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Societ.y. if a Eurocheque is used then the card number should
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- Any application for membership must be presented to the

Com@ttee of the LM.S. before it can be accepted. This
Commmittee meets twice each year.

Please. send the completed application form with one yvear’s
subscription fee to

The Treasurer, I.M.S.
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
4th April 1996

The Irish Mathematical Society held an Ordinary Meeting at
12.15pm on Thursday 4th April 1996 in the Dublin Institute for
Advanced Studies, 10 Burlington Road. There were 16 members
present. The President, D. Hurley was in the chair. Apologies
were received from F. Holland and K. Hutchinson.

1. The minutes of the meeting of 21st December 1995 were
approved and signed.

2. Matters arising

e A letter has been sent to the European Mathematical Society
(EMS) explaining that the society could not afford to pay the full

;- level of its snbscriptions to the EMS, and enclosing part-payment.

No reply has yet been received. Concern was expressed that indi-
vidual membership should be continued in the usual manner and
it was agreed that the individual memberships would be forwarded
at the end of the month.

It was reported that letters had been sent to the college officers
of the University of Rochester, protesting at the proposed closure
of its graduate program. No further information was available to
date.

e It was felt that a perpetual trophy for the winner of the Irish
National Mathematical Olympiad Competition would help in pub-
licizing the event and raising sponsorship. It was suggested that
the trophy should have some interesting geometric shape. T. Laf-
fey, G. Lessells and J. Pulé agreed to investigate sponsorship,
design and other practicalities of the trophy and’to report back
to the December meeting.

e It was agreed that the society should liaise with the Irish Math-
ematics Teachers Association (IMTA) to organize a mathematics
afternoon for Transition Year students from secondary schools in
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Cork, Dublin and Limerick in September 1998. All were encour-

aged to suggest speakers.

e R. Timoney was thanked for settin up an IMS

World Wide Web. Its address is 5 pese on the
hitp://www.maths.tcd.ie/pub /ims.

Departments were asked to add a pointer in the home pages of

their entry on the WWW to the IMS page.

3. Bulletin

'The issue of advertising in the bulletin was discussed. M. Tuite
agreed to approach publishers on this matter.

It was mentioned that instructions to authors may be changed
from Tex to Latex, as Latex appears to be more commonly used.
Thanks were expressed to the editor.

4. Treasurer’s business

The treasurer gave his financial report and was thanked. G. Les-
sells agreed to send a letter of thanks and a copy of the Bulletin
to those people and institutions who gave financial support to last
year’s September Meeting.

5. September Meeting

D. Armitage reported that organization for the 1996 September
Meeting is well under way and principal speakers arranged. Speak-
ers for short talks were requested. The conference will be held in
the Applied Mathematics building in Queen’s University Belfast.
A conference banquet will be held in the Great Hall of the uni-
versity. The president appealed to all members to make a special
effort to attend the September Meeting. .

6. Any other business

The issue of awarding bonus points to honours mathematics in
the Leaving Certificate was discussed. S. Dineen requested that
any information or statistics that might support this practice be
sent to him.

The meeting closed at 1.05pm.

Pauline Mellon
University College Dublin.

PROFESSCOR JOHN LIGHTON SYNGE, FRS
Obituary

Professor John Lighton Synge, the most distinguished Irish mathe-
matician and theoretical physicist since Sir William Rowan Hamil-
ton (1805-1865), died in Dublin on March 30, 1995, exactly one
week after his 98th birthday.

He entered Trinity College in 1815 and by the end of his
first year he won a Foundation Scholarship in mathematics, an
extraordinary achievement in view of the fact tha! .. those days
the Foundation Scholarship examination was normally taken in
the third year. He graduated in 1919 with a Senior Moderator-
ship in Mathematics and Experimental Physics and a Large Gold
Medal.

After a brief lectureship in mathematics in Trinity College
he left for Canada in 1920 to join the University of Toronto as
Agsistant Professor in Mathematics. He returned to Trinity in
1925 to a Fellowship and the Chair of Natural Philosophy until
1930. His most brilliant students during this period were the late
Dr A. J. McConnell (geometer and one time Provost of Trinity
College) and the late Professor E. T. 5. Walton (experimental
physicist and Nobel laureate with Cockeroft).

He left Trinity College again in 1930 and after a succession of
senior appointments at the universities of Toronto, GChio, Prince-
ton, Maryland and Pittsburgh, and a brief appointment as ballis-
tic mathematician in the US Air Force during the war, he returned
to his native Dublin in 1948 as a Senior Professor in the School of
Theoretical Physics of the Dublin Institute for Advanced Studies.

It was during Professor Synge’s tenure that the Dublin Insti-
tute for Advanced Studies became one of the great centres in
relativity theory. Up to the mid sixties, and primarily under his
influence, about 12% of the world’s relativists passed, physically,
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through the Institute.

Professor Synge made outstanding contributions to widely
varied fields: classical mechanics, geometrical mechanics and geo-
metrical optics, gas dynamics, hydrodynamics, elasticity, electri-
cal networks, mathematical methods, differential geometry and,
above all, Einstein’s theory of relativity. His approach to mathe-
matical physics in general, and to relativity theory in particular,
is characterized by his extraordinary geometrical insight. He felt
Jjust as much at home in the ordinary three dimensional Euclidean
space as in the four dimensional space-time of relativity. In an
astonishing paper in the Proceedings of the Royal Irish Academy
( Vol. 53, Section 4, No. 6, 1950) he was able, for the first time, to
penetrate and explore in detail the region inside the Schwarzschild
radius (what we now call a black hole). At a time when many rel-
ativists thought that it didn’t even make sense to talk about this
region, this work is very remarkable indeed.

The almost universal geometrical approach to the theory of
relativity in the last thirty years or so is due primarily to Professor
Synge’s influence. As Professor Sir Hermann Bondi remarked in
1992, besides the 12% of relativists who were directly influenced

by Professor Synge, “Every one of the other 88% has been deeply -

influenced by his geometric vision and the clarity of his expres-
sion”. It is on record that the outstanding relativist Professor Sir
Roger Penrose, and through him Stephen Hawking, decided to go
seriously into the field of relativity after reading Synge’s books on
the subject.

He published eleven books, including three fascinating and
delightful semi-popular books, and over two hundred papers, the
last one at the age of 92; it was, appropriately enough, on geom-
etry. Every single book and every single paper is a remarkable
work of art.

His geometric insight and clarity of expression permeate all
his scientific and semi-popular writings and all his superb lectures
and seminars. His motto in all his writings, but especially in his
semi-popular ones, is “The mind is at its best when at play”,
as he put it. He uses his fertile imagination and the “clarity of
expression”, and the sheer beauty of his prose, a gift he no doubt

] Obituary 3

inherited from his uncle, the famous playwright J. M. Synge, to
set the mind of the reader “at play”; at the same time, imparting
knowledge to the mind effortlessly and almost unconsciously_.

His two passionate hobbies were cycling and sailing. While at
the University of Pittsburgh he was cycling wearing 2 nose mask
t0o protest against the polluted atmosphere of the city. He was,
also, an accomplished painter. Well after retirement he took up
the mandoline but without much success.

His mind was lively and vivid almost to the very end of his
life. He continued reading three or four books a week and think-
ing about mathematical problems. On one of his visits just a few
months before his death the present author was evidently sur-
prised to see him reading a big medical book on the circuiation. of
blood. Seeing my surprise he said “Oh, I have some troubles with
the circulation of blood in my legs and ! decided . learn some-
thing about it”. On another visit, towards the end of 1.993, he
told me that the problem that ocecupied his mind at the time was
Fermat’s last theorem. When I ventured to say that “the problem
was solved last July”, he said “Ch, T know that, but T am thinking
of the problem from a different angle, in terms of the zeroes of the
Fermat function z* + y* — 2'. You can think of ¢ as a parameter
and (z,y,z) as a point in & three dimensional space or you ca,,n
think of (x,y, z,t) as a point in a four dimensional space’f. I don’t
know how far this approach would have led him, but it clearly
indicated that his “geometrical vision” remained undiminished to
the very end. .

Professor Synge married Elizabeth Eleanor Mabel Allen in
1918 while they were both undergraduates in Trinity College; she
died after a prolonged illness in 1985. He is survived by two
daughters, Mrs Isobel Seddon and Professor Cathleen Morav_vetz.
Professor Morawetz, an eminent mathematician in her own right,
has the distinction of having been the first woman to hold the
Directorship of the famous New York Courant Institute. _She is
currently the President of the American Mathematical Society.

Trinity College, Synge’s Alme Mater, honours one of its most
distinguished graduates on a permanent basis by the J. L. Synge
Prize in Mathematics and the J. L. Synge Public Lecture,
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each being given in alternate years. The first J. L. Synge Prize
in Mathematics was shared by John Callan and Raymond Rus-
sell in 1993, and the second was awarded to Conal Kennedy in
1!_)95. The first J. L. Synge Public Lecture was given by Professor
Sir Hermann Bondi in 1592, and the second by Professor Werner
Israel, a student of Professor Synge. The third lecture was given
by Professor Sir Roger Penrose on May 7, 1096.

Professor Synge was a kind and generous man. He encour-
aged and inspired several generations of students who will always
remember him with gratitude, fondness and the deepest respect.

Petros S. Florides,
School of Mathematics,
Trinity College,

Dublin 2,

Ireland.

A CONIC AND A PASCAL LINE
AS CUBIC LOCUS

P. D. Barry

1. Statement of results

This material arose out of an effort to generalize a result of
Williain Wallace in 1797, to the effect that the feet of the perpen-
diculars from a point on the circumcircle of a triangle onto the
side-lines are collinear. Through historical mis-attribution, the
Hines of collinearity have been widely known as Simson lines.
Our most general result is Theorem 3. A reduced case of that

.is Theorem 1. ‘A converse of the latter is Theorem 2, and this

constitutes an enhancement of the configuration in the celebrated
Pascal’s theorem.

Theorem 1. In a projective plane, let A;, A4, As; be non-
collinear points and B, By, B3 distinct collinear points such
that '

By # Az, A3, By # Az, Ay, B3 # Ay, Ao,

AB3 # A3Bs, AsBy # A1B3, A1 By # A2B) (1)
Let Ct, Ca, C5 be the points specified by

Cy=A3BsNAzBy, Oy = AsB1NA By, T3 = A;ByNAyB;. (2)

For a variable point P, take points (J1 € AsAs, Qo € Az4,,
(J3 € Ay Aa, such that Q) € PBy, Q2 € PBy, @3 € PB3. Then
the set & of poinis P for which ¢4, (35, (J3 are collinear, contains
the points A,, As, Az, By, By, Bs, C1, Cs, Cs. It is either the
whole plane or else a conic through A;, Ay, A, Cy, O, C3, and

7
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the line By By B;. The degenerate case of the plane occurs when
B, € AgAg, By e AgAl, B3y e A1 A,.

Now by (2) we also have
AyC3N AT, = By, A3CiNA1Cs = By, A1C2NAC) = B, (3)

so we have the conic through Ay, Ay, A3, C1, C3 and Cs, and the
Pascal line B, By B;. This is the configuration of Pascal’s theorem.

Working somewhat in reverse and starting differently, we can
also state the following, which is a converse of Theorem 1.

Theorem 2. In a projective plane, let C, be a proper point coxic,
and AI, Ag, Ag, C]_, Cg, C3 distinct pOfIltS on Cl. Let

Ay Oy N A3C, = By, A3Ci N A1053 = By, A1Ca Ayl = Bs,

so that By, By, B; are collinear. If for any point P, PB; meets
Az Aj at )y, PB, meets Az Aq at @, and PBj meets Ay Az at Qs,
then ¢J1, Q2 and Q3 are collinear if and only P is on C; or on the
Iine BleBg.

Figure 1 refers to Theorems 1 and 2.

-
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A Conic and a Pascal Line 9

A conic and a line constitute a reducible cubic and our locus
is essentially a cubic. Qur approach has caused us to take By, B
and Bj to be collinear, and if we take them to be non-collinear
we find that we obtain a cubic which passes through A;, A2, As,
B]_, Bz, Bg, Cl, Cg, and 03.

Theorem 3. In a projective plane, let ay, as, a3 be disiinct lines
and write

A]_:Cbgnag, Azzagﬂal, A3=alﬂag.

Let By, By, By be distinct points such that (1) is satisfied, and
let C1, Cs, Ca be defined by (2). For a variable poini P, let

PBiNay =G, PBaNay =03, PB3Nas =Qs.

Then the set &£ of points P such that ¢}, Qs, (J3 are collinear
is either a point cubic or the whole plane. The set £ contains

each of the. points Aq,. Az, As, B1, Bq, Bs, (1, Cy, 5, and it
- «degenerates to.the plane if and only if By, B, By are collinear

and By € a1, By € ay, By € as.

2. Proofs

To start on our proofs, in a projective plane we let a4, as, ag be
distinct lines and write

Ai=azNag, Az =azNap, A3 = a;Nag.

Let By, Bs, B; be distinct points satisfying (1). We then introduce
the points Cy, O3, C3 in (2). For a variable point P, let

PBiNa, =0, PByNay = (s, PB3ﬂa3mQ3.

We seek the set £; of points P such that @1, @2, Q3 are collinear.
It can be checked directly from the definition that A;, A,, As,
B1, By, Bs, Cy, Ca, C3 are all in &, and indeed that if B;, By,
Bj are collinear, then every point P of the line B1 By B3 is in &.
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Supposing first that a1, a2, ag are not concurrent, as in [1]
we use homogeneous coordinates and take a triangle of reference
so that

Ay =(1,0,0), Az = (0,1,0), A5 = (0,0,1).
Suppose that
By = (a,b,¢), B2 =(d,e,f), Bs=(g,h,k), P= (z,1,2). (4)
Then

Q1 = (0, —bx + ay, —cx + az),
Q2 = (837 - dyzoaez - fy)ﬂ
Q3 = (}CZL‘ — gz, ky - hZ,O). (5)

Hence for Q, @2, Q3 to be collinear it is necessary and sufficient
that
0 —~bz+ay —cx+az
det | ex — dy 0 ex—fy 1 =0,
kx —gz ky—hz 0
which expands to
(ay — ba)(ez — fy)(kz — g3) + (az — ex)(ez — dy)(ky — hz) =0,
and then to

a(fg — dk)y’z + a(dh — eg)yz” +e(bg — ah)z’z + e(ch — bk)zz®
+ k(bf — ce)x?y + klcd — af)ry’ + (2aek —bfg — cdh)zyz = 0.(6)

Turning now specifically to Theorem 1, we note that a condition
that By, Bz, Bs be collinear is that

a b ¢
A=det| d e f
g h k

] A Conic and a Pascal Line 11

satisfy A = 0. As Ay, As, A3 are not collinear, at least one of
them is not on BBy, If A3 ¢ By By we can solve A = 0 for k and
insert in (6) to obtain the product of

(bf — ceyz + (cd — af)y + (ae — bd)z (7)
which gives the equation of By B, B3, and
a(dh — eg)yz + e(bg — ah)zz + [f{ah — bg) + c(eg — dh)]zy. (8)

This last yields a conic unless all its coefficients are equal to 0, in
which case the locus is degenerate. The other cases are treated
gimilarly. This establishes Theorem 1, apart from analysing fully
the degenerate case which we shall return to later.

For Theorem 2, we start by supposing that 4 Ay, A3, (4,
(5, C'3 are on a proper conic C;. We define Bi, Bs, Bs by (3) and
then {2) holds. Here Az ¢ B;1 B3, so we obtain (7) and (8). Now
(8) cannot degenerate to having all its coefficients equal to 0, as
c.q. B1 g-A2A3, Ag € BgBa 1mply

a#0, dh—eg#0.

Thus (8) gives the equation of a conic through A,, 4y, 43, Cy, Cs,
('3, and hence of ;. This establishes Theorem 2. We note that in
it, the roles of (A, A2, A3) and {Cy, Cs,Cs) are interchangeable.

Continuing so as to cover the case where By, By, By are not
collinear, we suppose that ai, as, as, A1, As, Az, By, By, Bs,
Ci, Ci, Cs, P, 1, (J2, Q3 are as before, except that now we
take a;, @z, a3 to be any three distinct lines (so that they may be
concurrent and then As = A, = A;), and By, Bs, B; to be any
distinet points (and thus not confined to being collinear), such
that (1) is satisfied and so Cj, Cs, C5 are well-defined.

When a,, 23, 23 are not concurrent, we choose coordinates
as before and the calculations above show that £ has the equa-
tion (6). When ai, ag, az are concurrent we take the triangle of
reference so that these lines have the equations

y+z=0,y=0 z=0,
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respectively. With (4) as before, instead of (5) we find that

Q1 = ((b+ )z — ay — az,cy — bz, —cy + bz),
Qs = (ex — dy,0,ez — fy),
Qs = (kx - gz, ky — hz,0).

Then these points are collinear if and only if
(b+c)z—ay—az cy—bz —cy + bz
det ex — dy 0 ez—-fy 1 =0
kx — gz ky — hz 0
which expands to

k(ed — af)y® + elbg — ah)2® +e(ch — bk)zix
+ {alek + f(h — k)] — bdk +e(fg — dh)Yy’z
_ {afe(h— k) — Fh] +b(fg = dh) + ceglyz®

+ k(bf — ce)oy® — bf (h— k) +ch(f —e)leyz =0. (9)

Thus & has this as equation.

Checking the cases in which &; degenerates to the whole plane
is rather detailed. It is convenient to denote by capital letters
the cofactors of the elements in A. When a;, az, ag are non-
concurrent, by (6) degeneracy occurs only if all of

aB=O,aC=0,8Fﬁ0,eD:0,kG=0,kH=O,
aA+eE+kK —-A=0, (10)

hold. We divide into the cases
(i} all three of a,e, k are equal to 0;
(i) exactly two of a, e, k are equal to 0, and by symmetry we can
takee =k =0,a #0;
(i) exactly one of a, €,k is equal to 0, and we can take a = 0, #
0,k #0;
{iv) none of ¢, €, k is equal to 0.

A Conic and a Pascal Line 13

In (i), as a = 0, we have By € A3 A3 and similarly B2 € A3A4,
Bs € AjAs. As A =0, By, By and Bz are collinear. In this case
&1 degenerates. In (ii), as e = k = 0, we have By € AgA;,
By € A1jAx. As B = C = 0 we have Ay, € B3B3, A3 € By B3,
Thus By = A3, By = Aa, which is incompatible with (1). Similarly
we find that (iii) and (iv) are incompatible with (1).

Similarly when a:, a2, az are concurrent, by (8) £; can degen-
erate to being the whole plane only when

eD = 0,eF = 0,kG = 0,kH =0, fD + hG = 0,
— fE—hH+kK =0,~eE + fF + hK =0. (11)

Now Ch = Cy = {3 = Ay and (1) implies that none of the triples
{Al,Bz, Bg}, {Al, Bg, B]_}, {Al, B]_, Bg} is coll .car. (12)

We divide into the cases
(vye=k=0

o (viy e=0,k #0;

(vii) e £ 0,k # 0.

In (v), as e = k = 0, we have By € a4, B3 € a3 and so
fD+hG=0, fE+hH=0, fF+hK =0.

H we had f = g = 0, then we would have B; € a3, Bs € az and
80

By = By = Ay,

which is ruled out as By # Bs. We then have (f, k) # (0,0) and
80

DH-GE=0, EK-FH =0, FG- DK =0,

that is eA = aA = bA = 0. Now A # 0 would imply that
(a,b,c) = (0,0,0), which is impossible as these are homogeneous
coordinates for By. Thus A = (, and so By, Bs, B; are collinear.
Here (J3 = By, (J3 = B3 and so we need (J; € B2 Bj; this makes
1 = By and so B; € a;. In this case & degenerates. In (vi)
e = 0 implies By € az, and k # 0 implies G = 0 and A; € By Bs.
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3 A Conic and a Pascal Line 15

These conflict with (12). Similarly (vii) conflicts with (12). These
combined cases establish Theorem 3.

By considering the dual of Theorem 3, it can be deduced
that the set & of lines p that are a line of collinearity Q1Q2Qs
in Theorem 3, is either a line cubic or the set of all lines in the
plane. If @y, a2, ag are concurrent, then the lines on A; form part
of &, and in the non-degeneraie case &, consists of a line conic
and the lines on one of its Brianchon points.

It is evident that we do not obtain all cubics in Theorem 3, as
&, there is determined by the six points Ay, Ag, As, By, By and
Bj. Nonetheless, it yields a large class of cubics with a geometrical
property. This class is closed under projective transformations.

An example X = < + — -
The equation (6) does not suit taking z = 1 to obtain Cartesian
coordinates, as A; and Ap would be points at infinity. Because of -1t

this we introduce Cartesian coordinates (X,Y) for P by applying

the transformation . 2l

=1-X-Y,y=X,z=Y.

In this way A4;, As, Az have Cartesian coordinates (0,0), (1,0,
(0,1), respectively. Taking for an example, By, B2, Bs to have
Cartesian coordinates (3,1}, (3,2), (2,2), respectively, we have Figure 2

By = (~3,3,1), By = (—4,3,2), B3 = (=3,2,2). References

[1] E. A. Maxwell, The Methods of Plane Ceordinate Geometry based on

the Use of General Homogeneous Coordinates. Cambridge University
Press: Cambridge, 1946

Then we find that {6} becomes

2X% —8X2 —2X(Y?-Y -3)-3Y(Y - 1)(Y —4) =0.

: P. D. Barry
The graph of this is shown in Figure 2. Department of Mathematics,
3 University College, |
Cork.




STOKES PARAMETERS AND
GIBBS BIVECTORS

Michael Hayes

Abstract For a single monochromatic wave train, it is shown that the
use of Gibbs bivectors leads in a natural and economical way to the
intreduction of Stokes parameters.

Introduction

Stokes, in a study of light waves published [1] in 1852, intro-
duced what are now called ‘Stokes parameters.” These are func-
tions only of the electromagnetic wave. The polarization state of

a beam of light {either natural, totally or partially p‘_olqrized)‘ can .
be described in terms of these four parameters [2,-3].-The purpose. -

of this note is to show how the use of Gibbs bivectors [4, 5] leads
to a direct and economical way of introducing Stokes parameters.

First, a simple observation. Any vector a (sa.y.) lying in a
plane may be represented in an infinity of ways as a linear combi-
nation of two arbitrary vectors, b and ¢ (say), in the plane, pro-
vided of course that b and ¢ are not parallel. Thus a = Gb + e,
for some scalars 3 and «y. Provided the vectors b and ¢ are chosen
to be orthogonal, then the squared length of a, namely a® =a-a,
may be written simply as o® = 5202 + 2R

It is the generalization of this simple observation to the case
of complex vectors, or bivectors, which leads naturally to Stokes
parameters. .

Here, Gibbs bivectors are introduced and some of thellr prop-
erties presented. Then a single monochromatic train of elliptically
polarized plane transverse waves is considered.

16
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Background

In 1853, the year following the publication of Stokes’ paper [1],
Hamilton, [6], in the context of quaternions, ccined the word
“bivector” for the combination a+ ib, where & and b are real vec-
tors. Complex numbers a+13 had been called biscalars! Hamilton
seems not to have ever used bivectors. The theory was devel-
oped by Gibbs, [4], in 1881, 1884. He presented seven pages on
bivectors in his seventy page pamphlet “Elements of Vector Anal-
ysis,” which laid the modern foundations of vector algebra. Gibbs
printed and circulated this privately. The work on hivectors was
generally ignored, possibly because in parts it is difficult to read.
The phrase “toc condensed and too difficult” which was used by
Lord Rayleigh, [7, page xiv], in writing to Gibbs about his famous
paper “Equilibrium of Heterogeneous Substances” is apposite here
also.

Gibbs recognized that an ellipse could be assoclated with a
bivector. He naturally used bivectors in the description of ellipti-
cally polarized electromagnetic waves. It is here that the connec-

-tion with. Stokes parameters is made.

Bivectors

A pair of orthogonal radii to a circle are said to be ‘conjugate.” If
the circle is drawn on a sheet of rubber which is then stretched
uniformly, the circle becomes an ellipse and pairs of conjugate radii
of the circle become conjugate radii to the ellipse. The property
that the tangent to the circle at the tip of the radius is parailel
to the conjugate carries over to the ellipse. If i and j are parallel
unit vectors then the position vector r given by

r=a(icosé + jsinf)
describes a circle of radius a. Also, if a and b is any pair of
non-parallel vectors, then

r=acosf +bsind

describes an ellipse in which a and b are conjugate radii. The
tangent dr/df at 6§ = 0 (x/2) is parallel to a (b). The pair r(f)
and r(# + 7 /2) are conjugate, [5].
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The combination D = a + ib is said to be a bivector.
Throughout capital bold face letters D, E, ..., are used to
denote bivectors. The real and imaginary parts of the bivector
D are denoted by (D)T and (D)™, respectively. Associated with
D is a unique ellipse, r = acosé + bsing, (0 < 8 < 2r) and a
sense of description, from (D) = a to (D)™ = b, The complex
conjugate of I is D = a — ib. The bivectors D and D have the
same ellipse associated with them, but in the case gf D the sense
of description is from (D)* =ato (D)™ = —b, which is opposite
to that of the ellipse of D. '

Two bivectors D and E are said to be narallel if there exists
a scalar, A, such that D = AE. Otherwise they are linearly inde-
pendent. _ ‘

The dot product of the bivectors D = a+ iband E=p+1i1q
is defined in the usnal way:

D E=a p-b-q+ilb-p+a-q).

I D-E =0, then D and E are said to be orthogonal.

¥D.D=0,thena-a=b-b,a-b=0s0 t}nat-i.n this.
case the ellipse of D is a circle.. For: example, if D = i+ 4j; then«

D D=0 _ _
The “intensity” of D is defined to be D -D. A bivector D of
unit intensity may be represented by

D =cosfr+isinfs, (1)

where t, s are orthogonal unit vectors along the principal axes of

the ellipse of D). ‘ _ . '
If the bivector H is defined by H = D with D = a+1ib,

then
H:(cosqﬁa—sinqbb)+i(sin¢»a+c05¢b), (2)

so that the ellipse associated with H is

r = (cosa — sin ¢ b) cosd + (sinda + o8 ¢b)sind

(3)
= acos(f — ¢) + bsin(f — ¢).

[
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This is precisely the ellipse associated with I¥. Note that here
¢ is a given quantity and & is a variable. This result is due to
MacCullagh, [8], who set its equivalent as an examination question
in Trinity College in 1847.

MacCullagh’s theorem, described by Hamilton as “a remark-
able use of the symbol ¢,” is central to the use of bivectors in the
description of wave propagation.

MacCullagh’s theorem means that beginming with the pair
(a,b) which defines an ellipse, then e*?(a +ib) gives another pair
of conjugate radii of the same ellipse. Now taking ¢ = wi where w
is a real constant and t denotes time, e™!(a+ib) gives at any time
t a pair of conjugate radii of the ellipse. The tip of the real vector
coswta — sinwtb moves on the ellipse. Its period of oscillation
is 27 /w. The pair {a, b} is rotated, but not rigidly, into another
pair of conjugate radii.

Let two bivectors D and E be coplanar and orthogonal: D -
E =0. Now ID may be written

D = e (a + ib) = ¢**(ai + ibj),

where a and b are along the principal semi-axes of the ellipse of
D and i, j are unit vectors. Because E is coplanar with D, it may
ke written D == ai + £ for some scalars e, 5. Then D-E =0
gives cre +18b = 0 so that E = Aaj — bi) for some A. Ience the
major and minor axes of the ellipse of E are respectively along
the minor and major axes of the ellipse of D. Also the ellipses
of E and D are similar — they have the same aspect ratio (a/b)
and they are described in the same sense. Hence Gibbs’ result [4]
follows: if D - E = 0 with D and E coplanar, the ellipse of E is
similar and similarly situated to the ellipse of D rotated through
a quadrant in its plane. Both ellipses are described in the same
sense. (See also [5].)

If two coplanar bivectors D and E are such that D - E = (,
then the ellipse of E is similar and similarly situated to the ellipse
of D when rotated through a quadrant. However the ellipses are
described in opposite senses. Then ID and E are said to be oppo-
sitely polarized. For example, D and E given by
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and by

where m = 7, are oppositely polarized.

Waves

Using rectangular Cartesian coordinate axes O=zyz, with the z-axis
along the propagation direction, plane transverse homogeneous
waves are described by a vector field u(z,¢) of the form

u(z,t) = (AT}, T=rz-wi (4)

Here A is called the “amplitude bivector” and is constant. It lies

in the z-y plane: :
B . A = Aji+ Ald. (5)
Also x and w are real constants.

In general, (4) describes.an. infinite train of hox'noge_neous
waves, propagating in the z-direction, elliptically pn_)la,rlzed in the
z-y plane. Its period is 27/(w) and its wavelength is 27 /().

The intensity I of the wave is defined by.

IT=A-A= A1A1 +A2A2. (6)

Writing the complex numbers A1, A, in terms of their moduli and

arguments, .
i id
Al = alelﬁl N A2 = Q@a€ 2: (7)

then

A=c+id, c=ajcosditas cosdoj, d=oysindi+az siné(géi).
The components u; and us of the vector field u(z,t) along the z
and y axes, respectively, are given by

uy = ajcos(T + &), ua =az cos(t + d2). (9)

The polarization ellipse is contained within a rectangular box
whose sides are parallel to the z and y axes, and have lengths

3
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201 and 2a., respectively. The amplitudes a; and a., and the
phase difference § = §; — d; of the orthogonal field components
(9) may be obtained from observations. The polarization ellipse
may be constructed if a,, as, 4 are known, [3, 5].

Stokes Parameters

Following Stokes, [1], consider the possibility of resolving the given
wave (4) into two given elliptically polarized waves of the same
period and wavelength. This amounts to asking whether it is
possible to decompose A in the form

A = AC + D, (10)

where C a_nd D are any two given bivectors coplanar with A such
that C-C =D D =1 and A, g are to be determined. Now
choosing C* and D* so that C-C* =D -D* =0, « follows that

AC-D*=A.D* uD C*=A- C* (11)

- Hence A, p donot.exist if C.-D* =0, or equivalently in this case

D - C* = 0. This means that the bivectors C and D are parallel;
D = +C for some +. Indeed, suppose, without loss, that

C=(i+imi)/(1+m)I, D=(pi+g)/(pp+qd)i, (12)

with m = 77, so that
C* = (mi+ij)/(L+ m®%, D*=(gi—p)/(pp+qa)?. (13)

Then C-D* = 0 leads to g = ipm, which leads to C*-D = 0 and
D = {p/(pp)=}C.

If C and D are not parallel, then A, u are determined and
using C- C =D - D = 1, it follows that

I=A-A=)+pi+MC-D+xC-D. (14)

Now choose C and D so that their ellipses are oppositely polarized:
C.D =0. Then '

=2+ pi, (15)
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which is just the sum of the intensities of the component waves.

In the Tntroduction it was noted that the real vectors b and
¢ were chosen to be orthogonal. Here the bivectors C and D are
chosen so that C - D = O-the ellipse of C is similar and similarly
situated to that of D when rotated through a quadrant, but the
ellipses of C and D are described in opposite senses. -

Now if ¢ and s are unit vectors along the major and minor
axes, respectively, of the ellipse of C, then € and D may be
written

C=cosf'r+ising's, D=sing'r—icosfs. (16)

Let ' be the azimuth of the major axis of the ellipse of C with
respect to the z-axis. Then cos ¥ =r-i=s-}
Using (10) and C - D =0, it follows that

M= (A C)A-C), (17)
where
AT = (Ayi+ Ad) - (cos f'r —isin f's).
Hence '
AN = I + Qcos28 cos2x' + U cos 28 sin 2" + Vsin 2/ (18)
and similarly

i = I — Qeos2f cos2y’ — U cos28 sin 2x' — Usin2/3',(19)

where

1= A A+ AsAy, Q=MAA - AsAs,

: S (20)
U= Alﬂz + A1A2, V = ?:(AlAz - AlAz).

The four quantities I, @, U, V involve only the components
Ay, Ay of A. They are the Stokes parameters. They all have the
same dimensions and are such that

2=Q*+ U+ V2 (21)

=i
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For every decomposition of the wave with amplitude bivec-
tor A into two oppositely polarized waves, the intensities of the
two component waves are given as linear combinations of the four
Stokes parameters. There is an infinity of such decompositions—a
particular decoinposition corresponds to a choice of the polariza-
tion form of the bivector C, that is, to a choice of the angles &
and '

If 3 and x' are altered to 8" and x" (say), then A and u
are altered to A" and u” (say). The intensities A“A" and p"ji"
of the two oppositely polarized waves are given by (18) and (19)
respectively, with 8°, x’ replaced by 5", v", but the coefficients
I, ¢, U, V remain unchanged.

If tan 3 is the aspect ratio of the ellipse of A and y is its
azimuth, it may be shown, [2, 3, 5], that

I=A A, Q=1TIcos23cos2y,
V=1Isin28, U =cos2fsin2x.

- Thisand (21) immediately suggest representation on a sphere-the

]

12

(3]
4]

il
6]

Poincaré sphere. But that is another story. .
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WRITING CCMMUTATORS OF GROUP
COMMUTATORS AS PRODUCTS OF CUBES

Peter V. Hegarty

Abstract We derive an upper bound for the number of cubes needed
to write a commutator of group commutators as a product of cubes.

1. Introduction

If a and b are elements of a group G, we define their commutator
[a,B] to be the group element a='b~tab. It is wi. known that
groups of exponent 3 are metabelian-for a proof see [2], pp. 382
3. Consequently, in the free group Fy on four generators z, y,
z and w, the “commutator of commutators” [[z,y], [z, w]] can be

- expressed-as a product-of cubes of elements of Fy. In the survey

article [1], R. Lyndon poses the problem of finding such an expres-
sion which contains the smallest possible number of cubes. At this
point it is instructive to recall, by way of analogy, the simple and
well known fact that, in the free group F; on two generators z and
y, the commutator [z, y] can be written as a product of 3 squares,
but of no fewer:

[z, 5] = (@) (zy ")y

Lyndon’s problem, by contrast, seems to be more difficult. In this
note, I will show that {[z,y], [z, w]} can be expressed as a product
of 85 cubes. This will, I hope, provide a benchmark for future
progress on the problem. Following my proof, one could write
down an explicit expression, but in the interests of saving space I
shall not do so here. '

2. MNotation

From now on, all work takes place in the free group £} on the four
generators x, ¥, %, w. To simplify the presentation of the proof to

25
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follow, let me introduce some unorthodox notation. The symbol
7, will be used to denote a generic product of n cubes of elements
of Fy. It is important to understand that 7, does not denote a
group element, but rather a type of group element. Hence, for
example, given a € Fy we will write the equation

o= 1)

to denote the fact that a can be expressed as a product of some
(unspecified) n cubes of clements of Fy. Next, for o and b in &y,

the equation
a = bm, (2)

will be written instead of b~la = m,. An elementary but impor-
tant fact is that, for any a € Fy and any n, we have

Gy, = TpG (3)

or, in words, right-multiplying a by a product of n cubes is the
same as left-multiplying @ by some other product of n cubes. The
verification of this fact is trivial. More generally, for a;, ... a5 In
¥, and positive integers n1,. .., ny we have

alﬂ'mﬂ.gﬂn2 Ty, = 3102...05Tny $ne+.. .1

= My tngtb Anp 31020k (4)

3. Main Result
We begin with a lemma.

Lemma. For a and b in Fy, the following hold:

(i) [a, 8] = [b7", a] 735
(i) [a,b] = [b,a~ ] w35
(i) [a, 8] = [a~t, b ma.
Proof: For (i), we have
[, b [a, ] = a"lba(b__la'lb‘l}ab
= a Yba(bra" 1) aba’b
=g~ (ba®)*bm

=a Y (ba?)}a"? 7 = 73,
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as required. Part (ii) follows from (i) simply by inverting both
sides and interchanging the symbols a and b.
For (iii), we have
[a,8] = a0 ab = a1 (b71a)2a L ba " b2
= m (e 2ba " b?) = 1y (aa"2ba"1H710%)
=mg(aba o) = w3 [a7t, 571,
as required.

The rest of the paper is devoted to proving the following
result.

Theorem. In Fy = (z,y,2,w) we have that [z,y], [z, w]] = 7gs.

Proof: Our strategy is to adapt the proofin [1}, pp 382-3, which
the reader may profitably consult, that groups of exponent 3 are
metabelian. So let us begin.

For a, b and d in F; we have

d~b e b ada T d = d 7N (b e ) e (a7 M)’
= (d tabdta)ms
= (d7tab)*b o db s
= (b ta " tdb )z,

So, by equating the first Iand last terms we get
a b lada™! = (bdb " ta " db T, (5)
Now substitute beb™" for d in (5) and derive easily that

¢ ta b abeb o ba = (e 0P ch e beb T e La)my

= (¢ ebatbeb e la)mg (6)
Using part (iii} of the lemma, we can obtain from (6) that

e, [b, a‘]] = [[bs C]’a]ﬂg (7)
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Now set u = [[z, %), [z,w]] and g = [z,w]. Then

u = [z, 9], 9] = [y, [z, gllme by (7}
[

= ([w, ], [z, z]]7a2 by (7) again.
Equating the first and last terms, we have
[z, 4], [z, w]] = [lw, yl, 7, 2]l7az (8)

Similarly,

u = [[z, 4], 9] = lg, [y, z]ims by part (i) of the lemma
= [ly, gl. «]m2 by (7)
= {ly, [z, wl}, 2]z
=I[[z,y], wlms, «]m12 by (7)

= [[[Z,’y],w},fﬂ]ﬂgg
= [z, [w, [z, y]llmsa by part (i) of the lemma

= [[w, =}, [z, yl]ma2 by (7) again.
Equating the first and the last terms, we have
(lz, ], [z, w]] = [[w, 2], [z, yllmsz (9)

Combining (8) and (9) we obtain easily that

3,,-1 —
:u_17r34:>u2=1rs4=uu = U = 7sh,

which completes the proof of the theorem.

1]
2
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Remark Let me elucidate the idea of the proof above. Equation
(8) says, informally, that the permutation £ — w — z of the
symbols z, y, z, w in the commutator u corresponds to multipli-
cation of u by some 42 cubes. Equation (9) says the same for the
permutation z — w — y. The product of these permutations is
‘z ¢+ 2z, y «+ w’, which takes u to u~1. Now, though I have not
checked it, I would conjecture that any 3-cyclic permutation of
x, ¥, #, w corresponds to multiplication of u by some 42 cubes.
An obvious question to ask is whether 42 is best possible. And
one may ask the same question for other types of permutations,
in particular for transpositions. In this way, it may be possible to
improve on the number 85 in our theorem simply by pure luck and
without introducing any essentially new ideas. It seems an entirely
more complicated matter, however, to obtain optimal results.

Acknowledgement I wish to thank Professor Desmond MacHale
of University College, Cork, for pointing out this preblem to me,
and for some helpful suggestions regarding the preparation of the
manuscript.
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COMMUTATORS IN RINGS
T. Creedon

Abstract We exhibit with proof a ring of minimal order in which the
commutator subset is not a.subriug.

Introduction

Tt is well known that the product of two commutators in a group
need not be a commutator. However the smallest order of a group
in which this occurs is 96. We produce an example of a ring of
order 186 in which the subset of all commutators is not a subring,.
We prove that this example is minimal by showing that in all
rings of order less than 16 the subset of all commutators is an
ideal and therefore also a subring. Throughout this paper Zs
denotes the feld of integers modulo 2, C), denotes the cyclic group
of order p and {(a) denotes the additive group generated by an
element a. The commutator of two elements a and b in 2 ring
is denoted [a,b] = ab—ba. A presentation for a finite ring R
consists of a set of generators g1,..., gx of the additive group of
R together with relations which specify the additive order of the
generators and the multiplication with which R is endowed. For
example {a : 2a = 0,a% = a} is a presentation for Z, and we write

7y = (a:2a =0, = a).

Example
Consider the ring R of order 16 consisting of all 2 x 2 matrices

with entries in Zo,
a b
R —_ (C d) bl

where a, b, ¢ and d run over the elements of Zo. By direct calcu-
lation, we find that the commutator subset C' of R consists of the

30
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following eight matrices

05) 1) o) )
1) (o) (o) ()

We remark that ' is an additive subgroup of R. However, since

11 01 1 1
(62 0)-Go)ee

we see that ¢ is not closed under multiplication and so  is not

a subring of R and hence not an ideal of R.
- We now prove that for all rings of order less than 16, the
commmtator subset is an ideal. We do this by examining the
gtructure of these rings. Note that any commutative ring has
commutator subset {0}, which is an ideal. Since all abelian groups
-of orders 1, 2,3, 5,6,.7, 10, 11, 13, 14 and 15 are cyclic, the rings of
these orders must be commutative and therefore in all these rings
th_e commutator subset is an ideal. The rings of order p?, where
p is a prime number, have been classified (see [1], [2]). There are
only two non-commutative rings of order p?. These are rings with

additive group Cp, @ €. = {a} @ {b), where pa = pb = (. When
p = 2, the two rings are given by

Ry ={a,b:2a=2b=0,a> = a,b’ = b,ab = a,ba = b)
and .

Ry ={(a,b:2a=2b=0,0" = 0,0’ =b,ab = b,ba = q).

The commutator subset of Ry is {0, a + b} and this is an ideal of
.Rl. The commutator subset of R, is also {0, a + b} and this is an
ideal of Ry. When p = 3, the two rings are given by

R3=(a,b:3a=3b=0,0" = a,b> = b,ab = a,ba = b)
and
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Ry = (ca,b:‘?‘az.‘,’ebzﬂ,aa2 =a,b’ = b,ab=b,ba =q).

The commutator subset of Rs is {0, a - 2, 2a + 3} and this is an
ideal of Rs. The commutator subset of Ry is also {0, a+2b, 20+3}
and this is an ideal of Bs. Therefore in all rings of orders 4 and
9, the commutator subset is an ideal.

It is well known that any ring can be decomposed intc a
direct sum of rings of prime power order. Therefore the only non-
commutative rings of order 12 are of the form Ri @ Ra, where 51
is a non-commutative ring of order 4 and Ss is of order 3. Clearly
S5 is commutative and as we mentioned above there are ouly two
non-commutative rings of order 4 and the comimutator subset of
each of these rings is an ideal. Hence the commutator subset of a
ring of order 12 is an ideal.

The only remaining case te be considered is where the ring
R has order 8. In this case R must have additive group Cg (in
which case R is commutative), Cy & Cp or Cy & Ty @ Ca.

Suppose first that R has additive group Cy & 3 = (a) & {B,
where 4g = 2b = 0. Since 20 = 0, we see that 2[a,b] = 0 and
the commutator subset of R is €' = {0,[a,b]}. Therefore C' is
an additive subgroup of R. Every élement of R is of the form

ma +nb, wherem =0,1,2, or3andn=00r L. 1t follows from: -

the identities
ala,b] = [a,ab], [a,bla = [a,ba], bla,b] = [ba,d], [a,bld = [ab,b]

that C is an ideal of R.
Finally, suppose that R has additive group

Co®Co®Cy = (a) ® (b) & {c),

where 2a = 2b = 2¢ = 0. It is easily seen that the commutator
subset ' of R is an additive group. By considering different cases
we shall show that C must be an ideal of K.

Casel Suppose that [a,b] = 0. Then the commutator subset is
{0,[a, ¢l b,c],[a+b,c]}. Any element of R is of the form ka+ib+
me, where each of k,I and m is either 0 or 1. We have

(ka + Ib + mc)[a, ¢] = kaac — kaca + lbac — Ibea + mceac — meca
= k[a,ca] + l[a, be] + mlca,cl € C.
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Also, since [a,b] = 0, we have

la, c](ka + ib + mc) = kaca — kcaa + lach — Icab + mace — meac
= k[a, ca] + lach — lcha + mace — mcac
= kla, ca] + I[a, cb] + m[ac, c] € C.
Similarly (ka + b+ me)b,¢] € C and {b,c}(ka + b + mc) € C.

So C is an ideal. Similarly if {b,c] = 0 or [0,¢] = 0, then C is an
ideal. So we can suppose [a, b], [b, ] and [a,c] are all non-zero.

Case 2 Suppose that [a,b] + [b,c} = 0. Now [a + ¢,b] = 0 and
C ={0,[a,4,[a,b], [a, b+ c}}.
We have

(ka + Ib + mc)la, ¢] = k(aac — aca) + H{bac — bea} 4+ m(cac — cea)
kla, ac] + l{b(a + 2)c — befa + ¢)) + m[ca, ]
kfa,ac] +1((a+ cbe— be(a + ¢€)) + mea, €]
Ela, act + {[{a + ¢), bc] + m[ca, ] € C.

il

Similarly

[a,c}{ke + 16+ mc) € C,
{ka+1b+mc)la,b] € C
and

[a,b](ka + b+ me) € C,

also. Therefore C is an ideal.
Ca(.ise 3 Suppose that [a, b]+[b, ] +[a,¢] = 0. Then [b, ¢ = [a,b+(]
an .
C = {0,[a,b],[e,c],la,b+ ¢}
As above we can eagily show that C must be an ideal.

We can finally suppose that all of the cases above do not
occur. Thus it follows that if k[a,b] + U[b, ¢] + m[a,c] = 0, then
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L =1=m = 0. Therefore C has order 8, in which case {' = K.
Therefore the commutator subset of a ring of order 8 is an ideal.
We conclude that 16 is the smallest order of a ring in which the
commutator subset is not an ideal.
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WHEN IS A FINITE RING A FIELD?

Des MacHale

When I was an undergraduate, there were two theorems in algebra
that took my fancy. The first was

Theorem 1. A finite integral domain is a field.
The second was the beautiful theorem of Wedd  surn (1905).

Theoremn 2. A finite division ring is a field.

I often wondered why the standard proof of Theorem 1 was
relatively easy and why all of the proofs of Theorem 2 are relatively
difficult. I wondered too if it might be possible to prove a single
theorem that would include both Theerem 1 and Theorem 2 as
special cases. The following is an attempt in that direction.

Theorem 3. Let {R,+,-} be a finite non-zero ring with the prop-
erty that if a and b in R satisfy ab = 0, then eithera =0 orb = 0.
Then {R,+,-} is a field.

Recall that {R,+,-} is an integral domain if {R,+,-} is a
commutative ring with unity 1 # 0 with the property that ab =10
implies either ¢ = 0 or b = 0. Clearly, a finite integral domain
satisfies the hypothesis of Theorem 3.

Recall too that a division ring {R,+,-} is a ring in which
the non-zero elements of R form a multiplicative group with unity
1. A finite division ring {R,+,-} also satisfies the hypothesis of
Theorem 3. To see this, suppose that for elements a and b of R, we
have ab = 0. If & = 0, we are finished, so suppose that a # 0. Then
a™! exists in B. Hence b= 1b = (a ta)b = a~'(ab) = 2710 = 0,
as required. Note finally that in the hypothesis of Theorem 3,

35
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we are assuming neither commutativity of multiplication, not the
existence of inverses. These have all to be established.

Proof of Theorem 3: Since R # {0}, we can choose a fixed non-
zero element a of R. Let

R={r,r2,-.,"n}
Define a function o : £ = K by
(ri}a =ra
for all i. Now if (r))a = (r;)e, then r;0 = 7j0 and hence (r; —
rije = 0. Since a # 0, this forces r; = r;, S0 ¢ is one-to-one, and
gince R is finite, a is onto. Thus there exist clements ¢ and t* in

R such that
ta = a and t*a = 1.

Now define a function f: K — R by
(r:)f =ar:
for all 4. Again, if (r;)8 = (r;)8, then ar; —ar; = 0= a(r; — ;)
so r; = rj. Thus 3 is one-to-one, hence onto, and there exist
elements s and s* in R such that

as = a and as® = s.

Now let = be any element of K. Since o and A are onto, there
exist elements & and ¢ in R such that

T = ba = ac.

We now have
tr = t(ac) = (ta)e =ac =1z,

so t is a left unity for {R,+,-}. Similarly,

zs = (ba)s = blas) = ba ==,

(2

When is a Finite Ring a Field? a7

$0 5 is a right unity for {B,+,-}. Thus t = ¢ts = s = 1 is a unity
for R.

Now as as* = s = 1 =t = t*q, it follows that ¢ has a right
inverse §* and a left inverse ¢*. Thus

s = 1s* = (Fa)s* = t*(as*) = "1 = 7,

g0 s* = #* = a1 and we see that each non-zero element ¢ in R
is invertible in 8. Thus R is a finite division ring and hence by
Wedderburn’s theorem, R is a field. This completes the proof. ®

Of course, the theory now proceeds to show that |R} = p” for
some prime p and positive integer n and if Ay = |Ra| = p”, then
R, and R, are both isomorphic to the unique Galois field GF(p™),
a rather remarkable result given the innocent looking hypothesis
of Theoremn: 3.

Finally, we mention three other directions in which Wedder-
burn’s theorem can be strengthened.

Theorem 4. [1] Let {R,+,-} be a finite ring with unity 1 # 0
such that more than |R|—+/|R| elements of R are invertible. Then
{R,+,-} is a field.

- The example {Z,:, @, ®} for a prime p shows that this result
is best possible.

Theorem 5. [2] Let {R, +,-} be a finite ring with unity 1 #0in
which every non-zero ring commutator Ty —yz is inverti ble. Then
{R,+,"} is commnutative.

Of course, {R, +, -} need not be a field, as {Z4, ®, ®} shows.

Theorem 6. [3] Let {R,+,-} be a finite non-zero ring and sup-
pose that for each a # O there exists a unique b with aba = a.
Then {R,+,-} is a field.
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Introduction
The Gaussian (Normal) probability model

o exp{—(z = p)?/20%)
f(.’L', fy J) = 0_(271_)1/2

is, arguably, the most widely used probability model because of

1. the fact that it is found as a limiting form of other common
probability models;

2. the operation of the Central Limit Theorem which gives rise to
the Gaussian form;

3. the intuitive appeal of the model as a description of measure-
ment errors in that it postulates that, in the long run, measure-
ments will zone in on the “true but unknown” quantity of interest,
4, and will be close to this value, lying between (4 —o) and {(p+0)
some 68% of the time;

4. the mathematical tractability of linear and quadratic functions
of Gaussian random variables which are used in Student’s ¢ and
F ratio tests,

5. the ability of the model to readily change location and shape
becanse of the independence of g, the location parameter, and o,
the shape parameter.

A simple transformation of the random variable, namely,

y = |z|

39
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gives rise to the Folded Normal probability model

exp(—{y — p)*/20%) + exp(+(y — p)*/20%)
o(2m)1/2

g(ysp,0) =

which can arise when empirical observational data are recorded °
without regard to the sign. If the signed data are postulated to |
conform to the (Gaussian probability model, the unsigned data -
will conform to the Folded Normal model. An example of the
possible use of this model is provided by the data set given by
Topping, {1], in his discussion of “Normal error distributions”.
The data, which are displayed in the first two columns of Table 1, -
are the “much discussed example of observational data satisfying -
the normal error law (which) was given by Bessel”. This data set -
tabulates “the errors involved in measuring the right ascension
of stars.”, the magnitude of the error of observation, in seconds,
being shown in the first column of Table 1 with the correspond-
ing frequency in the second column. In his subsequent analysis of 2
- this -data set Topping assumes that since “positive and negative
errors are grouped together, ... so we can only assume that they -
are equally divided”. This assumption is the basis of the subse- =

quent analysis in terms of a Gaussian model. This note analyses

the data set on the assumption that the Folded Normal model is .

appropriate.

Table 1: Right Ascension Error Data Set

Limits Observed Predicted Pearson

of Error Frequency Frequency Residual
(n) (e) (r)

0.0-0.1 114 102.1 +1.174
0.1-0.2 84 84.4 —0.041
0.2-0.3 53 57.6 —0.005
03-04 24 32.5 ~1.487
04-05 14 15.1 —0.290
0.5-06 6 5.8 +0.074
0.6-0.7 3 1.9 +0.845
0.7-08 1 0.5 +0.737
08-09 1 0.1 +2.756

Bessel's Error Data 41

Parameter Estimation

The Maximum Likelihood method of paramester estimation was
used to extract numerical estimates of the unknown parameters,
p and o, from the data set. In general, if the data s=t is a ran-
dom sample of size n, denoted by (z1,%2,...,2x), the Likelihood
Function is

L(8) = f(z1;6) f(22;0) ... f(zn; ),

where f(z;8) denotes the probability model of interest and ¢
denotes the set of parameters of the model. Since the data are, or
will be, known, the Likelihood Function is a function of the ele-
ments of the set of parameters, namely, §, which are continnous
nonrandom variables. The Maximum Likelihood Estimator(s) of
the parameter(s) are the value(s) which maximize the Likelihood
Function, namely, the “most likely” value(s) which can be found
using the data set. In simpler cases exact functions of the data
are found to be the Maximum Likelihood Estimators, these being
the solutions(s) to the equation(s)

SL() _ . SLog(Z())

56 58

A complication arises in the case of the data set in Table 1 because
the observational data, the error, is censored in that the number
of occasions on which an error lies within an interval of length 0.1
seconds is recorded rather than the actual value of the error. This
means that the Likelihood Function has to be rewritten as

T ng! (F)™ (Fo)™ ... (Fy)™

nglngf. ..

Lip,o) =

. which is a multinomial probability model. In this Likelihood Func-

tion, N denotes the total number of observations,

9
N=Y n =300,

i=1
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= 114,TL2 m84,...,n9 =1,

and F; denotes the integral of the Folded Normal probability .é:é

model over the i*® interval,

0.1 0.9
F =j g(y; py0)dy, ..., Fy =f g(y; p,0)dy.
0.0 0.8

These integrals give the probability that a randomly chosen obser-

vation will fall in any given interval.

Because of the necessity of numerically integrating the Folded

Normal probability model, it is necessary to use a search method
to find the values of g and ¢ which maximize the Likelihood Func-

tion, the Maximum Likelihood estimates. A simple “trial and

error” search of the two dimensional parameter space was used in

this case. The values of the negative of the natural logarithm of i
the Likelihood Function, excluding the constant factor involving

Nt and n;!, are shown for a wide grid of values in Table 2.

Table 2: Logarithm of Likelihood Function

pla 0.10 0.15- 0.20 0.25 0.30 0.35 0.40
—0.2 5662 4924 4877 4996 517.3 5375 5588
—0.1 6154 4894 4663 4735 4921 5151 5393
0.0 8053 5299 470.2 4680 4847 5079 533.0
0.1 6154 4894 4663 4735 49211 5151 5393
0.2 b566.2 492.4 487.7 499.6 517.3 537.5 BHE.8

This function i3 chosen because the Maximum Likelihood esti- .
mate will minimize its value so that, in general, a function mini- *
mization algorithm can be used to obtain the required values. The

use of a more refined grid in the region

—01<pu<+01, 020<g <030

indicated that the logarithm of the Likelihood Function was more -
sensitive to changes in ¢ than in g. The final values which were -
chosen were g = 0.0 and o = 0.227. The changes in the value

&= Bessel’s Error Data 43

=

of the logarithm of the Likelihcod Function were of the order of
0.001 for corresponding changes in the magnitudes of y and o.

Model Evaluation

The “goodness of fit” of the Folded Normal probability model to

the data set was judged by Pearson residual, [2, pp.37-39], which

is defined as _
ri = (ny — ;) /{ex)"/?,

where e; is the expected frequency in the i-th censoring interval,
being equal to

Nj’fg(y;ﬁ?&)dy,

the integral being over the appropriate interval. Here & and &
denote the Maximum Likelihood estimates. The square of the
Pearson residual is the the i-th component of the familiar Chi-
squared test statistic

9

X2 = Z(nl - 8,;)2/6,;

i=1

and is useful in indicating which components of the overall test
are making the largest contributions. On the basis that the Pear-
son residual has, approximately, a Standard Gaussian distribution
(=0, o = 1) one value of r;, namely, +2.76, is sufficiently large
to warrant some attention. This arises becanse the expected fre-
quency is approximately one tenth of the observed frequency but
since this apparent problem arises in a low frequency tail it is of

“no practical significance.

On the basis of this analysis the claim that the error has a
Gaussian distribution would appear to be vindicated in view of
the connection of that probability model with the Folded Normal
Probability model. ' .
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SOME MATHEMATICAL ASPECTS

OF INFORMATION TECHNOLOGY:

FIXED POINTS AND THE FORMAL
SEMANTICS OF PROGRAMMING LANGUAGES

Anthony Karel Seda

1. Introduction

“Jt is reasonable to hope that the relationship between com-
putation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the
last. The development of this relationship demands a concern
for both applications and for mathematical elegance.” John
McCarthy?, 1967.
In describing Information Technology, the Web page of the
recently formed Information Technology Centre at.. University
College, Galway says this: “During the past decade Information
Technology (I'T) has transformed business life, from the board-
room to the shopfloor. As we generally understand it, Information
Technology is an outgrowth from the computer, microelectronics,
and telecommunications industries, and now comprises: com-
puter processors and data storage devices, telecommunications,
software, microprocessors, automation technologies and user
interface media.” .

Generally speaking, users of IT need not be expert in, nor
even familiar with, the technologies which support it. If this is
true, it is even more true that these same users need have no
knowledge of the theory which supports the technologies which
support IT. Nevertheless, the issue of the theories underlying IT
and, in particular, which areas of mathematics are important in

Inventor of the programming language Lisp and pioneer of Al
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it, is itself important and interesting. At the moment, the vehicle

moving all the activity in IT is the electronic digital computer, .
and this state of affairs is likely to persist for some time into the |
future. Therefore, questions concerning the relationship of math- -

ematics to IT are often really questions concerning some more or
less theorstical issue in computer science, and indeed such issues
are raised in this Bulletin from time to time, sometimes in an

educational context, see [16], for example. So, just which areas of

mathematics are currently of importance in research and teach-

ing in theoretical computer science and IT, and which of these
areas will prove to be of enduring importance in this context? .
But before addressing this question, it will be helpful to say a few

words about the recent history of IT.
Much of the recent and ongoing work in IT has as its focus

new generation computing and is the direct result of the efforts of
the Alvey and ESPRIT programmes in Europe, ICOT in Japan

and the consortium known as the Microelectronics and Computer

Technology Corporation in the U.S.A. Indeed, all this was directly -
inspired by ICOT’s. announcement in 1982 of its intention to build -

the so called fifth generation computer, prompting a global race

from about 1985 onwards to build such machinery. It was found
necessary within these projects, see [1, 2], to broadly divide the 5
whole of IT into, initially, four enabling technologies: VLSI (Very
Large Scale Integration, which is concerned with chip fabrica-
tion and computer architecture); MMI (Man-Machine Interface,
or human factors in computing); SE (Software Engineering, which ¢
is concerned with putting the production of software on a scientific

basis (in particular, the development and use of formal methods of
verification in the manufacture of software and hardware)}; IKBS

(Tntelligent Knowledge Based Systems, i.e. Artificial Intelligence -
(AI)). As a matter of fact, communications and networks quickly °
came to be seen as so important that they were taken to be the *

fifth enabling technology.

The classification just described is useful as a means of orga- ~
nizing the applications of mathematics to IT, and can help deter-
mine which are central and which are of lesser importance. As one
would expect, all five of these enabling technologies use mathemat-
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ics, $0 & greater or lesser extent, in the way that it is used in other
sciences, that is, as a precise language in which to formulate prob-
lemns and results and as a tool with which to solve these problems
(even MMI uses mathematics in problems concerned with pattern
recognition). Returning to our main question, and taking a glance
at, say, the thirteen volumes which collectively make up 3, 13, 40},
and which cover several thousand pages, shows that even the first
part of our question is by no means easy to answer (and the vol-
urmes just cited cover mainly the mathematics relevant to SE and
IKBS and say little about the other three areas). However, such
a glance does make it clear that the answer “discrete mathemat-
ics” which is sometimes proposed in respouse to this question is
only a small part of the story, at least when this term is inter-
preted to mean graph theory and combinatorics, as is often the
case. Important as graph theory and combinatorics undoubtedly
are, they do not explain, for example, the many uses of category
theory and topology in connection with domain theory and the
formal semantics of programming languages. Much less do they
explain the many uses of mathematical logic in connection with
program verification and within machine intelligence and robotics.
Gtill less do they explain the use of real and complex analysis in
the analysis of algorithms, and the use, say, of measure and inte-
gration in connection with probabilistic powerdomains on the one
hand, and in connection with uncertainty in reasoning systems
on the other (where fuzzy logic is also important). Indeed, one
can continue in this vein citing seemingly endless applications of
different branches of mathematics to various aspects of the theory
of computation and IT, and some of these are indicated in the
References at the end of this article. On the other hand, many

‘others are not mentioned at all, and there is indeed an immense

literature covering the various topics of which our bibliography is
but a tiny fraction.

Devising a complete classification of all the areas of math-

- ematics which are of importance in IT would be an interesting

and valuable project in its own right, though time consuming and
beyond the abilities of the author, and in any case is not the objec-
tive of this article. Instead, we propose to take one concept, that
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of fired point, and attempt to relate it to two of the main areas,
SE and IKBS, which were identified earlier. The notion of fixed
point is, of course, of great importance within mathematics, and
it turns out also to be central in the areas we intend to consider in -
the context of programming language semantics. There may well
be applications of ideas concerning fixed points elsewhere within :
IT, but they will not fall within our scope. Thus, specifically, we
consider the use of fixed points in relation to the problem of giv-
ing formal, machine independent meaning (a formal semantics) to
computer programs. To do such is fundamental to the problem -
of formal verification of software, or the use of formal methods as
it is known in industry, and we take up this issue for procedural
programs in §2. In §3 we briefly consider basic ideas of formal -

systems and mathematical logic preparatory to the discussion, in

§4, of the role of fixed points in computational logic {the declara-
tive style of programming). Again, fixed points are fundamental
in this area in order to both give meaning to programs and to .
gain deep insight into the computation process itself, necessary if -
. advanced machine reasoning features areto be.developed such-as -
time dependent logics, the ability for machines to learn and so on. |
Such questions are themselves of importance of course given the

extent to which computers control complex and important sys-

tems in modern society. Finally, in §5 we discuss briefly the uses
of topology, some due to the author, which unite the two themes :
just described. Given space limitations, not to mention those of
the writer, it is not possible to do much more here than touch
on the main issues. Nevertheless, it is hoped to show, en route, .
that the simple concept of fixed point links in a coherent fash-
ion a wealth of important ideas drawn from mathematical logic,

recursive function theory, topology, category theory and abstract

algebra in an effort to resolve the apparently simple question of [
what a program means. Indeed, far from being simply a matter
of pressing keys on a computer keyboard, which is the end user’s
perception, IT has behind it a rich and fascinating theory which -
makes use of many fundamental ideas drawn from many parts of
mathematics. That at any rate has been the experience of the
author over the first decade of IT, a subject which by all accounts
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is set to become one of the two or three dominant forces which
shape the next century.

3. Fixed-point semantics of procedural programs

No matter what programming language it is written in, a program
P computes a function f. By suttably coding data structures
(lists, arrays etc.) and by a simple conjugacy, we can suppose
without loss of generality (though not necessarily without loss of
convenience) that f is defined on vectors x = (21,22,...,%,) €
N7 for some natural number n, and takes values in ¥V, where NV
denotes the set {0,1,2, ...} of natural numbers together with zero,
The essence, of course, of computer science is the translation of
formal or informal algorithm into (high level program} code. It
is therefore eminently reasonable from the point of view of the
computer scientist to impose some resource bounds on the notion
of algorithm that one adopts, see [15}. We shall not, however, do
this here so that we employ this term in the manner familiar in
mathematics and in particular in the usual sense of recursive func-
tion theory, see [21, 26]. This means that f is a partial recursive
function (a computable function) and that its domain is a possibly
strict subset of N™; if the domain of f is all of N, then f will
be called totel. Let us therefore denote by F,, the collection of all
partial functions from N™ to N and write dom(f) for the domain
of f. Given two functions f,g € Fn, we write f(x) ~ g(x) to mean
that if one of f(x) or g(x) is defined, then both are defined and
equal. With this notation, we may define the graph of f, graph(f),
by graph(f) = {{x,y); f(x) =~ y}, and as usual graph(f) will be
identified with f. This notion permits us to partially order 7,
by: f < g iff graph(f) C graph(g), and we note the following two
facts. (i) The nowhere defined function f,, whose graph is the
empty set, satisfies f5 < f for all f € F,, and therefore is the
bottom element of F,. (ii) F, is an w-complete partial order in

‘that any chain f, < fi < f; < ... has a supremum f = U;,_; fm,

where f satisfies (and is well defined by) f(x) >y iff fu(x) >~y
for some m. ' '

The main theorem we will need in this section is the following,
known as Kleene's first recursion theorem, see [11, 21, 26].
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Theorem 1. Suppose that ® : F,, = F, is a recursive operator.
Then ® has a least fixed point h which is a computable function. .

Thus, there is a computable function h satisfying

a) ®(h) = h,

b) if ®(g) = g, then h < g.

Hence, if h is total, then it is the only fixed peint of ®. @

We will not give a formal definition of the term recursive -
used here, but the essence of the idea is that whenever ®(f)(x) is
defined, its value depends only on finitely many values of f and
these values can be chosen in a computable fashion. Note that ® =
is itself totally defined, that is, defined on all of F,,, but of course .
®(f) may be a partial function. It will be convenient to write -

®(f;x) in place of {F}(x).

We also will not give details of the proof of this theorem,
other than those which we will need later on, and they are as
follows. We define inductively the following chain (f,,} of elements *
of Fri fo = fo and fmi1 = ®(fn), and now let b = | _o fm-
The continuity of @, implied by recursiveness and defined later, *
shows that h is a fixed point; the construction shows it to bethe 2
least such; recursiveness of ® is used to show that A is in fact a

computable function.

To show how this theorem is used, we consider the following °
simple example which is an adaptation, in some of the detail, of "
an example to be found in [37]. It will serve to make clear the
central problem under discussion and the manner of its soluticn.

Example 1 Consider the problem of finding the greatest common
divisor, ged(a, b), of the two positive natural numbers ¢ and b. The

usual way to do this is to apply the Euclidean algorithm and write -
a = ¢(a, )b + r(a,b) for unique choice of natural numbers ¢(a,b)
and r(a,b), where the remainder r(a,b) satisfies ¢ < r(a,b) < b. -,

It is then noted that ged(e, b) = ged(b,r(a,b)), if v(e,b) > 0, and

that the pair (b,r(a,b)} is “smaller” than the pair (a,b), so that .
repeated application of this technique is bound to terminate (in =
the required ged). It will be convenient to regard r as totally
defined by setting r(a,0) = a for all a, and r(0,b} = 0 for all b.
Then, with similar, suitably chosen exceptional values for q, we "
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see that the identity a = g(a, )b + (e, b) is satisfied for all @ and
b. Now, a procedural-language implementation P of the algorithm
just described, say in PASCAL, will contain a program statement
of the form “ged := ged{y, 2)”, and a mathematical formulation
of the algorithm is given by

_{b, if r{a,b) =0;
ged(a, b) = {gcd(b,r‘(a, b)), otherwise.

The program, and the formulation just givenm, recursively or
implicitly define ged in terms of itself, and the question which
naturally arises now is “What is the meaning or interpretation of
such a definition?” From the point of view of computation, that
is, from the point of view of operational or procedural semantics,
the answer is simply that we are given an iterative procedure to
calculate the function ged. Such a meaning, closely related to
the behaviour of P when running on a machine, is not in general
satisfactory for purposes of formal verification, and a machine
independent explicit definition is needed. The standard way to
obtain this, in general, is to pass to an associated operator P
and take the function which P is intended to compute to be the
Jeast fixed point of ®. To see how this works for the problem in
question, we define @ : Fo — F2 by

. [, if r(a,b) =0
&(f;a,b) = {f(b,r(a,b)), otherwise.

It is important to note that the definition of @ is explicit i.e. does
niot involve recursion. Moreover, because ®(f;a,b) depends only
on the one value f(b,r(a,b)) of f, for any f and (a,b), it follows
that @ is a recursive operator. Applying Kleene’s theorem, we
obtain the least fixed point k of @, and h is a computable function.
By reference to the synopsis of the proof of Kleene's theorem,
given above, we note the following:

"1 £1(0,8) = b for all b, and f1(a,0) is undefined for a > 0.

2) £5(0,b) = b for all b necessarily, and fa(a,0) = f1(0,a) = a for
all @ > 0. It follows that A(0,b) = b for all b and h(a,0) = a for

all a.
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3) If A, is any fixed point of ¥, and thus satisfies the equation

~ b) j‘f ’f'(ﬂ,, b) = U’
hy(a,b) = { hi(b,r(a,b)}, otherwise.

then it is easy to check that hi(e,b) coincides with ged(a,b) for

positive a and b.

It follows from these observations that h{a,b) coincides with .
ged(a,b) for positive a and b and therefore that h is totally
defined. Hence, h is the unique fixed point of &, and so we -
recover ged as the unique fixed point of € provided we are willing *
to accept that gcd{a,0) = a for all ¢ and ged(0,b) = b for all b, ©
which is reasonable, and in particular ged(0,0) = 0, which is not

unreasonable.

The discussion of this example, even though a little acceler- .-
ated, identifies many of the main points of the theory, and these :

points can be summarized as follows.

» There is a need for abstract models of computation. Usually
these are ordered spaces (such as Scott domains, see [37], and -
indeed much- of this theory has:been heavily.influenced. by the
work of Dana Scott and Gordon Plotkin, see [28, 29, 30, 36]) but -
sometimes are metric spaces or even quasi-metric spaces, see [35]. -
Such spaces should permit one to model the computation process :
itself perhaps by better and better (increasing) approximations to
a limit or supremum, and should incorporate a certain finiteness, -
known as algebraicity, which we will not identify, again see [37].
At the very least, the domains chosen must permit the construe- -
tion of fixed points of certain operators. Moreover, to model fea- |
tures of real programming languages they must be closed under
the formation of products, sums, function space, power domain -
(to model non-determinism) and must permit the solution of so .
called recursive domain equations. One is therefore looking for a
Cartesian closed category of domains. The (ongoing) search for
such categories is a beautiful example of pure mathematics, with
the satisfaction that at all times it is closely related to genuine -

problems in the design of advanced programming languages.

s Fixed points can be used, via fixed point induction, to verify
programs and their properties, see {22, 23]. They also can force
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suitable choices of exceptional values and, more importantly, elim-
inate problems involving choice where computation rules are used
in evaluating recursive definitions.

Whilst this is only the start of the theory, we can take it no
further for we want to turn now to consideration of the other main
strand of this article, namely, the use of mathematical logic in IT
and the role of fixed points in that context.

3. Logic, computability and formal systems

Ever since the early discoveries made by the Ancient Greeks, there
has been a strong interplay between mathematics and logic, lead-
ing to the specific area of mathematical logic. This subject is
concerned with both analysing the reasoning used in mathemat-
ics and also contributing to that subject, especially to its foun-
dations, by examining the limits to mathematical reasoning and
to what is possible. In addition, mathematical logic is proving
to be indispensable in the theory of computation and in IT for
several reasons, including its use in formal verification of software
and as a computational medium. We will not discuss the first
mentioned, in this section, other than to give references to appro-
priate literature; the latter we will discuss in more detail in the
next section. It will be convenient to assume that the reader is
familiar with elementary notions concerned with syntax: forma-
tion of terms and well formed formulae (usually abbreviated to
wif, whether in the singular or the plural) from an alphabet, and
the corresponding first order language. We also assume that the
reader is similarly familiar with elementary notions of semantics:
interpretations, formal assignment of truth values to wif, models,
logical consequence and validity, for details see [7, Chapter 1].

In modern terminology, what the Greeks conceived of is the
concept of a formal system or formal deductive system in which,
within a theory, one reasons from axioms (distinguished wiff in
the underlying first order language) by applying formal rules of
inference to obtain new “truths” or theorems (this process being
inductive of course). Roughly speaking, this concept is defined as

- follows, and a useful general reference is again [7, Chapter 1].

Definition 1 A formal system S(L, A, R) or just & consists of:
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1} A first order language £ called the underlying first order lan-
guage, whose alphabet is chosen so that £ is adequate to describe

the theory one has in mind.

2) A distinguished set A of wif in £ called the azioms; usually *
some computability restriction is imposed here such as “it is decid-
able which wif are axioms” (the set of axioms therefore forms what
is known as a recursive set and the system is said to be recursively

aziomatizable).
3) A set R of rules of inference.

. . . Input
Rules of inference take the following general form: m&m |
where Input and Output are both sets of wif of a specific syntactic .

form. For example, one well known rule is Modus Ponens which
has the form:

A= B
A

B

where A and B are:syntactic variables i.e. vary over wif. Thus,
for example, if the wif (Vz p(f(z})) — ¢(g(e, b)) and Yz p(f(z)) -

are taken as Input, then the Output is ¢(g(a, b)).
Other examples of rules of inference can be found in [7, Chap-
ter 1].

Definition 2 A proof in a formal system & consists of a ﬁmte

string Ay A, ... A, of wif A; in £ where each A; is either an axiom
or follows from earlier A; by application of a rule of inference. The .
end term A, in a proof is called a theorem. If a wff A in £ is the
end term of some proof (i.e. if A is a theorem), we say that A is -

deriveble or provable and write S+ A or A+ A,

This definition encapsulates a formalist or mechanical view of =
reasoning in which there is no meaning or semantics (it is purely -
syntactic): one keeps on mechanically applying rules of infer-
ence generating more and more proofs and therefore more and
more theorems without regard to whether or not the theorems -
are “true”. Nevertheless, certain immediate questions arise about -
formal systems for which a satisfactory answer requires truth val- ;

ues,
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Correctness of rules of inference

This is easy to answer: a rule of inference is correct or sound
provided that its Output is a logical consequence of its Input.
For example, since a wif B is always a logical consequence of wif
A4 — B and A, Modus Ponens is a correct rule of inference.
Completeness of a formal system Roughly speaking this is a
question about the power of a formal system to prove anything
which could reasonably be expected to be provable and it depends
mainly on the choice of the set R of rules of inference. There are
several styles of formal system in use and two in particular are
the Hilbert style formal system and the Gentzen style formal sys-
tem. These are described in detail in [7, Chapter 1] where the
exact form of the rules of inference is given in order to handle
substitutions and quantifiers. The main result concerning com-
pleteness for both these styles of formal system is Godel’s well
kuown completeness theorem, where |= is the symbol for logical
consequence.

Theorem 2. In a Hilbert style or Gentzen style formal system S,
a well formed formmuia A is derivable iff it is a logical consequence
of A. Thus,.in symbols A- Aif Al A. B

Incompleteness in formal systems

Recall that A |= A means that A is true in every model of A.
So, if a wif A is true in some models of A but false in others,
then A cannot be provable by Theorem 1, and conversely. The
main question which arises is whether or not in a given theory
(in particular this question arose in relation to Peano Arithmetic
PA) there is a closed wif, or sentence, A which is true in the
intended interpretation of that theory which is not provable. In
the case of PA the intended interpretation is the expected one in
which the domain is the set of natural numbers and the function
Symbols there are interpreted as addition and multiplication. The
shocking answer to this question for PA that there are such wit
is the content of Gidel’s famous first incompleteness theorem, a
simple, but useful, form of which is as follows, see [11].

Theorem 3. Suppose & is any recursively axiomatized formal
gystem for Peano Arithmetic P.A in which every provable sentence
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is true in the intended interpretation. Then there is a sentence o in
P.A which is true in the intended interpretation but not provable.
Consequently, —a is not provable either (since - is not true), and -

& is called an undecidable septence. =

This theorem together with Gddel’s second incompleteness
theorem (which roughly stated says that it is impossible to prove ;5
consistency of P.A within P4, where consistency means absence of
contradictions), effectively destroyed Hilbert’s plan to mechanize
mathematics. This plan, of course, grew out of attempts to over-

come paradoxes in the foundations of mathematics resulting from

Cantor’s theory of cardinals and the unrestricted use of power set ..
operations, and from the desire for a proof of consistency of P.A
by finitary means. A good discussion of these results can be found

in [34].

v : L = N is a coding of the wif in P.A, so that v is bijec-
tive, effectively computable and such that v~ is effectively com-
putable, where L denotes the set of all wif in P.A (Gddel’s original
coding was not actually bijective but simply injective, but it was

decidable whether or not a given natural number n belonged to

the image set of v). Thus, given a wif A in L, we can effectively .

find its unique code number or Gédel number y(A); conversely,
given a natural number n we can effectively find the unique wif
A = 47 1(n) from which it came-the effectiveness of these oper-
ations is crucial. There are-now two sets of interest here: one is
the set P of all provable sentences in P.A and its image y(P), and
the other is the set 7 of all true sentences in P.4 and its image

(7). What Theorem 3 says is that P C 7 and clearly this is °

iff v(P) C (7). The heart of the matter is that the set v(P)
is the image set of a computable function i.e. can be listed by
a machine (such a set is called recursively enumereble or usually

just r.e.) whilst the set v(7) is not listable by any machine; the

two sets therefore cannot be equal. Indeed, the set 7 or rather

+(T) is highly intractable and this fact is a deep issue with far

reaching consequences.

The basic reason for incompleteness in P.A is the following,
and it depends on concepts to do with computability. Suppose !
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These ideas concerning formal systems are of great impor-
tance in computing and in particular in connection with formal
verification of software, see [23, 42]. However, the direction we
want to pursue, in the next section, is the use of deduction as an
actual computational medium, rather than as a tool of verifica-
tion, and to investigate the use of fixed points in the corresponding
theory.

4. Formal systems and computational logic

“From hardware design to the development of new program-
ming languages and the construction of artificial intelligence
programs, Logic is the major mathematical tool. Logic will
perform the function in IT that calculus performs in other
areas of engineering. It will provide IT with a rigorous theo-
retical foundation,” see [2].
The desire to mechanize reasoning and the related notion of build-
ing robots can probably be traced back a very long way in history.
Certainly Descartes dreamt of a calculus with which one could per-
form reasoning by algebraic manipulation, a dream which was to
be fulfilled by George Boole in The Laws of Thought with respect
to propositional logic, leading to the concept of Boolean Algebra
and its great use in analysing logic circuits in the hands of Claude
Shannon. Perhaps, too, Blaise Pascal, Charles Babbage and Ada
Byron, Countess of Lovelace, were thinking beyond mere arith-
metical calculation when designing their calculating machines;
certainly Babbage and Byron appear to have encountered the
main concern of SE: proving that a program does what is intended.
Coming forward in time to the early years of this century, we
encounter Hilbert’s plan, mentioned earlier, to mechanize math-
ematics. As already noted, this plan came to a dead halt due to

" Theorem 3 and related results. Nevertheless, there is a positive

side to this provided by Theorem 2. Just because some formal sys-
tems such as PA contain some unprovable true statements does
not mean that reasoning suddenly becomes worthless. Perhaps we
can make do with the theorems or logical consequences of a theory
rather than deal with the larger set of all the statements true in
some particular interpretation, especially if we can automate the
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reasoning process itself. ;
Following the point just made, the landmark result came in
1965 with J. A. Robinson’s Unification Algorithm and his Unifica~ .

tion Theorern, see (24, 25]. Robinson showed that there is a single

rule of inference, called resolution, which is sound and complete in;
that Theorem 2 holds for formal systems using resclution as their;
sole rule of inference, and moreover resolution turns out to be easy ;'-:
to automate. To see how this works, it has first to be shown that.
any closed wif can be cast into a syntactically different but equiva- :
lent form called conjunctive normal form CNF (closed here means.,
that there are no free variables i.e. all variable symbols in the wif
are existentially or universally quantified; equivalent means that.

the new form is a logical consequence of the given wif and vice.
versa). We assume that this is so; as a matter of fact, not only -

can it be done but it can be done by an algorithm and hence is an
effective operation. A wif written in CNF takes the form of a uni-:
versally quantified conjunction V (C1 A Ca A ... ACly), where each.

C, is a clause, thus C; has the general form L VLi V...V LY,

wherein each L; is a literal, that is, either an atom A} (a proposi-,

tional formula) or a negated atom —A%; it is usual to understand

the universal quantifier ¥V to be present and to omit writing it

The resolution rule of inference can now be explained, at least
in its simplest form, as follows. Suppose given two clauses, the;
parent clauses, L} VILIv... L. and L2V LEv...VIZ the first o

which contains the literal L, say, and the second —L (the literals :

L and —L are said to clash). Reordering and letting C* and C*.
denote the disjunctions of the obvious respective remaining liter-:

als, we can write the two given clauses as C* V L and C? vV —L.

The resolution rule says that if we take these clauses as Input
then the Output is C* v C? (i.e. we simply “cancel” the clashing
literals L and ~L and disjoin what remains). In the symbolism o
a rule of inference, we have

C'vL
%y L
Cclv(?
This simple form is not adequate and a more general form &
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needed involving certain substitutions called most general uni-
fiers (mgus). In this more general form, clashing literals are still
cancelled, but after unification has brought them into syntactic
identity. Furthermore, Robinson’s algorithm for finding mgus can
be implemented with reasonable efficiency, giving the means of
feasibly constructing automated theorem provers. Such devices
have been extensively examined in the context of mathematics,
see [20], and a number of new results have been established in
various areas in addition to verifying old results {in classical anal-
ysis for example). The drawback, however, in using resolution is
that it involves an immense amount of searching for clashing lit-
erals and hence automated theorem provers using it run slowly in
comparison with modern procedural languages such as PASCAL
or C.

Interesting as these applications to mathematics are, they
ate a little peripheral to the main thrust of this work. Devel-
opments made by Colmerauer et al. in Marseilles, [10], Kowal-
ski and van Emden in Imperial College, [6, 39], and Warren in
Edinburgh and Manchester, [41], identified a significant fragment
of first order predicate logic. (the Horn clause subset)-relative to
which a restricted form of resolution (SLD-resolution) ran as fast
as conventional languages. Note that by grouping all positive
atoms in a clause to one end, and all negative ones to the other,
we can write an arbitrary clause in the form 4; VA, v...V
Ap V=B, v =By V...V =B, In turn this can be written as
A VA V.. . VA, By AB;A...AB,, where « denotes the
connective “material implication.” The relative slowness of reso-
lution can now be traced to the presence, in general, of more than
one atom in the “head” of this clause, that is, to m > 1, which
causes a combinatorial explosion in search. Restricting syntax to

- allow only the case m = 1 results in so called (definite} program

clauses of the type A + By, Bs,...,B,, where A and all the B;
are atoms and the commas in the “body” denote conjunction. It
also results in SLD-resolution running very fast. It is convenient
to abuse notation and allow n to be zero to indicate that the body
of a clause is empty, so that the clause in question is a unit clanse

‘A '+ or a “fact”. This is in contrast to the conditional statement
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represented by a clause whose body is not empty.

Thus, in this paradigm (logic programming), a program is
thought of as a finite set of axioms (each program clause being an
axiom) in a formal system whose only rule of inference is SLD- - .
resolution. Computation is thus (controlled) deduction. More- .

over, soundness and completeness were both established for such

systems and, in addition, it was shown that given any partial
recursive function, there is a logic program that computes it. z
Thus, logic programming systems have as much power as conven- :

tional procedural languages despite the restricted syntax. This

work led to the programming languages PROLOG and PARLOG
(a parallel implementation), see {4, 19] for theoretical foundations -
and [9] for programming practice. Whilst not especially suited for .

numerical computation, logic programming languages are ideal for :
work in deductive databases, Al, and natural language process-:

ing in which first order predicate logic is viewed as a knowledge

representation language. Current work which aims to incorpo- *
rate A-terms in clause bodies, and hence to amalgamate logic and -

functional programming styles, should result in increased flexi- =
bility. Here is an example of a PROLOG program (not quite in _
PROLOG syntax) which is a quick-sorting program intended to

sort lists of non-negative integers and has two built-in predicates
le and gr: :

gsort(nil, nil) « .

gsort(H.T, S) «+ part(H,T, P,Q),¢sort(P, P1),gsort(Q,Q1), ”
append(P1, H.Q1,5)

part(R, HT,H.X,Q) + le(H, R),part(R,T,X,Q)

part(R, HT, X, H.Q) + gr(H, R),part(R,T, X, Q)

part{ X, nil, nil, nil) +

append(nil, X, X) +

append(H.T, X, HY) + append(T, X,Y)

It should be observed that in addition to the operational seman--
tics and the fixed point semantics (or denotational semantics as.
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it is often termed) that exist for procedural programs, logic pro-
grams P have a third semantics, the declarative semantics. This
term simply refers to the model-theoretic meaning P has when
viewed as a first order theory, namely, the set of all logical con-
sequences of P. The completeness alluded to earlier, when prop-
erly formulated, says that the set Mp of those ground atoms (i.e.
ihose atoms containing no variable symbols) which are derivable
or provable from the clauses in P via SLD-resolution coincides
precisely with the set of ground atoms which are logical conse-
quences of P, that is, those ground atoms true in every model of
P. Unfortunately, this set Mp {which can be thought of as the
set of things which PP computes) is not easy to get hold of when
considered in these terms. It is at this point that the fixed point
semantics of P enters the picture, for it is a major result of the
theory, Theorem 4 below, that Mp coincides with the least fixed
point of an operator Tp which can be associated with P and is
analogous to the operator ® discussed in Example 1; moreover Tp
provides a relatively simple way of obtaining Mp. Again, we will
consider these issues by reference to a simple example as follows,

Exarmple 2 Consider the program P:
q(d) «
a(s(y)) « aly)
p(s(s(z))) + pla), q(z)

which does not compute anything significant but is manageable
and illustrates the main ideas. We start by observing that the
underlying first order language £ for this example contains just
the following: constant symbols a, b; variable symbols z,y; a unary
function symbol s; unary predicate symbols p,g. Let

Up = {s™(a),s"(b);m,n € N}

denote the set of all ground terms which can be formed using the
symbols s,a,b, where s” is informal shorthand for n occurrences
of s; Up is called the Herbrand universe for £. Similarly, let

Bp = {p(t),q(t'); t,t' € Up}




62 IMS Bulletin 37, 1996

denote the set of all ground atoms which can be formed using the
symbols p,q and ground terms from Up; Bp is called the Her-
brand base for £. There are canonical interpretations for £, called -
Herbrand interpretations, which can be constructed out of the ele- -
ments of £ as follows: the constant symbols e, b in £ are assigned
to themselves in Up; the mapping Up — Up defined by ¢ — s{t) of =
arity one is assigned to the unary function symbol s; since we are
working in classical two valued logic, we assign a unary relation |
I? on Bp (i.e. a subset of Bp) to the unary predicate symbol p -
and likewise a unary relation I? to ¢ to obtain the interpretation
IP U I, Since the assignment to constant symbols and function -
symbols is fixed, Herbrand interpretations I can be identified with
subsets I of Bp by: ground atom p(t) is true relative to I, written .-
I |= p(t), iff p(t) € I; ground atom g(t') is true relative to I, again |
written / |= q(t'), iff g(¢') € I. In this way, the set of all Herbrand
interpretations for £ can be identified with the power set P(Bp)
which we will henceforth write as Ip. The set Ip we will regard
as a complete lattice relative to the partial order of set inclusion -
whose bottom element is the empty set, and in which the infimum °;
and supremum of an arbitrary collection of elements (subsets of -
Bp) are the intersection and union respectively of the collection.
Tt is this complete lattice which is the domain of the operator Tp:
and is the usual domain on which fixed-point semantics is carried -
out for logic programs. Let us note therefore that, in general, this &

operator is defined by Tp : Ip — Ip where
Tp(I) =
{A € Bp; there is a ground instance A + B, Bz, ... , Ba
of a clause in P satisfyingl |E By A Bz A... A Br}

(a ground instance of a program clause is simply a clause con-
taining no variable symbols, so that elements of Up have been
assigned to each variable symbol). In practice, Tp(I) is obtained
by matching all the atoms in a given clause body with elements -
of I and collecting up corresponding clause heads. For example,

with
I= {p(a') ’ p(s(a)), Q(U‘)1 Q(s(a))a Q(b)}

in our present example, we get

Tp(1) = {p(s*(a)), p(s*(@)), p(s* (8)), a(s(a)), 9(s*(@)), a(b). a(s(B)) }-
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All the ideas presented in this example carry over completely
to the case of an arbitrary program P in which all clauses are
definite, a definite program. Now, a central fact emerges con-
cerning Tp, the immediate consequence operator to give it its
name, which is that Tp is lattice-continuous in the sense that
Tp(sup(Xa)) = sup(Tp(X,)) for every directed family (Xq) of
subsets of Ip, where sup(X,) denotes the supremum of (X, ); this
property of Tp is the analogue of recursiveness in the case of the
operator ® in Example 1. Once more, least fixed points of such
operators play a fundamental role and the facts in brief are as
follows. We inductively form the chain (1.} in Ip by: Iy = ¢ and
Int1 = Tp(ln), just as for Kleene'’s theorem, and take sup(fy),
which is often denoted T» T w. This time we apply an abstract
form of Kleene's first recursion theorem, due to Tarski, see [38] and
also [18]. We obtain that Tp 1 w is the least fixed point, Hp(Tp),
and the following theorem due to van Emden and Kowalski, see
(19, 39], shows the importance of this fixed point.

Theorem 4. For any definite logic program P, we have Mp =
Tptw=1p(Tp). &

Carrying out the construction described above in the case of - -

Example 2 shows that

MP = TP T W= {Q(b)>Q(s(b)): q(sz(b))a . ‘}9

as is readily checked, and the elements of this set are exactly those
ground atoms which P computes.

5. The topological viewpoint

Despite the fact that definite logic programs Tp can compute alt
computable functions, there is a need to extend syntax to make
them more expressive. This means that we want to allow negative
literals in the bodies of clauses (and hence arbitrary first order for-
mulae). Once that is done, however, Tp fails to be monctonic and
hence fails to be lattice-continuous (monotonicity is an easy con-
sequence of lattice continuity of Tp or of recursiveness in the case
of the operator ®) so that the standard approach discussed in §4
does not apply. A partial remedy is to consider syntactic devices
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such as stratification and local stratification, see [5]. Nevertheless,
the problem arises of finding fixed points of non-monotonic opera-
tors on I'p, and in this section we sketch methods being developed
by us in [31, 32, 33] to solve this problem using topological notions
and in particular quasi-metrics.

The following definition can be found in [27, 35].

Definition 3 Let X be a non-empty set. A guasi-metric on X
is a map from X x X to the non-negative real numbers including
+0c0o satisfying:

1. d(z,z) = 0;

2. d(z,y) < d(z,z) + d(z,9);

3. if d(z,y) =d(y,z) =0, then z =y.

A quasi-metric d is called an ultra-quasi-metric if it satisfies the
strong triangle inequality

2. d(z,y) < max{d(z, 2),d(z,y)}.

Notice that d(z,y) and d(y, z) are different in general. Quasi-
metrics have been used in program semantics (for procedural pro-
grams) to reconcile the two standard approaches (Scott domains
and metric spaces) to solving recursive domain equations. They
can be viewed as categories enriched over the unit interval [0, 1],
see [8], and this observation permits the development of many of
their basic properties following ideas of W. Lawvere.

Given a quasi-metric d on X, there is an associated metric d*
defined on X by d*(z,y) = max{d(z,y),d(y,z)}. One then says
that (X, d) is totally bounded if the metric space (X ,d*) is totally
bounded. Moreover, d induces a natural topology on X in which a
set O is called open if, for every z € O, some e-ball B(e, x) (where
B. = {y € X;d(z,y) < €}) is contained in O.

The two examples which follow are taken from [35].
Example 3 Let (D, <) be an arbitrary partially ordered set and
define d on D x D by ;

_J0 ifzx<y;
d(z,y) = { 1 otherwise.
Then d is an ultra-quasi-metric, called the discrete quasi-metric,
which induces the Alexandroff topology and moreover (D,d) is
totally bounded iff D is finite.
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Example 4 Let (D, <) be any Scott domain, let Bp denote the
set of compact elements of D and let v : Bp — N be a map (a
rank function) such that r~!(n) is a finite set for each n € N.
Define d on D x D by

d(z,y) = inf{2™";e < © = e < y holds for every e of rank < n}.

Then d is an ultra-quasi-metric which induces the Scott topology
of D and (D, d) is totally bounded.

Definition 4 A sequence () in the quasi-metric space (X,d) is
said to be forward Cauchy if, for each e > 0, there is a natural
number k such that d(z;, zm) < € whenever £ <! <m.

Definition 5 Let (z,) be a forward Cauchy sequence in a quasi-
metric space (X,d). A point z € X is a Limit of (z,), written z =
Lim z,, if, for every y € X, we have d(z,y) = limp 00 d(Tn,¥).
The space X is said to be complete if every forward Cauchy
sequence in X has a Limit.

The forward Cauchy property of the sequence (z,) implies
that the sequence d(z,,y) is itself Cauchy in the real line, so
that the definition just given is meaningful. Moreover, Limits of
forward Cauchy sequences are unique when they exist.

Definition 6 Let (X,d) be a quasi-metric space and suppose
f: X — X is a mapping.
1. f is non-expansive if, for all z,y € X, we have d(f(x), f(y)) <
d(.’l’:,y). '
2. f is coniractive if there exists a positive number ¢ < 1 such
that, for all z,y € X, we have d(f(z), f(y)) < c.d(z,y)-
3. f is Continuous if, for all forward Cauchy sequences (z,) and
z in X, we have Lim f(z,) = f(z) whenever Limz, = z.

The following theorem is due to Jan Rutten, [27, Theorem
3:7):

Theorem 5. Let (X,d) be a complete ultra-quasi-metric space
and suppose f : X =+ X is non-expansive.

1. If f is Continuous and there is an  in X with the property that
d(z, f(z)) = 0, then f has a fixed point which is the least fixed
point above z in the order <x defined by y <x z iff d(y,2) = 0.
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2. If f is Continuous and contractive, then f has a unique fixed
point. ™=@

Attempts to use the Banach contraction mapping theorem
in logic programming have been made with some success in [12],
and in [17] where problems arising out of attempts to formalize
common gense reasoning are considered. Nevertheless, it is our
claim that it is quasi-metrics that should be used instead, in con-
junction with theorems such as Theorem 5. This point of view is
substantiated by the following two observations: (i) The topology
underlying the declarative semantics of definite programs is the
Scott topology, see [32], which is not metrizable. This means that
it is impossible to recover the classical theory of §4 with metrics.
(ii) It is not usual for Tp to have unique fixed points (rather, the
set of such forms a complete lattice) and this means that in gen-
eral Tp is not a contraction relative to any metric. To finish this
paper, we therefore briefly indicate how quasi-metrics can be used
in logic programming.

First, consider an arbitrary definite logic program P and view
Ip as a-partially ordered set, under set inclusion, endowed with
the discrete quasi-metric defined in Example 3. The following
facts are established in [33]:

1) A sequence (I,) in Ip is forward Cauchy iff it is eventually
increasing.

2) (Ip,d) is complete.

3) The following are equivalent for any forward Cauchy sequence
(In) in (IP:d)

a) LimJI, =1.

b) I, — I in the Scott topology and 7 is the greatest limit (in the
Scott topology) of (I,).

4) If (I,,) is a forward Cauchy sequence in (Ip,d), then (Tp(I,))
ig also a forward Cauchy sequence.

5) Tp is Continuous relative to d.

6) T» is non-expansive relative to d.

Noting that the empty set ¢ satisfies d(¢, Te(¢)) = 0, we can
apply Rutten’s theorem and, on examining its proof, we conclude
that Tp has a fixed point equal to Lim TE(¢). This fixed point is,
by Observation 3 above, equal to gl(TR(¢)) as defined in [32] and
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this, in turn is equal to |JTE(¢), by [32, Proposition 8]. In this
way, we recover the classical least fixed point of Tp and Theorem
4 follows immediately from this. =

For our second and final application let P denote an arbi-
trary, not necessarily definite, program. This time we will think
of Ip as a Scott domain (i.e. a bounded-complete w-algebraic
cpo) under set inclusion whose compact elements are the finite
sets, the collection of which we will denote by Bp. We define a
level mapping for P to be a function | : Bp = IV, and we assume
that {~1(n) is a finite set for every n. Such mappings have found
application in several places in logic programming including uses
in defining stratification, in questions of termination of logic pro-
grams, and in treating completeness issues. Given a level mapping
[ we define the function r : Bp = N by r(f) = max4cr(I(A)), for
nonempty I, and set r(¢) = 0. We will call r the rank function
determined by I. Now let d denote the gquasi-metric defined as in
Example 4 so that (Ip,d) is complete and totally bounded, and
d induces the Scott topology on Ip. The central facts we need,
established in [33], concern the connection between quasi-metric
notions and corresponding ones in the Cantor topology on I (this
latter topology is denoted by @ in [32]) and are as follows:

1) For a sequence (I,) in Ip and I € Ip, the following statements
are equivalent.

a) I, — I in the topology Q.

b) (I,) is forward Cauchy, I, — I in the Scott topology and
I = gl(I,), the greatest limit of (I,,).

2) Let (I,) be a forward Cauchy sequence in (Ip,d). Then
LimI,=IiffI, = Iin Q.

3) If Tp is non-expansive relative to d, then it is continuous in the
topology (.

4) Tp is Continuous relative to d iff it is continuous in the topology

Q.

Once again it will be best to illustrate these ideas by consid-
ering them in relation to a simple example, as follows.
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Example 5 Let P be the program:
p(0) +

p(s(z)) + —p(z)

This program is perhaps “intended” to compute the even natural
numbers (p(z) can be interpreted to mean “z is even”, s can be
interpreted to be the successor function). This program is not
definite and is neither stratified nor locally stratified, so that the
standard approach does not apply. Define the level mapping I on
Bp by i(p(s™(0))) = n for each n. We note that in this case Tp is
not non-expansive for if we take

I = {p(0),p(s(0))}

and
I, = {p(0), p(s(0)), p(s*(0)) },
then
Tp(5) = {p(0),p(s*(0)), p(s*(0)), p(s°(0)), - . .}
and

Tp(L) = {p(0), p(s*(0)), p(s°(0)), .. .}.

Thus, we have d(I},I;) = 0 and yet d(Tp (1), Tp(l)) = 272,
Consider powers I, = T(®), the first few of which are as follows:
Ly = Bp, I = {p(0)}, Is = Bp \ {p(s(0))}, I« = {p(0),p(s*(0))},
Is = Bp \ {p(s(0)),p(s%(0))}, etc. Using [33, Proposition 7] we
obtain that d([,.I,11) takes value 0 if n is even and takes value
27"*1 if n is odd. This is enough to show that the sequence
(fn) is forward Cauchy and therefore converges to I, say, in Q.
By [32, Proposition 4] it is clear that (I,) converges in Q to the
set {p(0),p(s%(0)), p(s*(0)), ...} which therefore coincides with I.
Since Tp is continuous in @ by [32, Corollary 6], it follows that T
is a fixed point of Tp by a simple argument using the uniqueness
of limits in €. Thus, the set I of “even natural numbers” is a
model of P. In fact, it is not hard to see that I is the only fixed
point of Tp. ®
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Book Review

Groups 93
Galway,/ St Andrews

London Mathematical Society Lecture Note Series,
vols. 211 & 212

Ed. by C. M. Campbell, T. C. Hurley, E. F. Robertson,
S. J. Tobin & J. J. Ward

Cambridge University Press 1995
xii+304pp (vol. 1), xii+305pp (vol. 2)
TSBN 0-521-47749-2 (vol. 1), 0-521-47750-6 (vol. 2)

Reviewed by Rod Gow

The volumes under review contain selected papers from a confer-
ence on group theory held at University College Galway during the
period 1-14 August 1993. This conference was the continuation of
a series of conferences on group theory held at the University of St
Andrews in 1981, 1985 and 1989, with the next conference to be
held in Bath in 1997. There were 285 participants at the confer-
ence, with numerous principal lectures, invited lectures, research
talks and workshops on computational group theory to entertain
them.

It seems to the reviewer that large scale conferences devoted
to a rather broad theme are less common these days than once
they were. In group theory, conferences on groups of Lie type, rep-
resentation theory of algebraic and related finite groups, groups
and geometry, or computational group theory are dominant. This
probably reflects the fact that researchers’ interests are more nar-
rowly focused on their specialities and they may imagine that
there is a better chance of a pay-off in terms of a publication by
attending conferences offering a concentrated diet of specialized
material. Looking through the papers under review, I noticed
that many topics popular 25 years ago are no longer represented.
These include finite simple groups, ordinary character theory and

73
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permutation groups. This is predictable, given the success of the
the classification of finite simple groups, although a revisionist
school of mathematicians, devoted to improved and more con-
vincing proofs of theorems and constructions in these areas, has
come into existence.

I would always expect to find some novelties of an unexpected
nature among the contributed papers and, in this case, I was not
disappointed. Obviously, different people will respond to different
themes but I enjoyed finding out about the existence of a group G
that is a non-split extension of a free abelian group of rank 3 by
SL3(Z) which is not residually finite and for which the associated
2-cocycle has infinite order. The relevant paper is An army of
cohomology against residual finiteness by P. R. Hewitt (pp 305-
313). Another paper that interested me was An invitation to
computational group theory by J. Neubiiser. Neubiiser arranged
a workshop on computational group theory (CGT) and the use of
the GAP system during the second week of the conference and the
paper reflects his thoughts on CGT. He describes problems that
may be studied by using GAP, mentions some of the history and
triumphs of CGT, and finishes by expressing his concerns about
the future of CGT and the value in which it is held. Tt is clearly
annoying to find all the hard work put into creating CAYLEY
or GAP often ignored by researchers who take for granted the
existence of these CGT packages. The paper includes a substantial
bibliography.

Five main lecture courses, consisting of about five lectures
each, were given by J. L. Alperin, M. Broué, P. H. Kropholler,
A. Lubotzky and E. I. Zelmanov, and articles based on their lec-
tures are presented in the proceedings. The article by Lubotzky,
Counting finite index subgroups, contains a large amount of infor-
mation, and should make worthwhile reading for the enthusiast or
the enquiring novice. A memoir on subgroup growth, prepared by
Lubotzky as a background for his lectures, was made available by
the Mathematics Department in Galway. A paper by A. Shalev,
Some problems and results in the theory of pro-p groups, relates
well to Lubotzky’s paper, and also to that of Zelmanov (Lie ring
methods in the theory of nilpotent groups). Zelmanov's paper

=
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touches briefly on his solution to the restricted Burnside problem,
for which he was to receive a Field’s medal in 1994.

The editors of the proceedings have worked hard to obtain
a uniform format for the published papers. Often conference
proceedings consist only of photocopies of manuscripts, with the
end-products of various unpleasant word processing systems lying
discordantly side by side. This is not the case here. I did not
notice many glaring typos, although I did see the name Heisen-
berg rendered as Heizenberg twice. I think these proceedings are
something perhaps to be browsed at by interested parties, rather
than purchased outright. They are well produced and give some
idea of certain current interests in group theory, without really
touching on several of the leading research topics.

Rod Gow,
Department of Mathematics,
University College Dublin.
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