COMMUTATORS IN RINGS
T. Creedon

Abstract We exhibit with proof a ring of minimal order in which the
commutator subset is not a.subriug.

Introduction

Tt is well known that the product of two commutators in a group
need not be a commutator. However the smallest order of a group
in which this occurs is 96. We produce an example of a ring of
order 186 in which the subset of all commutators is not a subring,.
We prove that this example is minimal by showing that in all
rings of order less than 16 the subset of all commutators is an
ideal and therefore also a subring. Throughout this paper Zs
denotes the feld of integers modulo 2, C), denotes the cyclic group
of order p and {(a) denotes the additive group generated by an
element a. The commutator of two elements a and b in 2 ring
is denoted [a,b] = ab—ba. A presentation for a finite ring R
consists of a set of generators g1,..., gx of the additive group of
R together with relations which specify the additive order of the
generators and the multiplication with which R is endowed. For
example {a : 2a = 0,a% = a} is a presentation for Z, and we write

7y = (a:2a =0, = a).

Example
Consider the ring R of order 16 consisting of all 2 x 2 matrices

with entries in Zo,
a b
R —_ (C d) bl

where a, b, ¢ and d run over the elements of Zo. By direct calcu-
lation, we find that the commutator subset C' of R consists of the
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following eight matrices

05) 1) o) )
1) (o) (o) ()

We remark that ' is an additive subgroup of R. However, since

11 01 1 1
(62 0)-Go)ee

we see that ¢ is not closed under multiplication and so  is not

a subring of R and hence not an ideal of R.
- We now prove that for all rings of order less than 16, the
commmtator subset is an ideal. We do this by examining the
gtructure of these rings. Note that any commutative ring has
commutator subset {0}, which is an ideal. Since all abelian groups
-of orders 1, 2,3, 5,6,.7, 10, 11, 13, 14 and 15 are cyclic, the rings of
these orders must be commutative and therefore in all these rings
th_e commutator subset is an ideal. The rings of order p?, where
p is a prime number, have been classified (see [1], [2]). There are
only two non-commutative rings of order p?. These are rings with

additive group Cp, @ €. = {a} @ {b), where pa = pb = (. When
p = 2, the two rings are given by

Ry ={a,b:2a=2b=0,a> = a,b’ = b,ab = a,ba = b)
and .

Ry ={(a,b:2a=2b=0,0" = 0,0’ =b,ab = b,ba = q).

The commutator subset of Ry is {0, a + b} and this is an ideal of
.Rl. The commutator subset of R, is also {0, a + b} and this is an
ideal of Ry. When p = 3, the two rings are given by

R3=(a,b:3a=3b=0,0" = a,b> = b,ab = a,ba = b)
and
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Ry = (ca,b:‘?‘az.‘,’ebzﬂ,aa2 =a,b’ = b,ab=b,ba =q).

The commutator subset of Rs is {0, a - 2, 2a + 3} and this is an
ideal of Rs. The commutator subset of Ry is also {0, a+2b, 20+3}
and this is an ideal of Bs. Therefore in all rings of orders 4 and
9, the commutator subset is an ideal.

It is well known that any ring can be decomposed intc a
direct sum of rings of prime power order. Therefore the only non-
commutative rings of order 12 are of the form Ri @ Ra, where 51
is a non-commutative ring of order 4 and Ss is of order 3. Clearly
S5 is commutative and as we mentioned above there are ouly two
non-commutative rings of order 4 and the comimutator subset of
each of these rings is an ideal. Hence the commutator subset of a
ring of order 12 is an ideal.

The only remaining case te be considered is where the ring
R has order 8. In this case R must have additive group Cg (in
which case R is commutative), Cy & Cp or Cy & Ty @ Ca.

Suppose first that R has additive group Cy & 3 = (a) & {B,
where 4g = 2b = 0. Since 20 = 0, we see that 2[a,b] = 0 and
the commutator subset of R is €' = {0,[a,b]}. Therefore C' is
an additive subgroup of R. Every élement of R is of the form

ma +nb, wherem =0,1,2, or3andn=00r L. 1t follows from: -

the identities
ala,b] = [a,ab], [a,bla = [a,ba], bla,b] = [ba,d], [a,bld = [ab,b]

that C is an ideal of R.
Finally, suppose that R has additive group

Co®Co®Cy = (a) ® (b) & {c),

where 2a = 2b = 2¢ = 0. It is easily seen that the commutator
subset ' of R is an additive group. By considering different cases
we shall show that C must be an ideal of K.

Casel Suppose that [a,b] = 0. Then the commutator subset is
{0,[a, ¢l b,c],[a+b,c]}. Any element of R is of the form ka+ib+
me, where each of k,I and m is either 0 or 1. We have

(ka + Ib + mc)[a, ¢] = kaac — kaca + lbac — Ibea + mceac — meca
= k[a,ca] + l[a, be] + mlca,cl € C.
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Also, since [a,b] = 0, we have

la, c](ka + ib + mc) = kaca — kcaa + lach — Icab + mace — meac
= k[a, ca] + lach — lcha + mace — mcac
= kla, ca] + I[a, cb] + m[ac, c] € C.
Similarly (ka + b+ me)b,¢] € C and {b,c}(ka + b + mc) € C.

So C is an ideal. Similarly if {b,c] = 0 or [0,¢] = 0, then C is an
ideal. So we can suppose [a, b], [b, ] and [a,c] are all non-zero.

Case 2 Suppose that [a,b] + [b,c} = 0. Now [a + ¢,b] = 0 and
C ={0,[a,4,[a,b], [a, b+ c}}.
We have

(ka + Ib + mc)la, ¢] = k(aac — aca) + H{bac — bea} 4+ m(cac — cea)
kla, ac] + l{b(a + 2)c — befa + ¢)) + m[ca, ]
kfa,ac] +1((a+ cbe— be(a + ¢€)) + mea, €]
Ela, act + {[{a + ¢), bc] + m[ca, ] € C.

il

Similarly

[a,c}{ke + 16+ mc) € C,
{ka+1b+mc)la,b] € C
and

[a,b](ka + b+ me) € C,

also. Therefore C is an ideal.
Ca(.ise 3 Suppose that [a, b]+[b, ] +[a,¢] = 0. Then [b, ¢ = [a,b+(]
an .
C = {0,[a,b],[e,c],la,b+ ¢}
As above we can eagily show that C must be an ideal.

We can finally suppose that all of the cases above do not
occur. Thus it follows that if k[a,b] + U[b, ¢] + m[a,c] = 0, then
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L =1=m = 0. Therefore C has order 8, in which case {' = K.
Therefore the commutator subset of a ring of order 8 is an ideal.
We conclude that 16 is the smallest order of a ring in which the
commutator subset is not an ideal.
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WHEN IS A FINITE RING A FIELD?

Des MacHale

When I was an undergraduate, there were two theorems in algebra
that took my fancy. The first was

Theorem 1. A finite integral domain is a field.
The second was the beautiful theorem of Wedd  surn (1905).

Theoremn 2. A finite division ring is a field.

I often wondered why the standard proof of Theorem 1 was
relatively easy and why all of the proofs of Theorem 2 are relatively
difficult. I wondered too if it might be possible to prove a single
theorem that would include both Theerem 1 and Theorem 2 as
special cases. The following is an attempt in that direction.

Theorem 3. Let {R,+,-} be a finite non-zero ring with the prop-
erty that if a and b in R satisfy ab = 0, then eithera =0 orb = 0.
Then {R,+,-} is a field.

Recall that {R,+,-} is an integral domain if {R,+,-} is a
commutative ring with unity 1 # 0 with the property that ab =10
implies either ¢ = 0 or b = 0. Clearly, a finite integral domain
satisfies the hypothesis of Theorem 3.

Recall too that a division ring {R,+,-} is a ring in which
the non-zero elements of R form a multiplicative group with unity
1. A finite division ring {R,+,-} also satisfies the hypothesis of
Theorem 3. To see this, suppose that for elements a and b of R, we
have ab = 0. If & = 0, we are finished, so suppose that a # 0. Then
a™! exists in B. Hence b= 1b = (a ta)b = a~'(ab) = 2710 = 0,
as required. Note finally that in the hypothesis of Theorem 3,
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