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1. Introduction

“Jt is reasonable to hope that the relationship between com-
putation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the
last. The development of this relationship demands a concern
for both applications and for mathematical elegance.” John
McCarthy?, 1967.
In describing Information Technology, the Web page of the
recently formed Information Technology Centre at.. University
College, Galway says this: “During the past decade Information
Technology (I'T) has transformed business life, from the board-
room to the shopfloor. As we generally understand it, Information
Technology is an outgrowth from the computer, microelectronics,
and telecommunications industries, and now comprises: com-
puter processors and data storage devices, telecommunications,
software, microprocessors, automation technologies and user
interface media.” .

Generally speaking, users of IT need not be expert in, nor
even familiar with, the technologies which support it. If this is
true, it is even more true that these same users need have no
knowledge of the theory which supports the technologies which
support IT. Nevertheless, the issue of the theories underlying IT
and, in particular, which areas of mathematics are important in

Inventor of the programming language Lisp and pioneer of Al

45



46 IMS Bulletin 37, 1996

it, is itself important and interesting. At the moment, the vehicle

moving all the activity in IT is the electronic digital computer, .
and this state of affairs is likely to persist for some time into the |
future. Therefore, questions concerning the relationship of math- -

ematics to IT are often really questions concerning some more or
less theorstical issue in computer science, and indeed such issues
are raised in this Bulletin from time to time, sometimes in an

educational context, see [16], for example. So, just which areas of

mathematics are currently of importance in research and teach-

ing in theoretical computer science and IT, and which of these
areas will prove to be of enduring importance in this context? .
But before addressing this question, it will be helpful to say a few

words about the recent history of IT.
Much of the recent and ongoing work in IT has as its focus

new generation computing and is the direct result of the efforts of
the Alvey and ESPRIT programmes in Europe, ICOT in Japan

and the consortium known as the Microelectronics and Computer

Technology Corporation in the U.S.A. Indeed, all this was directly -
inspired by ICOT’s. announcement in 1982 of its intention to build -

the so called fifth generation computer, prompting a global race

from about 1985 onwards to build such machinery. It was found
necessary within these projects, see [1, 2], to broadly divide the 5
whole of IT into, initially, four enabling technologies: VLSI (Very
Large Scale Integration, which is concerned with chip fabrica-
tion and computer architecture); MMI (Man-Machine Interface,
or human factors in computing); SE (Software Engineering, which ¢
is concerned with putting the production of software on a scientific

basis (in particular, the development and use of formal methods of
verification in the manufacture of software and hardware)}; IKBS

(Tntelligent Knowledge Based Systems, i.e. Artificial Intelligence -
(AI)). As a matter of fact, communications and networks quickly °
came to be seen as so important that they were taken to be the *

fifth enabling technology.

The classification just described is useful as a means of orga- ~
nizing the applications of mathematics to IT, and can help deter-
mine which are central and which are of lesser importance. As one
would expect, all five of these enabling technologies use mathemat-
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ics, $0 & greater or lesser extent, in the way that it is used in other
sciences, that is, as a precise language in which to formulate prob-
lemns and results and as a tool with which to solve these problems
(even MMI uses mathematics in problems concerned with pattern
recognition). Returning to our main question, and taking a glance
at, say, the thirteen volumes which collectively make up 3, 13, 40},
and which cover several thousand pages, shows that even the first
part of our question is by no means easy to answer (and the vol-
urmes just cited cover mainly the mathematics relevant to SE and
IKBS and say little about the other three areas). However, such
a glance does make it clear that the answer “discrete mathemat-
ics” which is sometimes proposed in respouse to this question is
only a small part of the story, at least when this term is inter-
preted to mean graph theory and combinatorics, as is often the
case. Important as graph theory and combinatorics undoubtedly
are, they do not explain, for example, the many uses of category
theory and topology in connection with domain theory and the
formal semantics of programming languages. Much less do they
explain the many uses of mathematical logic in connection with
program verification and within machine intelligence and robotics.
Gtill less do they explain the use of real and complex analysis in
the analysis of algorithms, and the use, say, of measure and inte-
gration in connection with probabilistic powerdomains on the one
hand, and in connection with uncertainty in reasoning systems
on the other (where fuzzy logic is also important). Indeed, one
can continue in this vein citing seemingly endless applications of
different branches of mathematics to various aspects of the theory
of computation and IT, and some of these are indicated in the
References at the end of this article. On the other hand, many

‘others are not mentioned at all, and there is indeed an immense

literature covering the various topics of which our bibliography is
but a tiny fraction.

Devising a complete classification of all the areas of math-

- ematics which are of importance in IT would be an interesting

and valuable project in its own right, though time consuming and
beyond the abilities of the author, and in any case is not the objec-
tive of this article. Instead, we propose to take one concept, that
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of fired point, and attempt to relate it to two of the main areas,
SE and IKBS, which were identified earlier. The notion of fixed
point is, of course, of great importance within mathematics, and
it turns out also to be central in the areas we intend to consider in -
the context of programming language semantics. There may well
be applications of ideas concerning fixed points elsewhere within :
IT, but they will not fall within our scope. Thus, specifically, we
consider the use of fixed points in relation to the problem of giv-
ing formal, machine independent meaning (a formal semantics) to
computer programs. To do such is fundamental to the problem -
of formal verification of software, or the use of formal methods as
it is known in industry, and we take up this issue for procedural
programs in §2. In §3 we briefly consider basic ideas of formal -

systems and mathematical logic preparatory to the discussion, in

§4, of the role of fixed points in computational logic {the declara-
tive style of programming). Again, fixed points are fundamental
in this area in order to both give meaning to programs and to .
gain deep insight into the computation process itself, necessary if -
. advanced machine reasoning features areto be.developed such-as -
time dependent logics, the ability for machines to learn and so on. |
Such questions are themselves of importance of course given the

extent to which computers control complex and important sys-

tems in modern society. Finally, in §5 we discuss briefly the uses
of topology, some due to the author, which unite the two themes :
just described. Given space limitations, not to mention those of
the writer, it is not possible to do much more here than touch
on the main issues. Nevertheless, it is hoped to show, en route, .
that the simple concept of fixed point links in a coherent fash-
ion a wealth of important ideas drawn from mathematical logic,

recursive function theory, topology, category theory and abstract

algebra in an effort to resolve the apparently simple question of [
what a program means. Indeed, far from being simply a matter
of pressing keys on a computer keyboard, which is the end user’s
perception, IT has behind it a rich and fascinating theory which -
makes use of many fundamental ideas drawn from many parts of
mathematics. That at any rate has been the experience of the
author over the first decade of IT, a subject which by all accounts
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is set to become one of the two or three dominant forces which
shape the next century.

3. Fixed-point semantics of procedural programs

No matter what programming language it is written in, a program
P computes a function f. By suttably coding data structures
(lists, arrays etc.) and by a simple conjugacy, we can suppose
without loss of generality (though not necessarily without loss of
convenience) that f is defined on vectors x = (21,22,...,%,) €
N7 for some natural number n, and takes values in ¥V, where NV
denotes the set {0,1,2, ...} of natural numbers together with zero,
The essence, of course, of computer science is the translation of
formal or informal algorithm into (high level program} code. It
is therefore eminently reasonable from the point of view of the
computer scientist to impose some resource bounds on the notion
of algorithm that one adopts, see [15}. We shall not, however, do
this here so that we employ this term in the manner familiar in
mathematics and in particular in the usual sense of recursive func-
tion theory, see [21, 26]. This means that f is a partial recursive
function (a computable function) and that its domain is a possibly
strict subset of N™; if the domain of f is all of N, then f will
be called totel. Let us therefore denote by F,, the collection of all
partial functions from N™ to N and write dom(f) for the domain
of f. Given two functions f,g € Fn, we write f(x) ~ g(x) to mean
that if one of f(x) or g(x) is defined, then both are defined and
equal. With this notation, we may define the graph of f, graph(f),
by graph(f) = {{x,y); f(x) =~ y}, and as usual graph(f) will be
identified with f. This notion permits us to partially order 7,
by: f < g iff graph(f) C graph(g), and we note the following two
facts. (i) The nowhere defined function f,, whose graph is the
empty set, satisfies f5 < f for all f € F,, and therefore is the
bottom element of F,. (ii) F, is an w-complete partial order in

‘that any chain f, < fi < f; < ... has a supremum f = U;,_; fm,

where f satisfies (and is well defined by) f(x) >y iff fu(x) >~y
for some m. ' '

The main theorem we will need in this section is the following,
known as Kleene's first recursion theorem, see [11, 21, 26].
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Theorem 1. Suppose that ® : F,, = F, is a recursive operator.
Then ® has a least fixed point h which is a computable function. .

Thus, there is a computable function h satisfying

a) ®(h) = h,

b) if ®(g) = g, then h < g.

Hence, if h is total, then it is the only fixed peint of ®. @

We will not give a formal definition of the term recursive -
used here, but the essence of the idea is that whenever ®(f)(x) is
defined, its value depends only on finitely many values of f and
these values can be chosen in a computable fashion. Note that ® =
is itself totally defined, that is, defined on all of F,,, but of course .
®(f) may be a partial function. It will be convenient to write -

®(f;x) in place of {F}(x).

We also will not give details of the proof of this theorem,
other than those which we will need later on, and they are as
follows. We define inductively the following chain (f,,} of elements *
of Fri fo = fo and fmi1 = ®(fn), and now let b = | _o fm-
The continuity of @, implied by recursiveness and defined later, *
shows that h is a fixed point; the construction shows it to bethe 2
least such; recursiveness of ® is used to show that A is in fact a

computable function.

To show how this theorem is used, we consider the following °
simple example which is an adaptation, in some of the detail, of "
an example to be found in [37]. It will serve to make clear the
central problem under discussion and the manner of its soluticn.

Example 1 Consider the problem of finding the greatest common
divisor, ged(a, b), of the two positive natural numbers ¢ and b. The

usual way to do this is to apply the Euclidean algorithm and write -
a = ¢(a, )b + r(a,b) for unique choice of natural numbers ¢(a,b)
and r(a,b), where the remainder r(a,b) satisfies ¢ < r(a,b) < b. -,

It is then noted that ged(e, b) = ged(b,r(a,b)), if v(e,b) > 0, and

that the pair (b,r(a,b)} is “smaller” than the pair (a,b), so that .
repeated application of this technique is bound to terminate (in =
the required ged). It will be convenient to regard r as totally
defined by setting r(a,0) = a for all a, and r(0,b} = 0 for all b.
Then, with similar, suitably chosen exceptional values for q, we "
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see that the identity a = g(a, )b + (e, b) is satisfied for all @ and
b. Now, a procedural-language implementation P of the algorithm
just described, say in PASCAL, will contain a program statement
of the form “ged := ged{y, 2)”, and a mathematical formulation
of the algorithm is given by

_{b, if r{a,b) =0;
ged(a, b) = {gcd(b,r‘(a, b)), otherwise.

The program, and the formulation just givenm, recursively or
implicitly define ged in terms of itself, and the question which
naturally arises now is “What is the meaning or interpretation of
such a definition?” From the point of view of computation, that
is, from the point of view of operational or procedural semantics,
the answer is simply that we are given an iterative procedure to
calculate the function ged. Such a meaning, closely related to
the behaviour of P when running on a machine, is not in general
satisfactory for purposes of formal verification, and a machine
independent explicit definition is needed. The standard way to
obtain this, in general, is to pass to an associated operator P
and take the function which P is intended to compute to be the
Jeast fixed point of ®. To see how this works for the problem in
question, we define @ : Fo — F2 by

. [, if r(a,b) =0
&(f;a,b) = {f(b,r(a,b)), otherwise.

It is important to note that the definition of @ is explicit i.e. does
niot involve recursion. Moreover, because ®(f;a,b) depends only
on the one value f(b,r(a,b)) of f, for any f and (a,b), it follows
that @ is a recursive operator. Applying Kleene’s theorem, we
obtain the least fixed point k of @, and h is a computable function.
By reference to the synopsis of the proof of Kleene's theorem,
given above, we note the following:

"1 £1(0,8) = b for all b, and f1(a,0) is undefined for a > 0.

2) £5(0,b) = b for all b necessarily, and fa(a,0) = f1(0,a) = a for
all @ > 0. It follows that A(0,b) = b for all b and h(a,0) = a for

all a.
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3) If A, is any fixed point of ¥, and thus satisfies the equation

~ b) j‘f ’f'(ﬂ,, b) = U’
hy(a,b) = { hi(b,r(a,b)}, otherwise.

then it is easy to check that hi(e,b) coincides with ged(a,b) for

positive a and b.

It follows from these observations that h{a,b) coincides with .
ged(a,b) for positive a and b and therefore that h is totally
defined. Hence, h is the unique fixed point of &, and so we -
recover ged as the unique fixed point of € provided we are willing *
to accept that gcd{a,0) = a for all ¢ and ged(0,b) = b for all b, ©
which is reasonable, and in particular ged(0,0) = 0, which is not

unreasonable.

The discussion of this example, even though a little acceler- .-
ated, identifies many of the main points of the theory, and these :

points can be summarized as follows.

» There is a need for abstract models of computation. Usually
these are ordered spaces (such as Scott domains, see [37], and -
indeed much- of this theory has:been heavily.influenced. by the
work of Dana Scott and Gordon Plotkin, see [28, 29, 30, 36]) but -
sometimes are metric spaces or even quasi-metric spaces, see [35]. -
Such spaces should permit one to model the computation process :
itself perhaps by better and better (increasing) approximations to
a limit or supremum, and should incorporate a certain finiteness, -
known as algebraicity, which we will not identify, again see [37].
At the very least, the domains chosen must permit the construe- -
tion of fixed points of certain operators. Moreover, to model fea- |
tures of real programming languages they must be closed under
the formation of products, sums, function space, power domain -
(to model non-determinism) and must permit the solution of so .
called recursive domain equations. One is therefore looking for a
Cartesian closed category of domains. The (ongoing) search for
such categories is a beautiful example of pure mathematics, with
the satisfaction that at all times it is closely related to genuine -

problems in the design of advanced programming languages.

s Fixed points can be used, via fixed point induction, to verify
programs and their properties, see {22, 23]. They also can force
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suitable choices of exceptional values and, more importantly, elim-
inate problems involving choice where computation rules are used
in evaluating recursive definitions.

Whilst this is only the start of the theory, we can take it no
further for we want to turn now to consideration of the other main
strand of this article, namely, the use of mathematical logic in IT
and the role of fixed points in that context.

3. Logic, computability and formal systems

Ever since the early discoveries made by the Ancient Greeks, there
has been a strong interplay between mathematics and logic, lead-
ing to the specific area of mathematical logic. This subject is
concerned with both analysing the reasoning used in mathemat-
ics and also contributing to that subject, especially to its foun-
dations, by examining the limits to mathematical reasoning and
to what is possible. In addition, mathematical logic is proving
to be indispensable in the theory of computation and in IT for
several reasons, including its use in formal verification of software
and as a computational medium. We will not discuss the first
mentioned, in this section, other than to give references to appro-
priate literature; the latter we will discuss in more detail in the
next section. It will be convenient to assume that the reader is
familiar with elementary notions concerned with syntax: forma-
tion of terms and well formed formulae (usually abbreviated to
wif, whether in the singular or the plural) from an alphabet, and
the corresponding first order language. We also assume that the
reader is similarly familiar with elementary notions of semantics:
interpretations, formal assignment of truth values to wif, models,
logical consequence and validity, for details see [7, Chapter 1].

In modern terminology, what the Greeks conceived of is the
concept of a formal system or formal deductive system in which,
within a theory, one reasons from axioms (distinguished wiff in
the underlying first order language) by applying formal rules of
inference to obtain new “truths” or theorems (this process being
inductive of course). Roughly speaking, this concept is defined as

- follows, and a useful general reference is again [7, Chapter 1].

Definition 1 A formal system S(L, A, R) or just & consists of:
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1} A first order language £ called the underlying first order lan-
guage, whose alphabet is chosen so that £ is adequate to describe

the theory one has in mind.

2) A distinguished set A of wif in £ called the azioms; usually *
some computability restriction is imposed here such as “it is decid-
able which wif are axioms” (the set of axioms therefore forms what
is known as a recursive set and the system is said to be recursively

aziomatizable).
3) A set R of rules of inference.

. . . Input
Rules of inference take the following general form: m&m |
where Input and Output are both sets of wif of a specific syntactic .

form. For example, one well known rule is Modus Ponens which
has the form:

A= B
A

B

where A and B are:syntactic variables i.e. vary over wif. Thus,
for example, if the wif (Vz p(f(z})) — ¢(g(e, b)) and Yz p(f(z)) -

are taken as Input, then the Output is ¢(g(a, b)).
Other examples of rules of inference can be found in [7, Chap-
ter 1].

Definition 2 A proof in a formal system & consists of a ﬁmte

string Ay A, ... A, of wif A; in £ where each A; is either an axiom
or follows from earlier A; by application of a rule of inference. The .
end term A, in a proof is called a theorem. If a wff A in £ is the
end term of some proof (i.e. if A is a theorem), we say that A is -

deriveble or provable and write S+ A or A+ A,

This definition encapsulates a formalist or mechanical view of =
reasoning in which there is no meaning or semantics (it is purely -
syntactic): one keeps on mechanically applying rules of infer-
ence generating more and more proofs and therefore more and
more theorems without regard to whether or not the theorems -
are “true”. Nevertheless, certain immediate questions arise about -
formal systems for which a satisfactory answer requires truth val- ;

ues,
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Correctness of rules of inference

This is easy to answer: a rule of inference is correct or sound
provided that its Output is a logical consequence of its Input.
For example, since a wif B is always a logical consequence of wif
A4 — B and A, Modus Ponens is a correct rule of inference.
Completeness of a formal system Roughly speaking this is a
question about the power of a formal system to prove anything
which could reasonably be expected to be provable and it depends
mainly on the choice of the set R of rules of inference. There are
several styles of formal system in use and two in particular are
the Hilbert style formal system and the Gentzen style formal sys-
tem. These are described in detail in [7, Chapter 1] where the
exact form of the rules of inference is given in order to handle
substitutions and quantifiers. The main result concerning com-
pleteness for both these styles of formal system is Godel’s well
kuown completeness theorem, where |= is the symbol for logical
consequence.

Theorem 2. In a Hilbert style or Gentzen style formal system S,
a well formed formmuia A is derivable iff it is a logical consequence
of A. Thus,.in symbols A- Aif Al A. B

Incompleteness in formal systems

Recall that A |= A means that A is true in every model of A.
So, if a wif A is true in some models of A but false in others,
then A cannot be provable by Theorem 1, and conversely. The
main question which arises is whether or not in a given theory
(in particular this question arose in relation to Peano Arithmetic
PA) there is a closed wif, or sentence, A which is true in the
intended interpretation of that theory which is not provable. In
the case of PA the intended interpretation is the expected one in
which the domain is the set of natural numbers and the function
Symbols there are interpreted as addition and multiplication. The
shocking answer to this question for PA that there are such wit
is the content of Gidel’s famous first incompleteness theorem, a
simple, but useful, form of which is as follows, see [11].

Theorem 3. Suppose & is any recursively axiomatized formal
gystem for Peano Arithmetic P.A in which every provable sentence
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is true in the intended interpretation. Then there is a sentence o in
P.A which is true in the intended interpretation but not provable.
Consequently, —a is not provable either (since - is not true), and -

& is called an undecidable septence. =

This theorem together with Gddel’s second incompleteness
theorem (which roughly stated says that it is impossible to prove ;5
consistency of P.A within P4, where consistency means absence of
contradictions), effectively destroyed Hilbert’s plan to mechanize
mathematics. This plan, of course, grew out of attempts to over-

come paradoxes in the foundations of mathematics resulting from

Cantor’s theory of cardinals and the unrestricted use of power set ..
operations, and from the desire for a proof of consistency of P.A
by finitary means. A good discussion of these results can be found

in [34].

v : L = N is a coding of the wif in P.A, so that v is bijec-
tive, effectively computable and such that v~ is effectively com-
putable, where L denotes the set of all wif in P.A (Gddel’s original
coding was not actually bijective but simply injective, but it was

decidable whether or not a given natural number n belonged to

the image set of v). Thus, given a wif A in L, we can effectively .

find its unique code number or Gédel number y(A); conversely,
given a natural number n we can effectively find the unique wif
A = 47 1(n) from which it came-the effectiveness of these oper-
ations is crucial. There are-now two sets of interest here: one is
the set P of all provable sentences in P.A and its image y(P), and
the other is the set 7 of all true sentences in P.4 and its image

(7). What Theorem 3 says is that P C 7 and clearly this is °

iff v(P) C (7). The heart of the matter is that the set v(P)
is the image set of a computable function i.e. can be listed by
a machine (such a set is called recursively enumereble or usually

just r.e.) whilst the set v(7) is not listable by any machine; the

two sets therefore cannot be equal. Indeed, the set 7 or rather

+(T) is highly intractable and this fact is a deep issue with far

reaching consequences.

The basic reason for incompleteness in P.A is the following,
and it depends on concepts to do with computability. Suppose !
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These ideas concerning formal systems are of great impor-
tance in computing and in particular in connection with formal
verification of software, see [23, 42]. However, the direction we
want to pursue, in the next section, is the use of deduction as an
actual computational medium, rather than as a tool of verifica-
tion, and to investigate the use of fixed points in the corresponding
theory.

4. Formal systems and computational logic

“From hardware design to the development of new program-
ming languages and the construction of artificial intelligence
programs, Logic is the major mathematical tool. Logic will
perform the function in IT that calculus performs in other
areas of engineering. It will provide IT with a rigorous theo-
retical foundation,” see [2].
The desire to mechanize reasoning and the related notion of build-
ing robots can probably be traced back a very long way in history.
Certainly Descartes dreamt of a calculus with which one could per-
form reasoning by algebraic manipulation, a dream which was to
be fulfilled by George Boole in The Laws of Thought with respect
to propositional logic, leading to the concept of Boolean Algebra
and its great use in analysing logic circuits in the hands of Claude
Shannon. Perhaps, too, Blaise Pascal, Charles Babbage and Ada
Byron, Countess of Lovelace, were thinking beyond mere arith-
metical calculation when designing their calculating machines;
certainly Babbage and Byron appear to have encountered the
main concern of SE: proving that a program does what is intended.
Coming forward in time to the early years of this century, we
encounter Hilbert’s plan, mentioned earlier, to mechanize math-
ematics. As already noted, this plan came to a dead halt due to

" Theorem 3 and related results. Nevertheless, there is a positive

side to this provided by Theorem 2. Just because some formal sys-
tems such as PA contain some unprovable true statements does
not mean that reasoning suddenly becomes worthless. Perhaps we
can make do with the theorems or logical consequences of a theory
rather than deal with the larger set of all the statements true in
some particular interpretation, especially if we can automate the
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reasoning process itself. ;
Following the point just made, the landmark result came in
1965 with J. A. Robinson’s Unification Algorithm and his Unifica~ .

tion Theorern, see (24, 25]. Robinson showed that there is a single

rule of inference, called resolution, which is sound and complete in;
that Theorem 2 holds for formal systems using resclution as their;
sole rule of inference, and moreover resolution turns out to be easy ;'-:
to automate. To see how this works, it has first to be shown that.
any closed wif can be cast into a syntactically different but equiva- :
lent form called conjunctive normal form CNF (closed here means.,
that there are no free variables i.e. all variable symbols in the wif
are existentially or universally quantified; equivalent means that.

the new form is a logical consequence of the given wif and vice.
versa). We assume that this is so; as a matter of fact, not only -

can it be done but it can be done by an algorithm and hence is an
effective operation. A wif written in CNF takes the form of a uni-:
versally quantified conjunction V (C1 A Ca A ... ACly), where each.

C, is a clause, thus C; has the general form L VLi V...V LY,

wherein each L; is a literal, that is, either an atom A} (a proposi-,

tional formula) or a negated atom —A%; it is usual to understand

the universal quantifier ¥V to be present and to omit writing it

The resolution rule of inference can now be explained, at least
in its simplest form, as follows. Suppose given two clauses, the;
parent clauses, L} VILIv... L. and L2V LEv...VIZ the first o

which contains the literal L, say, and the second —L (the literals :

L and —L are said to clash). Reordering and letting C* and C*.
denote the disjunctions of the obvious respective remaining liter-:

als, we can write the two given clauses as C* V L and C? vV —L.

The resolution rule says that if we take these clauses as Input
then the Output is C* v C? (i.e. we simply “cancel” the clashing
literals L and ~L and disjoin what remains). In the symbolism o
a rule of inference, we have

C'vL
%y L
Cclv(?
This simple form is not adequate and a more general form &
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needed involving certain substitutions called most general uni-
fiers (mgus). In this more general form, clashing literals are still
cancelled, but after unification has brought them into syntactic
identity. Furthermore, Robinson’s algorithm for finding mgus can
be implemented with reasonable efficiency, giving the means of
feasibly constructing automated theorem provers. Such devices
have been extensively examined in the context of mathematics,
see [20], and a number of new results have been established in
various areas in addition to verifying old results {in classical anal-
ysis for example). The drawback, however, in using resolution is
that it involves an immense amount of searching for clashing lit-
erals and hence automated theorem provers using it run slowly in
comparison with modern procedural languages such as PASCAL
or C.

Interesting as these applications to mathematics are, they
ate a little peripheral to the main thrust of this work. Devel-
opments made by Colmerauer et al. in Marseilles, [10], Kowal-
ski and van Emden in Imperial College, [6, 39], and Warren in
Edinburgh and Manchester, [41], identified a significant fragment
of first order predicate logic. (the Horn clause subset)-relative to
which a restricted form of resolution (SLD-resolution) ran as fast
as conventional languages. Note that by grouping all positive
atoms in a clause to one end, and all negative ones to the other,
we can write an arbitrary clause in the form 4; VA, v...V
Ap V=B, v =By V...V =B, In turn this can be written as
A VA V.. . VA, By AB;A...AB,, where « denotes the
connective “material implication.” The relative slowness of reso-
lution can now be traced to the presence, in general, of more than
one atom in the “head” of this clause, that is, to m > 1, which
causes a combinatorial explosion in search. Restricting syntax to

- allow only the case m = 1 results in so called (definite} program

clauses of the type A + By, Bs,...,B,, where A and all the B;
are atoms and the commas in the “body” denote conjunction. It
also results in SLD-resolution running very fast. It is convenient
to abuse notation and allow n to be zero to indicate that the body
of a clause is empty, so that the clause in question is a unit clanse

‘A '+ or a “fact”. This is in contrast to the conditional statement
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represented by a clause whose body is not empty.

Thus, in this paradigm (logic programming), a program is
thought of as a finite set of axioms (each program clause being an
axiom) in a formal system whose only rule of inference is SLD- - .
resolution. Computation is thus (controlled) deduction. More- .

over, soundness and completeness were both established for such

systems and, in addition, it was shown that given any partial
recursive function, there is a logic program that computes it. z
Thus, logic programming systems have as much power as conven- :

tional procedural languages despite the restricted syntax. This

work led to the programming languages PROLOG and PARLOG
(a parallel implementation), see {4, 19] for theoretical foundations -
and [9] for programming practice. Whilst not especially suited for .

numerical computation, logic programming languages are ideal for :
work in deductive databases, Al, and natural language process-:

ing in which first order predicate logic is viewed as a knowledge

representation language. Current work which aims to incorpo- *
rate A-terms in clause bodies, and hence to amalgamate logic and -

functional programming styles, should result in increased flexi- =
bility. Here is an example of a PROLOG program (not quite in _
PROLOG syntax) which is a quick-sorting program intended to

sort lists of non-negative integers and has two built-in predicates
le and gr: :

gsort(nil, nil) « .

gsort(H.T, S) «+ part(H,T, P,Q),¢sort(P, P1),gsort(Q,Q1), ”
append(P1, H.Q1,5)

part(R, HT,H.X,Q) + le(H, R),part(R,T,X,Q)

part(R, HT, X, H.Q) + gr(H, R),part(R,T, X, Q)

part{ X, nil, nil, nil) +

append(nil, X, X) +

append(H.T, X, HY) + append(T, X,Y)

It should be observed that in addition to the operational seman--
tics and the fixed point semantics (or denotational semantics as.
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it is often termed) that exist for procedural programs, logic pro-
grams P have a third semantics, the declarative semantics. This
term simply refers to the model-theoretic meaning P has when
viewed as a first order theory, namely, the set of all logical con-
sequences of P. The completeness alluded to earlier, when prop-
erly formulated, says that the set Mp of those ground atoms (i.e.
ihose atoms containing no variable symbols) which are derivable
or provable from the clauses in P via SLD-resolution coincides
precisely with the set of ground atoms which are logical conse-
quences of P, that is, those ground atoms true in every model of
P. Unfortunately, this set Mp {which can be thought of as the
set of things which PP computes) is not easy to get hold of when
considered in these terms. It is at this point that the fixed point
semantics of P enters the picture, for it is a major result of the
theory, Theorem 4 below, that Mp coincides with the least fixed
point of an operator Tp which can be associated with P and is
analogous to the operator ® discussed in Example 1; moreover Tp
provides a relatively simple way of obtaining Mp. Again, we will
consider these issues by reference to a simple example as follows,

Exarmple 2 Consider the program P:
q(d) «
a(s(y)) « aly)
p(s(s(z))) + pla), q(z)

which does not compute anything significant but is manageable
and illustrates the main ideas. We start by observing that the
underlying first order language £ for this example contains just
the following: constant symbols a, b; variable symbols z,y; a unary
function symbol s; unary predicate symbols p,g. Let

Up = {s™(a),s"(b);m,n € N}

denote the set of all ground terms which can be formed using the
symbols s,a,b, where s” is informal shorthand for n occurrences
of s; Up is called the Herbrand universe for £. Similarly, let

Bp = {p(t),q(t'); t,t' € Up}
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denote the set of all ground atoms which can be formed using the
symbols p,q and ground terms from Up; Bp is called the Her-
brand base for £. There are canonical interpretations for £, called -
Herbrand interpretations, which can be constructed out of the ele- -
ments of £ as follows: the constant symbols e, b in £ are assigned
to themselves in Up; the mapping Up — Up defined by ¢ — s{t) of =
arity one is assigned to the unary function symbol s; since we are
working in classical two valued logic, we assign a unary relation |
I? on Bp (i.e. a subset of Bp) to the unary predicate symbol p -
and likewise a unary relation I? to ¢ to obtain the interpretation
IP U I, Since the assignment to constant symbols and function -
symbols is fixed, Herbrand interpretations I can be identified with
subsets I of Bp by: ground atom p(t) is true relative to I, written .-
I |= p(t), iff p(t) € I; ground atom g(t') is true relative to I, again |
written / |= q(t'), iff g(¢') € I. In this way, the set of all Herbrand
interpretations for £ can be identified with the power set P(Bp)
which we will henceforth write as Ip. The set Ip we will regard
as a complete lattice relative to the partial order of set inclusion -
whose bottom element is the empty set, and in which the infimum °;
and supremum of an arbitrary collection of elements (subsets of -
Bp) are the intersection and union respectively of the collection.
Tt is this complete lattice which is the domain of the operator Tp:
and is the usual domain on which fixed-point semantics is carried -
out for logic programs. Let us note therefore that, in general, this &

operator is defined by Tp : Ip — Ip where
Tp(I) =
{A € Bp; there is a ground instance A + B, Bz, ... , Ba
of a clause in P satisfyingl |E By A Bz A... A Br}

(a ground instance of a program clause is simply a clause con-
taining no variable symbols, so that elements of Up have been
assigned to each variable symbol). In practice, Tp(I) is obtained
by matching all the atoms in a given clause body with elements -
of I and collecting up corresponding clause heads. For example,

with
I= {p(a') ’ p(s(a)), Q(U‘)1 Q(s(a))a Q(b)}

in our present example, we get

Tp(1) = {p(s*(a)), p(s*(@)), p(s* (8)), a(s(a)), 9(s*(@)), a(b). a(s(B)) }-
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All the ideas presented in this example carry over completely
to the case of an arbitrary program P in which all clauses are
definite, a definite program. Now, a central fact emerges con-
cerning Tp, the immediate consequence operator to give it its
name, which is that Tp is lattice-continuous in the sense that
Tp(sup(Xa)) = sup(Tp(X,)) for every directed family (Xq) of
subsets of Ip, where sup(X,) denotes the supremum of (X, ); this
property of Tp is the analogue of recursiveness in the case of the
operator ® in Example 1. Once more, least fixed points of such
operators play a fundamental role and the facts in brief are as
follows. We inductively form the chain (1.} in Ip by: Iy = ¢ and
Int1 = Tp(ln), just as for Kleene'’s theorem, and take sup(fy),
which is often denoted T» T w. This time we apply an abstract
form of Kleene's first recursion theorem, due to Tarski, see [38] and
also [18]. We obtain that Tp 1 w is the least fixed point, Hp(Tp),
and the following theorem due to van Emden and Kowalski, see
(19, 39], shows the importance of this fixed point.

Theorem 4. For any definite logic program P, we have Mp =
Tptw=1p(Tp). &

Carrying out the construction described above in the case of - -

Example 2 shows that

MP = TP T W= {Q(b)>Q(s(b)): q(sz(b))a . ‘}9

as is readily checked, and the elements of this set are exactly those
ground atoms which P computes.

5. The topological viewpoint

Despite the fact that definite logic programs Tp can compute alt
computable functions, there is a need to extend syntax to make
them more expressive. This means that we want to allow negative
literals in the bodies of clauses (and hence arbitrary first order for-
mulae). Once that is done, however, Tp fails to be monctonic and
hence fails to be lattice-continuous (monotonicity is an easy con-
sequence of lattice continuity of Tp or of recursiveness in the case
of the operator ®) so that the standard approach discussed in §4
does not apply. A partial remedy is to consider syntactic devices
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such as stratification and local stratification, see [5]. Nevertheless,
the problem arises of finding fixed points of non-monotonic opera-
tors on I'p, and in this section we sketch methods being developed
by us in [31, 32, 33] to solve this problem using topological notions
and in particular quasi-metrics.

The following definition can be found in [27, 35].

Definition 3 Let X be a non-empty set. A guasi-metric on X
is a map from X x X to the non-negative real numbers including
+0c0o satisfying:

1. d(z,z) = 0;

2. d(z,y) < d(z,z) + d(z,9);

3. if d(z,y) =d(y,z) =0, then z =y.

A quasi-metric d is called an ultra-quasi-metric if it satisfies the
strong triangle inequality

2. d(z,y) < max{d(z, 2),d(z,y)}.

Notice that d(z,y) and d(y, z) are different in general. Quasi-
metrics have been used in program semantics (for procedural pro-
grams) to reconcile the two standard approaches (Scott domains
and metric spaces) to solving recursive domain equations. They
can be viewed as categories enriched over the unit interval [0, 1],
see [8], and this observation permits the development of many of
their basic properties following ideas of W. Lawvere.

Given a quasi-metric d on X, there is an associated metric d*
defined on X by d*(z,y) = max{d(z,y),d(y,z)}. One then says
that (X, d) is totally bounded if the metric space (X ,d*) is totally
bounded. Moreover, d induces a natural topology on X in which a
set O is called open if, for every z € O, some e-ball B(e, x) (where
B. = {y € X;d(z,y) < €}) is contained in O.

The two examples which follow are taken from [35].
Example 3 Let (D, <) be an arbitrary partially ordered set and
define d on D x D by ;

_J0 ifzx<y;
d(z,y) = { 1 otherwise.
Then d is an ultra-quasi-metric, called the discrete quasi-metric,
which induces the Alexandroff topology and moreover (D,d) is
totally bounded iff D is finite.
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Example 4 Let (D, <) be any Scott domain, let Bp denote the
set of compact elements of D and let v : Bp — N be a map (a
rank function) such that r~!(n) is a finite set for each n € N.
Define d on D x D by

d(z,y) = inf{2™";e < © = e < y holds for every e of rank < n}.

Then d is an ultra-quasi-metric which induces the Scott topology
of D and (D, d) is totally bounded.

Definition 4 A sequence () in the quasi-metric space (X,d) is
said to be forward Cauchy if, for each e > 0, there is a natural
number k such that d(z;, zm) < € whenever £ <! <m.

Definition 5 Let (z,) be a forward Cauchy sequence in a quasi-
metric space (X,d). A point z € X is a Limit of (z,), written z =
Lim z,, if, for every y € X, we have d(z,y) = limp 00 d(Tn,¥).
The space X is said to be complete if every forward Cauchy
sequence in X has a Limit.

The forward Cauchy property of the sequence (z,) implies
that the sequence d(z,,y) is itself Cauchy in the real line, so
that the definition just given is meaningful. Moreover, Limits of
forward Cauchy sequences are unique when they exist.

Definition 6 Let (X,d) be a quasi-metric space and suppose
f: X — X is a mapping.
1. f is non-expansive if, for all z,y € X, we have d(f(x), f(y)) <
d(.’l’:,y). '
2. f is coniractive if there exists a positive number ¢ < 1 such
that, for all z,y € X, we have d(f(z), f(y)) < c.d(z,y)-
3. f is Continuous if, for all forward Cauchy sequences (z,) and
z in X, we have Lim f(z,) = f(z) whenever Limz, = z.

The following theorem is due to Jan Rutten, [27, Theorem
3:7):

Theorem 5. Let (X,d) be a complete ultra-quasi-metric space
and suppose f : X =+ X is non-expansive.

1. If f is Continuous and there is an  in X with the property that
d(z, f(z)) = 0, then f has a fixed point which is the least fixed
point above z in the order <x defined by y <x z iff d(y,2) = 0.
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2. If f is Continuous and contractive, then f has a unique fixed
point. ™=@

Attempts to use the Banach contraction mapping theorem
in logic programming have been made with some success in [12],
and in [17] where problems arising out of attempts to formalize
common gense reasoning are considered. Nevertheless, it is our
claim that it is quasi-metrics that should be used instead, in con-
junction with theorems such as Theorem 5. This point of view is
substantiated by the following two observations: (i) The topology
underlying the declarative semantics of definite programs is the
Scott topology, see [32], which is not metrizable. This means that
it is impossible to recover the classical theory of §4 with metrics.
(ii) It is not usual for Tp to have unique fixed points (rather, the
set of such forms a complete lattice) and this means that in gen-
eral Tp is not a contraction relative to any metric. To finish this
paper, we therefore briefly indicate how quasi-metrics can be used
in logic programming.

First, consider an arbitrary definite logic program P and view
Ip as a-partially ordered set, under set inclusion, endowed with
the discrete quasi-metric defined in Example 3. The following
facts are established in [33]:

1) A sequence (I,) in Ip is forward Cauchy iff it is eventually
increasing.

2) (Ip,d) is complete.

3) The following are equivalent for any forward Cauchy sequence
(In) in (IP:d)

a) LimJI, =1.

b) I, — I in the Scott topology and 7 is the greatest limit (in the
Scott topology) of (I,).

4) If (I,,) is a forward Cauchy sequence in (Ip,d), then (Tp(I,))
ig also a forward Cauchy sequence.

5) Tp is Continuous relative to d.

6) T» is non-expansive relative to d.

Noting that the empty set ¢ satisfies d(¢, Te(¢)) = 0, we can
apply Rutten’s theorem and, on examining its proof, we conclude
that Tp has a fixed point equal to Lim TE(¢). This fixed point is,
by Observation 3 above, equal to gl(TR(¢)) as defined in [32] and
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this, in turn is equal to |JTE(¢), by [32, Proposition 8]. In this
way, we recover the classical least fixed point of Tp and Theorem
4 follows immediately from this. =

For our second and final application let P denote an arbi-
trary, not necessarily definite, program. This time we will think
of Ip as a Scott domain (i.e. a bounded-complete w-algebraic
cpo) under set inclusion whose compact elements are the finite
sets, the collection of which we will denote by Bp. We define a
level mapping for P to be a function | : Bp = IV, and we assume
that {~1(n) is a finite set for every n. Such mappings have found
application in several places in logic programming including uses
in defining stratification, in questions of termination of logic pro-
grams, and in treating completeness issues. Given a level mapping
[ we define the function r : Bp = N by r(f) = max4cr(I(A)), for
nonempty I, and set r(¢) = 0. We will call r the rank function
determined by I. Now let d denote the gquasi-metric defined as in
Example 4 so that (Ip,d) is complete and totally bounded, and
d induces the Scott topology on Ip. The central facts we need,
established in [33], concern the connection between quasi-metric
notions and corresponding ones in the Cantor topology on I (this
latter topology is denoted by @ in [32]) and are as follows:

1) For a sequence (I,) in Ip and I € Ip, the following statements
are equivalent.

a) I, — I in the topology Q.

b) (I,) is forward Cauchy, I, — I in the Scott topology and
I = gl(I,), the greatest limit of (I,,).

2) Let (I,) be a forward Cauchy sequence in (Ip,d). Then
LimI,=IiffI, = Iin Q.

3) If Tp is non-expansive relative to d, then it is continuous in the
topology (.

4) Tp is Continuous relative to d iff it is continuous in the topology

Q.

Once again it will be best to illustrate these ideas by consid-
ering them in relation to a simple example, as follows.
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Example 5 Let P be the program:
p(0) +

p(s(z)) + —p(z)

This program is perhaps “intended” to compute the even natural
numbers (p(z) can be interpreted to mean “z is even”, s can be
interpreted to be the successor function). This program is not
definite and is neither stratified nor locally stratified, so that the
standard approach does not apply. Define the level mapping I on
Bp by i(p(s™(0))) = n for each n. We note that in this case Tp is
not non-expansive for if we take

I = {p(0),p(s(0))}

and
I, = {p(0), p(s(0)), p(s*(0)) },
then
Tp(5) = {p(0),p(s*(0)), p(s*(0)), p(s°(0)), - . .}
and

Tp(L) = {p(0), p(s*(0)), p(s°(0)), .. .}.

Thus, we have d(I},I;) = 0 and yet d(Tp (1), Tp(l)) = 272,
Consider powers I, = T(®), the first few of which are as follows:
Ly = Bp, I = {p(0)}, Is = Bp \ {p(s(0))}, I« = {p(0),p(s*(0))},
Is = Bp \ {p(s(0)),p(s%(0))}, etc. Using [33, Proposition 7] we
obtain that d([,.I,11) takes value 0 if n is even and takes value
27"*1 if n is odd. This is enough to show that the sequence
(fn) is forward Cauchy and therefore converges to I, say, in Q.
By [32, Proposition 4] it is clear that (I,) converges in Q to the
set {p(0),p(s%(0)), p(s*(0)), ...} which therefore coincides with I.
Since Tp is continuous in @ by [32, Corollary 6], it follows that T
is a fixed point of Tp by a simple argument using the uniqueness
of limits in €. Thus, the set I of “even natural numbers” is a
model of P. In fact, it is not hard to see that I is the only fixed
point of Tp. ®
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Ed. by C. M. Campbell, T. C. Hurley, E. F. Robertson,
S. J. Tobin & J. J. Ward
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xii+304pp (vol. 1), xii+305pp (vol. 2)
TSBN 0-521-47749-2 (vol. 1), 0-521-47750-6 (vol. 2)

Reviewed by Rod Gow

The volumes under review contain selected papers from a confer-
ence on group theory held at University College Galway during the
period 1-14 August 1993. This conference was the continuation of
a series of conferences on group theory held at the University of St
Andrews in 1981, 1985 and 1989, with the next conference to be
held in Bath in 1997. There were 285 participants at the confer-
ence, with numerous principal lectures, invited lectures, research
talks and workshops on computational group theory to entertain
them.

It seems to the reviewer that large scale conferences devoted
to a rather broad theme are less common these days than once
they were. In group theory, conferences on groups of Lie type, rep-
resentation theory of algebraic and related finite groups, groups
and geometry, or computational group theory are dominant. This
probably reflects the fact that researchers’ interests are more nar-
rowly focused on their specialities and they may imagine that
there is a better chance of a pay-off in terms of a publication by
attending conferences offering a concentrated diet of specialized
material. Looking through the papers under review, I noticed
that many topics popular 25 years ago are no longer represented.
These include finite simple groups, ordinary character theory and
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