relation to obtain an n and a subset D of X
of power & such that (Vz # y € D)(f({z,y}) =n), e Disa
~ discrete subspace, since : . : ’

(Vz € D)(DNV(z,n) = {z}). m

Next we turn to the Toronto space problem, [3]. A minor
improvement of a lemma from Matthews and McMaster allows
one to prove (as a theorem in ordinary set theory) that Qmin(c)
holds, where ¢ is the cardinality of the real numbers.

Lemma A*. [1, Lemma A] Suppose that  is an infinite cardinal,
X is a set of power k and ‘

(Ve < %)(S, is a subset of X of power ).
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Then there exists a subset Z of X of power & which does not
contain any S,. _ - .
Proof: Without loss of generality, we identify X with s and
assume that & is uncountable. Choose distinct elements zy and
yo in Sy. Given z, and z, in S, for @ < B < k, note that
83\ {Za,2a : @ < B} has power &, since § < &, and so one
can find distinct elements 3, 25 in S5 \ {Ta,%a : @ < B}. Put
Z = {24 ' @ < k}. Then Z has power &, and for all @ < &, Z does
not contain S, since z, € S, \ Z. =

The essential results of Matthews and McMaster now go
through without the assumption of regula.rlty:
Lemma C* [1, Lemma C]. Suppose that X is a Hausdorff space
of cardinality r all of whose subspaces have dense subsets of power
at most A, and k* = k. Suppose that

(Va < &)(S, is a subset of X of power &).

If Y is a subspace of X of power &, then Y has a subspace Z
which contains no homeomorphic copy of any Sa-,. . _

The Toronto problem, [3], asks whether it is possible to
have a Toronto space, i.e. an uncountable non.—dlscrete Haus-
dorff space which is homeomorphic to ea.qh of its uncountable
gubspaces. It is unknown whether thfe existence of a Toronto
space is consistent with ZFC. A counting arxgument sho_ws that
if X has hereditary density X and |X|* < 2/X|, then X is not a
Toronto space: there are 21%| subspaces of power |X|, but only
|X|* auto-homeomorphic images of X. . o
Corollary 5. There are no Toronto spaces of singular strong limi
cardinality. In particular, GCH implies that there are no Toronto

es of singular cardinality.
i’ii%ff If s isi singular strong limit cardinal, then every Bausdorﬁ
space X of cardinality & has a discrete subset of cardinality &, and
so X is not a Toronto space. ®
Corollary 6.

(1) Qmin(c) is true.
(2) The real line contains no Toronto space of power c.
(3) The Sorgenfrey line contains no Toronto space of power c.
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Matthews and McMaster, [1], proved the results 6.1 and 6.2
with the additional assumption that c is a regular cardinal. Sim-
ilar results can also be demonstrated for the natural analogues of
the real line in higher cardinalities
Corollary 7. Suppose that k — (k)2. If X is a first count-
able Hausdorff space of cardinality &, then X does not contain a
Toronto space of cardinality k.

Proof: By Proposition 4, every subspace of X of power & containg
a discrete subset of cardinality x. m

Corollary 6 enables one to show that if k is any cardinal
of uncountable cofinality, then there is a model of ZFC in which
Qmin(x) is true: for example, add x Cohen reals to L, the universe
of constructible sets (or more generally, to any model of ZFC
+ GCH). So Corollary 2 and Corollary 6 show that Qmin(x) is

independent of ZFC for any singular cardinal x with x > ci(k) >
w. 4

There is a general phenomenon at work behind Corollaries
2 and 6: suppose that P(}) is a property of cardinals for which
one can prove in ordinary set theory that P(c) is true but P(k)
is false for every singular strong limit cardinal f; then P(x) is
independent of ZFC for every singular cardinal & of uncountable
cofinality. .

Returning to the question of Qmin(k), what happens if an
uncountable cardinal x has countable cofinality? First of all, &
is singular. If & is a strong limit, then Proposition 1 says that
Qmin(k) is false. We do not know what happens if % is not a
strong limit, for example if x = ¥, < ¢ (where part of the difficulty
is that £°/(") > x (Koenig’s theorem)). Some additional partial
information can be gleaned from the papers of Hajnal and Juh4sz,
[6], and Kunen and Roitman, [7].

Finally, let us consider what one can prove if one removes
in the statement of Corollary 3 the assumption that there are no
inaccessible cardinals. In particular, is there a model of ZFC in
which Qmin(k) holds for some weakly inaccessible cardinal? The
following example provides a positive answer. :
Example 8. It is well-known that if there is a model of ZF(C
+ (Ix)(k is weakly inaccessible), then there is also a model M
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of ZFC + (c is weakly inaccessible) (for example, see [9]). By
Corollary 6, Qmin(c) holds in M, so that M. is a mOfiel of ZFC
in which Qmin(k) holds for a weakly inaccessible cardn_la,l ke
A defect of this example is that the weakly inaccessible cardi-
nal k which it exhibits is fairly small. To explain .what happens for
larger inaccessible cardinals, we require the notion of the spread
of a topological space. .
Definition. The spread of a topological space X is

sup{|D| : D is a discrete subset of X} + w.

We denote the spread of X by s(X) and say that the spread is
achieved if X has a discrete subset D of power s(X).

Hodel, [4], remarks the spread is achieved at those regular
limit cardinals & which are weakly compact, and hence all Hags—
dorff spaces in these cardinalities contain .discrgte subsets of size
k. As'in Proposition 1, it follows that Qmin(x) is false for weakly
compact cardinals, and there are no Toronto spaces of weakly
compact cardinality. This leads to a moldel of: ZFC + GCH +
(3x)(x is a regular limit cardinal and Qmin(x) is false:). > o
Example 9. Suppose that & is a weakly compact' cardinal.* T en
# is weakly compact in L, and since GCH holds in L, one obtains
a model of ZFC + GCH + (J&) (x is a weakly compact (regular
limit) cardinal and Qmin(k) is false). So while ZFC + GCH suf-
fices to determine that Qmin(x) is true for uncountable successor
cardinals and false for singular cardinals, it is not pqwerful er.lough
to settle whether Qmin(x) holds if  is an inaccessible cardinal.

We summarize the import of these examples:

rollary 10. _
8)3 Suppoie that x is a singular cardinal of !:mcountable cofinality.
Then Qmin(x) is independent of ZFC (ordinary set thepry).
(2) If there is a weakly inaccessible cardinal, then there.a isa quej
of ZFC in which Qmin(k) is true for some weakly inaccessible
cardinal k.

2 It suffices to suppose that x is a regular cardinal with the tree
property (i.e. there is no x-Aronszajn tree).



60 IMS Bulletin 38, 1997 =

(3) If there is a weakly compact cardinal k, then there is a model
of (ZFC + GCH + Qmin(x) is false). Note that k is weakly
inaccessible in this model.

Jensen, [8], has shown that if the axiom of constructibility
(V = L) holds, then for each regular limit cardinal A which is
not weakly compact, there is a Hausdorf linearly ordered space
of power A in which the spread is not achieved. We do not know
whether V' = L determines which truth value Qmin()) has in
this case, nor what this truth value may be. And of course, it
may still be a theorem of ZFC that Qmin(x+) is true for every
infinite cardinal k. (The reader curious about future progress
on these problems can consult the Topology Atlas, located at
http://www.unipissing.ca/topology)

2. A theorem of Sierpinski

Next, we turn to a theorem of Sierpiniski, [11]: there exists an
uncountable subset P of the unit interval I such that I is not
a continuous image of P. In his classic work, [10], Kuratowski
notes on page 428: “Without the continuum hypothesis, however,
we are unable to prove the existence of a set P of power ¢ such
that the interval is not a continuous image of P.” We explain in
detail how to use Martin’s Axiom (MA) to prove the existence of
such a set P. In fact this result follows from a weaker hypothesis:
R is not the union of less than ¢ many nowhere dense sets. This
hypothesis is true for example under Martin’s Axiom for countable
partial orders, [12], or for a slick proof, see [13, Theorem 16.1].
Arnold Miller constructed a model of ZFC in which c = Ny and
every subset of I of cardinality ¢ can be mapped continuously
onto I. Thus whether every subset of I of power ¢ can be mapped
continuously onto I is independent of ordinary set theory.

To make the arguments fairly self-contained, we recall some
definitions and standard results which can be found in the text-
book [10]. A set A has the Baire property in the space X iff there
is an open set G such that A\ G and G \ 4 are of first category
(meagre, or, a countable union of nowhere dense sets). An equiva-
lent characterization is that 4 = (G'\ N)UM where G is open and
N and M are of first category. So open sets and closed sets have
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the Baire property (every closed set is the union of its interior and
its boundary (which is always nowhere dense)).

Lemma 11. [10, section 24, I, Theorem 3, p.256]. Every family
of disjoint sets {X; : ¢ € I'} with the Baire property, of which none
is of first category, is countable.

The next lemma is a special case of a more general result.
The proof is copied from that of the analogous result for Nl_ in
[10], introducing the necessary modifications to avoid assuming
the regularity of the continuum c.

Lemma 12. Assume that R is not the union of less than ¢ many
nowhere dense sets. Suppose that {E.z : a, 8 < ¢} is a sequence
of subsets of the unit interval I with the Baire property. If 8 < '
implies that Eq 3 N Eq g = @, then there exists a sequence of
distinct ordinals {y(a) : a < c} such that |I\ UsccEqry(o)| = ¢
Proof: We define by induction on o < ¢, an ordinal ¥(e), and an
element p, € I, as follows. Note first that by Lemma 11,

(Va < ¢)(38a) (VB > Ba)(Eag is of the first category).

Fix a < ¢. Suppose that we have defined {v(£),p¢ : £ < a}. Since
the sets E,g are disjoint for different 3,

{6> B : (V€ < a)(pg € (T\ Eos))}
has power c, and so
(Fr(@) > Ba)(V€ < a)(7(a) # 7(€) and p¢ € (I\ Eay(a)))-
Observe now that {Eg.(s) : € < @} is a family of less than ¢ many

sets of first category. We have assumed that R (and hence I) is
not the union of less than ¢ many nowhere dense sets, therefore

I\ (Ue<aBey(g) U Ve<alpe}) # 0,
since a < c; take

Pa € I\ (UegaBey(e) Ule<a{pe}),
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and let P = {p, : &« < e}. If £ < @, then Pt # Do, and hence
|P| =c¢. Also
(Va < e)(PN Eoayiw) = 0,
60
P C I\ UaccEnya)
and hence

|I \ U0£<C-Eary(a)| =c. #

We remind the reader that if f is a real-valued continuous
function defined on a subset A of R, then there exists a continuous
extension of f to a Gs-set (a countable intersection of open sets).
This follows from Theorem 1 in section 35, I, in [10]. And we
remark that if @ is the family of real-valued continuous functions
defined on Gg-subsets of I, then % has cardinality c.

Theorem 13. Assume that R is not the union of less than ¢
many nowhere dense sets. Let F be a family of at most ¢ many
uncountable subsets of the unit interval 1. Then there exists a
subset P of I of cardinality ¢ such that no element of F is a
continuous image of P.

Proof: By the previous remark, for each ¥ € F, there are at most
¢ many continuous real-valued functions f defined on Gg-subsets
of I with ¥ C range(f). Since F has cardinality ¢, and ¢? = ¢, we
can list all the pairs (Y] f) such that f is a real-valued continuous
function defined on a Gj-subset of I with ¥ C range( f),in a list
of length ¢: A = {(Yy, fa) : @ < €}. We can also enumerate
(possibly with repetitions) each set Y, = {yo5 : 8 < c}. Let
Eag = [ l(yuﬁ). Since f, is continuous, it follows that Eug is
closed and hence has the Baire property. Furthermore, for 8 < 3,
Eas M Eag = 0. Now we can apply Lemma 12 to the family
{Bap : @, 8 < c}, to obtain a sequence {y(a) : @ < c} and a set
P of cardinality ¢ disjoint from every Eor(a)

It remains to show that no ¥ € F is a continuous image of P.
Suppose (towards a contradiction) that g is a continuous function
and Y C g[P]. As we noted after Lemma 12, there is a continuous
extension g* of the partial function g|P to a Gs-subset of I. So
Y C g[P] C g*[P]. Hence the pair (Y, g%) must appear in the list

we have

A as some pair (¥, fa) for some ¢ < ¢. Since PN Egpya) = 0,

Fn f;l(ya'y(a)) =0,

SO Yay(a) does not belong to f,[P], and so
Yarv(a) € Yo\ for[P] - Y\Q[P],

which contradicts ¥ C g[P]. This completes the proof. =
Corollary 14. Assume that R is not the union of less than ¢
many nowhere dense sets. Then there exists a subset P C I of
cardinality ¢ such that 1 is not a continuous image of P.

Proof: Let F = {I} in Theorem 13. =

Corollary 15. Martin’s Axiom (or Martin’s Axiom for count-
able partial orders) implies that there exists a subset P C I of
cardinality ¢ such that I is not a continuous image of P.

In his paper [14], Miller constructed a model of ZFC using
forcing in which every subset of power c of I can be mapped
continuously onto I. In his model, ¢ = Ry. As of writing, it is an
open question® whether there is a model of ZFC in which ¢ > R
and every subset of power ¢ of I can be mapped continuously onto
1

Our last theorem concerns totally imperfect subsets of real

numbers. A totally imperfect subset of R is one which contains
no non-empty perfect set. A set E C R is perfect iff £ is closed
and contains no isolated points. In section 40 of [10], Kuratowski
proved that there exists an uncountable (totally imperfect) set
P C I each of whose continuous images (situated in I) is a totally
imperfect set.
Theorem 16. Suppose that R is not the union of less than ¢
many nowhere dense sets. Then there exists a (totally imperfect)
set P C I of cardinality ¢ each of whose continuous images is a
totally imperfect set.

3 Information kindly supplied by Professor Arnie Miller. The inter-
ested reader can find some of his papers and a list of problems on his
website at: http://math wisc.edu/miller
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Proof: Let T be the family of non-empty perfect subsets of L
Recall that ¥ and every uncountable perfect set have cardinality
c. Now apply Theorem 13 to F. &

Corollary 17. Martin’s Axiom (or Martin’s Axiom for countable
partial orders) implies that there exists a set P C I of cardinality
¢ each of whose continuous images is a totally imperfect set.

Of course, in Miller's model of ZFC mentioned above, these
conclusions are false. So the question whether there exists a set
P C T of cardinality ¢ each of whose continuous images is a totally
imperfect set is again independent of ordinary set theory.

Further generalizations of these results to second-countable
complete metric spaces are also possible.
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LINEAR ENHANCEMENTS OF
THE STREAMLINE DIFFUSION METHOD
FOR CONVECTION-DIFFUSION PROBLEMS

Neil Madden and Martin Stynes

Several computationally simple modifications of the stream-
line diffusion finite element method are developed for linear
convection-dominated convection-diffusion problems in two di-
mensions. Numerical experiments show that these modifications
yield significantly more accurate results than are attainable from
the basic streamline diffusion method. Full details appear in [1].
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A UNIFORMLY CONVERGENT GALERKIN METHOD

ON A SHISHKIN MESH
FOR A CONVECTION-DIFFUSION PROBLEM

Martin Stynes and Eugene O'Riordan

A Galerkin finite element method that uses plecewise bilinears
on a simple piecewise equidistant mesh is applied to a linear
convection-dominated convection-diffusion problem in two dimen-
sions. The method is shown to be convergent, uniformly in the
perturbation parameter, of order N"'InN in a global energy
norm -and of order N~1/2In*% N pointwise near the outflow
boundary, where the total number of mesh points is Q(N?). Full
details appear in [1].
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THE MIDPOINT UPWIND SCHEME
Martin Stynes and Hans-Gérg Roos

A modified upwind scheme is considered for a singularly perturbed
two-point boundary value problem whose solution has a single
boundary layer. The scheme is analysed on an arbitrary mesh.
It is then analysed on a Shishkin mesh and precise convergence
bounds are obtained, which show that the scheme is superior to
the standard upwind scheme. A variant of the scheme on the
same Shishkin mesh is proved to achieve even better convergence
behaviour. Full details appear in [1].
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Book Review

Introduction te Coding Theory (second edition)

J. H. van Lint
Graduate Texts in Mathematics, Vol. 86
Springer-Verlag 1992, 183 pp.
ISBN 0-387-54894-7

Reviewedlby Pat Fitzpatrick

Coding Theory will soon be 50 years old: it dates precisely back
to Claude Shannon’s fundamental 1948 paper, [14]. For such a
young subject it has achieved a great deal, particularly in estab-
lishing connections with fundamental mathematics in a wide vari-
ety of areas encompassing group theory, finite geometries, com-
binatorics, number theory, algebraic geometry, algebraic function
fields, computational algebra, and complexity theory. These rela-
tionships are mainly in the sense that mathematics from other
areas is applied to inform the coding theory, for instance in the
development of the theory of geometric Goppa codes from curves
over Fy, but there have also been some notable applications in
the opposite direction, such as in the proof of the non-existence
of a projective plane of order 10, [8], and in classical sphere-
packing problems, [2]. Coding theory is, in essence, an area of
applied mathematics, although it makes use of mathematics which
has, until recently, appeared only on the “pure” gyllabus. Many
researchers in coding theory are engineers and many of the funda-
mental concerns are with specifically engineering questions such
as the implementation of finite field arithmetic in logic or the
complexity of decoding algorithms.

Not so the present volume! This is a book about mathemat-
ics, written for mathematicians. The presentation is condensed
almost to the point of terseness, but the writing is superb, remi-
niscent in style of what one finds in the poet’s quintessential “slim
volume.” The book began life as a set of lecture notes, with the
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first published edition written in 1981 and one is immediately
impressed by the obvious qualities of elegance and precision that
must have imbued those lectures {given not only by the author but
also by A. E. Brouwer, H. W. Lenstra, and I. C. A. van Tilborg,
among others). It is also apparent that the audience required
what the author refers to as a “fairly thorough mathematical back-
ground,” in abstract algebra certainly, as well as in certain topics
from number theory, probability, and combinatorics. Van Lint
provides a whirlwind tour through the necessary background in
the first chapter, setting up notation and quoting results with-
out proof on algebraic structures, finite fields, combinatorics and
probability, but giving a litile more detail on the rather less well
known theory of Krawtchouk polynomials (of which more later).
He then sets cut a basic five chapter course in coding theory fol-
lowed by five further chapters on what he regards as important
topics (and we have every reason to be convinced of the soundness
of his judgement)..

An [n, M, d] block code C over the finite field F, is a subset of
size M of the n-dimensional vector space FY'. In general the code
is not required to have any structure, but if it forms a subspace of
dimension k (so.that |M| = ¢*) then it is called an [n, k,d] linear
codes. The ambient space is equipped with the Hamming distance

dH(u,v) = |{E UG ;é 'U,;}l

and the parametér d denotes the minimum distance between code-
words in C. The value of log, M/n (or k/n) is known as the rate
of the code as it represents the rate at which information can be
transmitted via an embedding ¢ — Fy. It is easy to see that a
codeword ¢ € C sent over a noisy channel (in which errors are
introduced independently of position) and received as é can be
decoded uniquely to ¢ with maximum likelihood provided that
the number of errors dg(é,¢) < L‘iz;lj. This begs the guestion of
whether any deceding algorithm can be carried out effectively—
direct comparison of & with every codeword is of exponential com-
plexity and therefore useless in practice. Consequently, two of the
major themes in coding theory research are to define and analyse
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classes of good codes having relatively large minimum distance,
and to find codes for which one can construct polynomial time
decoding algorithms.

Shannon’s main theorem establishes the existence of good
random codes that for sufficiently large values of n can be used in
principle to make decoding error probability arbitrarily small (at
appropriate rates). This is clearly the cornerstone of the theory
and van Lint makes sure that it has a prominent place in his treat-
ment. However, since Shannon’s codes are completely unstruc-
tured, considerations of practicality form a competing requirement
and it has proved difficult to find codes with practical decod-
ing algorithms that achieve anything like the error probability
promised by Shannon’s theorem.

After the introduction of some analytical tools such as weight
enumerators {essentially generating functions for the numbers of
codewords of given weights in a code), the dual code, and the fun-
damental MacWilliams identities relating a weight enumerator of
a code with that of its dual, some specific classes of codes are
described. The ubiguitous Golay codes are included, of course.
Next come Beed—Muller codes which are not as good as some,
but whose advantage is that they are easy to decode. More impor-
tantly from van Lint’s mathematical perspective they link coding
theory with finite geometries and Boolean functions and we are
introduced to the automorphism group of a code (the coordinate
permutations that preserve it). A short section (added in the
second edition) on Kerdock codes, which are subcodes of certain
Reed—Muller codes, confirms our belief in the author’s instincts,
since one of the major developments of the 1990’s is the discovery
by Hammons et al, [6], that the (nonlinear, binary) Kerdock codes
can be represented as images of linear codes over Zg4.

A restricted version of the decoding problem for a code with
minimun distance d is to decode up to t = [ #51] errors for some
4 < d (and record a decoding error if any received word does not
lie within £ errors of a codeword). One type of code for'which such
a bounded distance, incomplete decoding algorithm is the class of
BCH codes, a subset of which is formed by the Reed-Solomon
codes that are widely used in terrestrial and satellite communi-
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cations, compact disks and computer disk drives. A BCH code
C over Fy may be conveniently defined as an ideal in the poly-
nomial algebra A = F [z]/(z™ — 1), where n and g are relatively
prime to avold repeated factors in the decomposition of z" — 1
into irreducibles. Thus, C is generated by a polynomial g dividing
z® — 1 and this means that the code is cyclic in the sense that
every cyclic shift of a codeword is again a codeword. The theory
of general cyclic codes is ultimately derived from the decomposi-
tion of the semisimple algebra 4 as a sum of minimal ideals based
on a system of orthogonal primitive idempotents. Van Lint cov-
ers this—as do most coding theory books— from first principles,
without appealing to general results. The BUH theorem says that
if 7 is a primitive n-th oot of unity in an extension of F, and
if g contains the consecutive set vy, v, ..., 7~ among its roots
then the code € has minimum distance at least §. Extensions of
this result, proved by Hartmann and Tzeng, [5], and Roos, [13],
are based on the existence of several consecutive sets of powers
of v being among the roots of g. The best known bound of this
type was proved by van Lint and Wilson, [10]; it is included in
-the section on BUH codes and the earlier results are derived as
“special cases. : . :

In general the problem of finding the minimum distance of
a given code or class of codes (and hence their exact error cor-
recting capability) is difficult and the determination of upper and
lower bounds is another principal theme of the theory. Linearity
is not assumed and the function A{n,d) is defined as the maxi-
muin value of M for which an [n, M, d] code exists. A code C with
|C| = A{n,d) is said to be optimal. The study of this function is
the central problem of combinatorial coding theory and van Lint
provides an overview of the known bounds. Of particular inter-
est is the construction of classes of asymptotically good codes
with parameters {n;, M;, d;] such that the rate &;/n; and the rel-
ative distance d;/n; are both bounded away from zero as i = co.
None of the classes used in practice (such as the BCH codes) have
this property, but an outstanding example discovered by Juste-
sen, [7], and representing a major achievement of the 1570’s, has
its place in van Lint’s treatment. The introduction of Justesen

] Book Review 73

codes requires the author to develop the notion of concatenation
of codes which is valuable in itself, since this technique (in which
the codewords of an inner code are used as information vectors to
a second outer code) is widely used in practice (in compact disk
and deep space telemetry, for example). Also, the recent general-
ization to what are known as turbo-codes, [1], [4], has produced
some of the potentially best performing practical coding schemes
known today.

Perhaps the most significant of the distance bounds, espe-
cially in terms of motivating new research, is the Gilbert (or
Gilbert-Varshamov) bound. This concerns the asymptotic rate

a(%) = limy o0 SUP n~! logq Aln, %)

: . -1
of an optimal code and establishes the existence for 1 < % <=

of codes with
o) > 1- Hy(9),

where H is the entropy function
Hy(z) = zlog, (g — 1) - zlog, z — (1 — z) log, (1 ~ 7).

For many years this bound on a(2) was thought to be best pos-
sible, until 1982, when in a remarkable development Tsfasman,
Viddut and Zink, [17], discovered a class of codes improving the
bound for g > 49. Their codes, constructed from algebraic curves
over F,, are based on the pioneering work of Goppa in the carly
1980’s (see [3]) and as a consequence of their discovery there has
been an enormous amount of research over the past ten years
in the development of new algebraic geometry (or AG) codes
and the search for efficient decoding algorithms. An alternative
function field approach to these codes is the subject of a book
by Stichtenoth, [15], reviewed recently in these pages by Gary
McGuire, [11}. Van Lint manages to give a good flavour of the
geometric ideas in just a few pages appended to the original first
edition section on Reed-Solomon codes, of which the algebraic
geometry codes are a natural generalization.




(H

74 IMS Bulletin 38, 1997 g

f

A notable feature of van Lint’s overall treatment of coding
theory is the prominent position given to the Krawtchouk poly-
nomials. For fixed values of n and ¢, this class of orthogonal
polynomials is defined as

Ki(z;n,q) = ;iﬂ G) (: ~ j) (g — 1)k

(m) _zla=1)(@=j+1)

J 3!

where

, = €R.

Properties of these polynomials are used in several places, such as
in the analysis of weight enumerators, referred to earlier, and in
the classification of perfect codes. Defining a code over a general
alphabet @ rather than just over ¥, a perfect t-error correct-
ing code C of length n has the the property that the Hamming
spheres Si(z) = {c¢ € {|d{c,z) < ¢} are disjoint and completely
fill the space Q™. It was shown by Tietdviinen, [16], and van
Lint, [9], that the only nontrivial t-error correcting perfect codes
with ¢ > 1 and || a prime power are the Gelay codes. In the
book van Lint proves the binary case using a remarkable suffi-
cient condition; known-as Lloyd’s Theorem (see [9]), that if a
binary perfect t-error correcting code of length n exists then the
polynomial ¥,(z) = K;(z — 1;n — 1,2) has ¢ distinct zeros among
the integers 1, 2, ..., n. This chapter also contains a study of
binary uniformly packed codes {which generalize perfect codes)
- using certain sequences of numbers defined from linear function-
als on the group algebra CF%, as well as further properties of the
Krawtchouk polynomials. : '
In the last two chapters of the book van Lint departs from
the prevailing theme of block codes to introduce the reader to
topics with radically different flavours. First there is a brief look
at arithmetic codes which are used in the detection and correc-
tion of errors in ordinary arithmetic computations. Much more
important from a practical point of view, convolutional codes are
considered. In these codes the information sequence is potentially

1l

[2]
(3]
[4]

P
[,
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infinite and the encoded stream is formed by interleaving the con-
volutions of the input stream with two or more finite sequences (in
practice of length no more than about 10). As van Lint notes in
his introduction to this chapter “the mathematical theory of con-
volutional codes is not well developed ...[and this is] one of the rea-
sons that mathematicians find it difficult to become interested [in
them].” But convolutional codes are widely used in practice, often
concatenated with an outer Reed—Solemon code, and moreover,
the well known Viterbi decoding algorithm that is used for convo-
lutional codes also plays a significant role in getting rid of inter-
gymbol interference in the read-write channel for computer disk
drives, (Permitting such intersymbol interference in a controlled
manner is essentially what has led to the enormous increases over
recent years in the density of data storage.) So these codes are not
only very open to mathematical analysis but also very important
in view of their applications. A particularly interesting and poten-

tially fruitful avenue is in the investigation of the automorphism

groups of convolutional codes pioneered by Piret, [12], and true
to form van Lint hits the right note by dealing with that aspect
in a short final section of this last chapter.

Van Lint’s book might almost be regarded as a collection of
“adited highlights” of coding theory, in many of which he has been
personally involved. One wants to read and re-read in order to
fully digest and savour their excellence. There is no doubt that
the reader will have to work at this book, but the rewards are
handsome.
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