STOKES PARAMETERS AND
GIBBS BIVECTORS

Michael Hayes

Abstract For a single monochromatic wave train, it is shown that the
use of Gibbs bivectors leads in a natural and economical way to the
intreduction of Stokes parameters.

Introduction

Stokes, in a study of light waves published [1] in 1852, intro-
duced what are now called ‘Stokes parameters.” These are func-
tions only of the electromagnetic wave. The polarization state of

a beam of light {either natural, totally or partially p‘_olqrized)‘ can .
be described in terms of these four parameters [2,-3].-The purpose. -

of this note is to show how the use of Gibbs bivectors [4, 5] leads
to a direct and economical way of introducing Stokes parameters.

First, a simple observation. Any vector a (sa.y.) lying in a
plane may be represented in an infinity of ways as a linear combi-
nation of two arbitrary vectors, b and ¢ (say), in the plane, pro-
vided of course that b and ¢ are not parallel. Thus a = Gb + e,
for some scalars 3 and «y. Provided the vectors b and ¢ are chosen
to be orthogonal, then the squared length of a, namely a® =a-a,
may be written simply as o® = 5202 + 2R

It is the generalization of this simple observation to the case
of complex vectors, or bivectors, which leads naturally to Stokes
parameters. .

Here, Gibbs bivectors are introduced and some of thellr prop-
erties presented. Then a single monochromatic train of elliptically
polarized plane transverse waves is considered.
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Background

In 1853, the year following the publication of Stokes’ paper [1],
Hamilton, [6], in the context of quaternions, ccined the word
“bivector” for the combination a+ ib, where & and b are real vec-
tors. Complex numbers a+13 had been called biscalars! Hamilton
seems not to have ever used bivectors. The theory was devel-
oped by Gibbs, [4], in 1881, 1884. He presented seven pages on
bivectors in his seventy page pamphlet “Elements of Vector Anal-
ysis,” which laid the modern foundations of vector algebra. Gibbs
printed and circulated this privately. The work on hivectors was
generally ignored, possibly because in parts it is difficult to read.
The phrase “toc condensed and too difficult” which was used by
Lord Rayleigh, [7, page xiv], in writing to Gibbs about his famous
paper “Equilibrium of Heterogeneous Substances” is apposite here
also.

Gibbs recognized that an ellipse could be assoclated with a
bivector. He naturally used bivectors in the description of ellipti-
cally polarized electromagnetic waves. It is here that the connec-

-tion with. Stokes parameters is made.

Bivectors

A pair of orthogonal radii to a circle are said to be ‘conjugate.” If
the circle is drawn on a sheet of rubber which is then stretched
uniformly, the circle becomes an ellipse and pairs of conjugate radii
of the circle become conjugate radii to the ellipse. The property
that the tangent to the circle at the tip of the radius is parailel
to the conjugate carries over to the ellipse. If i and j are parallel
unit vectors then the position vector r given by

r=a(icosé + jsinf)
describes a circle of radius a. Also, if a and b is any pair of
non-parallel vectors, then

r=acosf +bsind

describes an ellipse in which a and b are conjugate radii. The
tangent dr/df at 6§ = 0 (x/2) is parallel to a (b). The pair r(f)
and r(# + 7 /2) are conjugate, [5].
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The combination D = a + ib is said to be a bivector.
Throughout capital bold face letters D, E, ..., are used to
denote bivectors. The real and imaginary parts of the bivector
D are denoted by (D)T and (D)™, respectively. Associated with
D is a unique ellipse, r = acosé + bsing, (0 < 8 < 2r) and a
sense of description, from (D) = a to (D)™ = b, The complex
conjugate of I is D = a — ib. The bivectors D and D have the
same ellipse associated with them, but in the case gf D the sense
of description is from (D)* =ato (D)™ = —b, which is opposite
to that of the ellipse of D. '

Two bivectors D and E are said to be narallel if there exists
a scalar, A, such that D = AE. Otherwise they are linearly inde-
pendent. _ ‘

The dot product of the bivectors D = a+ iband E=p+1i1q
is defined in the usnal way:

D E=a p-b-q+ilb-p+a-q).

I D-E =0, then D and E are said to be orthogonal.

¥D.D=0,thena-a=b-b,a-b=0s0 t}nat-i.n this.
case the ellipse of D is a circle.. For: example, if D = i+ 4j; then«

D D=0 _ _
The “intensity” of D is defined to be D -D. A bivector D of
unit intensity may be represented by

D =cosfr+isinfs, (1)

where t, s are orthogonal unit vectors along the principal axes of

the ellipse of D). ‘ _ . '
If the bivector H is defined by H = D with D = a+1ib,

then
H:(cosqﬁa—sinqbb)+i(sin¢»a+c05¢b), (2)

so that the ellipse associated with H is

r = (cosa — sin ¢ b) cosd + (sinda + o8 ¢b)sind

(3)
= acos(f — ¢) + bsin(f — ¢).

[
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This is precisely the ellipse associated with I¥. Note that here
¢ is a given quantity and & is a variable. This result is due to
MacCullagh, [8], who set its equivalent as an examination question
in Trinity College in 1847.

MacCullagh’s theorem, described by Hamilton as “a remark-
able use of the symbol ¢,” is central to the use of bivectors in the
description of wave propagation.

MacCullagh’s theorem means that beginming with the pair
(a,b) which defines an ellipse, then e*?(a +ib) gives another pair
of conjugate radii of the same ellipse. Now taking ¢ = wi where w
is a real constant and t denotes time, e™!(a+ib) gives at any time
t a pair of conjugate radii of the ellipse. The tip of the real vector
coswta — sinwtb moves on the ellipse. Its period of oscillation
is 27 /w. The pair {a, b} is rotated, but not rigidly, into another
pair of conjugate radii.

Let two bivectors D and E be coplanar and orthogonal: D -
E =0. Now ID may be written

D = e (a + ib) = ¢**(ai + ibj),

where a and b are along the principal semi-axes of the ellipse of
D and i, j are unit vectors. Because E is coplanar with D, it may
ke written D == ai + £ for some scalars e, 5. Then D-E =0
gives cre +18b = 0 so that E = Aaj — bi) for some A. Ience the
major and minor axes of the ellipse of E are respectively along
the minor and major axes of the ellipse of D. Also the ellipses
of E and D are similar — they have the same aspect ratio (a/b)
and they are described in the same sense. Hence Gibbs’ result [4]
follows: if D - E = 0 with D and E coplanar, the ellipse of E is
similar and similarly situated to the ellipse of D rotated through
a quadrant in its plane. Both ellipses are described in the same
sense. (See also [5].)

If two coplanar bivectors D and E are such that D - E = (,
then the ellipse of E is similar and similarly situated to the ellipse
of D when rotated through a quadrant. However the ellipses are
described in opposite senses. Then ID and E are said to be oppo-
sitely polarized. For example, D and E given by
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and by

where m = 7, are oppositely polarized.

Waves

Using rectangular Cartesian coordinate axes O=zyz, with the z-axis
along the propagation direction, plane transverse homogeneous
waves are described by a vector field u(z,¢) of the form

u(z,t) = (AT}, T=rz-wi (4)

Here A is called the “amplitude bivector” and is constant. It lies

in the z-y plane: :
B . A = Aji+ Ald. (5)
Also x and w are real constants.

In general, (4) describes.an. infinite train of hox'noge_neous
waves, propagating in the z-direction, elliptically pn_)la,rlzed in the
z-y plane. Its period is 27/(w) and its wavelength is 27 /().

The intensity I of the wave is defined by.

IT=A-A= A1A1 +A2A2. (6)

Writing the complex numbers A1, A, in terms of their moduli and

arguments, .
i id
Al = alelﬁl N A2 = Q@a€ 2: (7)

then

A=c+id, c=ajcosditas cosdoj, d=oysindi+az siné(géi).
The components u; and us of the vector field u(z,t) along the z
and y axes, respectively, are given by

uy = ajcos(T + &), ua =az cos(t + d2). (9)

The polarization ellipse is contained within a rectangular box
whose sides are parallel to the z and y axes, and have lengths

3
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201 and 2a., respectively. The amplitudes a; and a., and the
phase difference § = §; — d; of the orthogonal field components
(9) may be obtained from observations. The polarization ellipse
may be constructed if a,, as, 4 are known, [3, 5].

Stokes Parameters

Following Stokes, [1], consider the possibility of resolving the given
wave (4) into two given elliptically polarized waves of the same
period and wavelength. This amounts to asking whether it is
possible to decompose A in the form

A = AC + D, (10)

where C a_nd D are any two given bivectors coplanar with A such
that C-C =D D =1 and A, g are to be determined. Now
choosing C* and D* so that C-C* =D -D* =0, « follows that

AC-D*=A.D* uD C*=A- C* (11)

- Hence A, p donot.exist if C.-D* =0, or equivalently in this case

D - C* = 0. This means that the bivectors C and D are parallel;
D = +C for some +. Indeed, suppose, without loss, that

C=(i+imi)/(1+m)I, D=(pi+g)/(pp+qd)i, (12)

with m = 77, so that
C* = (mi+ij)/(L+ m®%, D*=(gi—p)/(pp+qa)?. (13)

Then C-D* = 0 leads to g = ipm, which leads to C*-D = 0 and
D = {p/(pp)=}C.

If C and D are not parallel, then A, u are determined and
using C- C =D - D = 1, it follows that

I=A-A=)+pi+MC-D+xC-D. (14)

Now choose C and D so that their ellipses are oppositely polarized:
C.D =0. Then '

=2+ pi, (15)
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which is just the sum of the intensities of the component waves.

In the Tntroduction it was noted that the real vectors b and
¢ were chosen to be orthogonal. Here the bivectors C and D are
chosen so that C - D = O-the ellipse of C is similar and similarly
situated to that of D when rotated through a quadrant, but the
ellipses of C and D are described in opposite senses. -

Now if ¢ and s are unit vectors along the major and minor
axes, respectively, of the ellipse of C, then € and D may be
written

C=cosf'r+ising's, D=sing'r—icosfs. (16)

Let ' be the azimuth of the major axis of the ellipse of C with
respect to the z-axis. Then cos ¥ =r-i=s-}
Using (10) and C - D =0, it follows that

M= (A C)A-C), (17)
where
AT = (Ayi+ Ad) - (cos f'r —isin f's).
Hence '
AN = I + Qcos28 cos2x' + U cos 28 sin 2" + Vsin 2/ (18)
and similarly

i = I — Qeos2f cos2y’ — U cos28 sin 2x' — Usin2/3',(19)

where

1= A A+ AsAy, Q=MAA - AsAs,

: S (20)
U= Alﬂz + A1A2, V = ?:(AlAz - AlAz).

The four quantities I, @, U, V involve only the components
Ay, Ay of A. They are the Stokes parameters. They all have the
same dimensions and are such that

2=Q*+ U+ V2 (21)

=i
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For every decomposition of the wave with amplitude bivec-
tor A into two oppositely polarized waves, the intensities of the
two component waves are given as linear combinations of the four
Stokes parameters. There is an infinity of such decompositions—a
particular decoinposition corresponds to a choice of the polariza-
tion form of the bivector C, that is, to a choice of the angles &
and '

If 3 and x' are altered to 8" and x" (say), then A and u
are altered to A" and u” (say). The intensities A“A" and p"ji"
of the two oppositely polarized waves are given by (18) and (19)
respectively, with 8°, x’ replaced by 5", v", but the coefficients
I, ¢, U, V remain unchanged.

If tan 3 is the aspect ratio of the ellipse of A and y is its
azimuth, it may be shown, [2, 3, 5], that

I=A A, Q=1TIcos23cos2y,
V=1Isin28, U =cos2fsin2x.

- Thisand (21) immediately suggest representation on a sphere-the

]
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Poincaré sphere. But that is another story. .
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WRITING CCMMUTATORS OF GROUP
COMMUTATORS AS PRODUCTS OF CUBES

Peter V. Hegarty

Abstract We derive an upper bound for the number of cubes needed
to write a commutator of group commutators as a product of cubes.

1. Introduction

If a and b are elements of a group G, we define their commutator
[a,B] to be the group element a='b~tab. It is wi. known that
groups of exponent 3 are metabelian-for a proof see [2], pp. 382
3. Consequently, in the free group Fy on four generators z, y,
z and w, the “commutator of commutators” [[z,y], [z, w]] can be

- expressed-as a product-of cubes of elements of Fy. In the survey

article [1], R. Lyndon poses the problem of finding such an expres-
sion which contains the smallest possible number of cubes. At this
point it is instructive to recall, by way of analogy, the simple and
well known fact that, in the free group F; on two generators z and
y, the commutator [z, y] can be written as a product of 3 squares,
but of no fewer:

[z, 5] = (@) (zy ")y

Lyndon’s problem, by contrast, seems to be more difficult. In this
note, I will show that {[z,y], [z, w]} can be expressed as a product
of 85 cubes. This will, I hope, provide a benchmark for future
progress on the problem. Following my proof, one could write
down an explicit expression, but in the interests of saving space I
shall not do so here. '

2. MNotation

From now on, all work takes place in the free group £} on the four
generators x, ¥, %, w. To simplify the presentation of the proof to
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