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L =1=m = 0. Therefore C has order 8, in which case {' = K.
Therefore the commutator subset of a ring of order 8 is an ideal.
We conclude that 16 is the smallest order of a ring in which the
commutator subset is not an ideal.
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WHEN IS A FINITE RING A FIELD?

Des MacHale

When I was an undergraduate, there were two theorems in algebra
that took my fancy. The first was

Theorem 1. A finite integral domain is a field.
The second was the beautiful theorem of Wedd  surn (1905).

Theoremn 2. A finite division ring is a field.

I often wondered why the standard proof of Theorem 1 was
relatively easy and why all of the proofs of Theorem 2 are relatively
difficult. I wondered too if it might be possible to prove a single
theorem that would include both Theerem 1 and Theorem 2 as
special cases. The following is an attempt in that direction.

Theorem 3. Let {R,+,-} be a finite non-zero ring with the prop-
erty that if a and b in R satisfy ab = 0, then eithera =0 orb = 0.
Then {R,+,-} is a field.

Recall that {R,+,-} is an integral domain if {R,+,-} is a
commutative ring with unity 1 # 0 with the property that ab =10
implies either ¢ = 0 or b = 0. Clearly, a finite integral domain
satisfies the hypothesis of Theorem 3.

Recall too that a division ring {R,+,-} is a ring in which
the non-zero elements of R form a multiplicative group with unity
1. A finite division ring {R,+,-} also satisfies the hypothesis of
Theorem 3. To see this, suppose that for elements a and b of R, we
have ab = 0. If & = 0, we are finished, so suppose that a # 0. Then
a™! exists in B. Hence b= 1b = (a ta)b = a~'(ab) = 2710 = 0,
as required. Note finally that in the hypothesis of Theorem 3,
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we are assuming neither commutativity of multiplication, not the
existence of inverses. These have all to be established.

Proof of Theorem 3: Since R # {0}, we can choose a fixed non-
zero element a of R. Let

R={r,r2,-.,"n}
Define a function o : £ = K by
(ri}a =ra
for all i. Now if (r))a = (r;)e, then r;0 = 7j0 and hence (r; —
rije = 0. Since a # 0, this forces r; = r;, S0 ¢ is one-to-one, and
gince R is finite, a is onto. Thus there exist clements ¢ and t* in

R such that
ta = a and t*a = 1.

Now define a function f: K — R by
(r:)f =ar:
for all 4. Again, if (r;)8 = (r;)8, then ar; —ar; = 0= a(r; — ;)
so r; = rj. Thus 3 is one-to-one, hence onto, and there exist
elements s and s* in R such that

as = a and as® = s.

Now let = be any element of K. Since o and A are onto, there
exist elements & and ¢ in R such that

T = ba = ac.

We now have
tr = t(ac) = (ta)e =ac =1z,

so t is a left unity for {R,+,-}. Similarly,

zs = (ba)s = blas) = ba ==,

(2

When is a Finite Ring a Field? a7

$0 5 is a right unity for {B,+,-}. Thus t = ¢ts = s = 1 is a unity
for R.

Now as as* = s = 1 =t = t*q, it follows that ¢ has a right
inverse §* and a left inverse ¢*. Thus

s = 1s* = (Fa)s* = t*(as*) = "1 = 7,

g0 s* = #* = a1 and we see that each non-zero element ¢ in R
is invertible in 8. Thus R is a finite division ring and hence by
Wedderburn’s theorem, R is a field. This completes the proof. ®

Of course, the theory now proceeds to show that |R} = p” for
some prime p and positive integer n and if Ay = |Ra| = p”, then
R, and R, are both isomorphic to the unique Galois field GF(p™),
a rather remarkable result given the innocent looking hypothesis
of Theoremn: 3.

Finally, we mention three other directions in which Wedder-
burn’s theorem can be strengthened.

Theorem 4. [1] Let {R,+,-} be a finite ring with unity 1 # 0
such that more than |R|—+/|R| elements of R are invertible. Then
{R,+,-} is a field.

- The example {Z,:, @, ®} for a prime p shows that this result
is best possible.

Theorem 5. [2] Let {R, +,-} be a finite ring with unity 1 #0in
which every non-zero ring commutator Ty —yz is inverti ble. Then
{R,+,"} is commnutative.

Of course, {R, +, -} need not be a field, as {Z4, ®, ®} shows.

Theorem 6. [3] Let {R,+,-} be a finite non-zero ring and sup-
pose that for each a # O there exists a unique b with aba = a.
Then {R,+,-} is a field.
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Introduction
The Gaussian (Normal) probability model

o exp{—(z = p)?/20%)
f(.’L', fy J) = 0_(271_)1/2

is, arguably, the most widely used probability model because of

1. the fact that it is found as a limiting form of other common
probability models;

2. the operation of the Central Limit Theorem which gives rise to
the Gaussian form;

3. the intuitive appeal of the model as a description of measure-
ment errors in that it postulates that, in the long run, measure-
ments will zone in on the “true but unknown” quantity of interest,
4, and will be close to this value, lying between (4 —o) and {(p+0)
some 68% of the time;

4. the mathematical tractability of linear and quadratic functions
of Gaussian random variables which are used in Student’s ¢ and
F ratio tests,

5. the ability of the model to readily change location and shape
becanse of the independence of g, the location parameter, and o,
the shape parameter.

A simple transformation of the random variable, namely,

y = |z|
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