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The conference banquet was held in Goosers’ restaurant, in
Ballina, Co. Tipperary —the ‘other side’ of Killaloe. The LM.S.
sponsored a free bus service from the University to Killaloe and
back. An optional cruise on the Shannon and the southern tip of
Lough Derg was arranged for before dinner. As one may recall,
the remnant of Hurricane Iris drenched the country on Wednesday
6th September, but luckily the weather was warm and sunny just
in time for our cruise the following evening! Of those who didn’t
join in the cruise, some took a walking tour of the town of Killaloe,
with its historic cathedral ete.

The meeting was sponsored mostly from a variety of sources
within the University of Limerick. Bank of Ireland and Aer Rianta
(in honour of their 50th year at Shannon) also gave generous dona-
tions. The Department of Mathematics and Statistics provided
stationery, secretarial support and postage. The organizing com-
mittee would like to gratefully acknowledge these, and to thank all
the speakers and everyone who contributed to the success of the
September Meeting 1995.

Conference organizers:

Eugene Gath, Gordon Lessells, Stephen O’Brien.-
Department of Mathematics and Statistics,
University of Limerick.

SPACE-FILLING CURVES
AND RELATED FUNCTIONS

Stephen M. Buckley

In this paper, we shall investigate several questions related
to space-filling curves. We start with a question whose answer
has been known (although not widely known, it. would appear) for
rather a long time.

Question 1. Do there exist continuous functions f : [0,1] = R

- which take on each of uncountably many velues uncountably often?

The answer is “yes”; in fact the first component of any space-
filling curve (Peano curve) is such a function. A recent rather
simple example of such a curve can be found in [8]; for more
information on space-filling curves, the reader should consult {7].

Here we shall give two rather different methods of construct-
ing examples of functions answering our question. Some examnples
using the first construction have zero derivative almost every-
where, while the second construction always leads to nowhere-
differentiable examples. We use the notation f~!(y) to denote the
set of all pre-images of y.

We begin with the “digit coding” construction. The example
we give maps the unit interval onto itself and takes on all its values
uncountably frequently. First note that any function continuous on
a closed subset S of [0, 1] (with respect to the subspace topology)
can be extended to a function continuous on the whole interval
simply by filling in the omitted open intervals with continuous
interpolating functions (for instance we can “join up the dots” in
a linear fashion, and extend the function in a constant fashion at
an omitted end-segment). Thus it suffices to find a continuous
function f : S — [0,1] such that f~'(y) is uncountable for all
y €[0,1]
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Suppose k > 3 is an integer. Any z in [0, 1] can be written
in at least one base-k expansion r = 0.7:TaTaZaTsTg.... Let S
be the {closed)} set of all z € [0,1] whose even-subscripted digits
are all less than k — 1. If z € S, then f(z) is defined as the
number whose base-k expansion is obtained by removing the even-
subscripted digits of z, ie. f(z) = 0.z12325.... Clearly f~(y)
is uncountable (it has the cardinality of the continuum) for every
y € [0,1]. We are left with showing that f is continuous on 5.
This is also easy but, as we shall use similar arguments several
times later, let us give a little more detail this first time. Suppose
f(x) # f(y) and the first difference occurs at the m-th digit in
their base-k expansion, and so |f(z) — f(y)| < k~™%'. It follows
that the (2m — 1)-st base-k digit of  and y must differ, and the
fact that z,y € S now implies that |o — y| > k™™, Thus we are
done.

The function f constructed above does not have the bonus
property of having zero derivative almost everywhere, but a smalt
adjustment fixes this: one simply uses singnlar continuous func-
tions to interpolate on the omitted segments rather than linear
ones. For instance if (a,b) is one of the omitted intervals, define

Fla+tb—a) = Fla) + (FB) — f(@)h(t), forall0<t<l,

where A : [0,1] — [0,1] is any increasing continuous function such
that h(0) = 0, A(1) = 1, k'(z) = 0 for almost all z € (0,1) (a
basic example of such a function, due to Lebesgue, is described in
[4, p.113)).

A slight variant of the above construction leads to a Peano
curve. For example in two dimensions, we first define S’ to be
the (closed) set of all z € [0,1] all of whose digits are less than
k—1. Ifz € 8, then f1(z) and fa(x) are defined as the numbers
whose base-(k — 1) expansions are given by fi(z) = 0.x1z3%5 . . .
and fo(x) = 0.z2T4ze.... We extend fi; and fz to all of [0,1] as
before. It follows readily that F = (fi, f2} is continuous from [0, 1]
onto [0,1] % [0,1].

Our second construction uses lacunary functions. Examples
of this type are easy to write down, but proving that they have
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the required propertles requires some effort. A typical example is
fla) = 32720477 cos(100°z). More generally we have the follow-
ing result:

Theorem 1. Suppose f(z) = }:?';0 a; cos(b;x), wherea;, b; > 0,
and a;41 < a;/4, for all § > 0. Suppose further that there exists
an integer jo such that if j > jo then aj41b;41 > 6ma;b;. Then
f is continuous and takes on all values in the interior of its range
uncountably frequently.

Before proving Theorem 1, let us make a few remarks. First
of all, f is clearly uniformly continuous on R since a; < a;/4.
For the same reason, f takes on all values between —2a,/3 and
2a9/3, so Theorem 1 asserts that f takes on uncountably many
values uncountably frequently. The numbers b;.,/b; do not have
to be infegers, so f may not be periodic. '

Proof of Theorem 1. Let us write s,(z) = Z;‘L:o aj cosb;x, vy =
da;41/3, and L = 7/b;. We fix an arbitrary point ¢ in the interior

- of the range of f and let ng be chosen so large that ng > jo and

that f takes on all values in the interval [¢ — 2rp,, ¢ + 2rp,]. We
also assume ng is chosen so large that Z;;O a;b; € 2a,b, for all
n > ng; this is possible by the geometric growth assumption on
o,jbj. '
Given n > 0, we call an open interval I a level-n trap if the
values of 5, — e at the endpoints of I are of opposite sign and larger
than r, in absoclute value. Note that a level-n trap contains roots
of f —cand s, —cfor all m > n.

There exists a level-ng trap, call it (v, v), since we can solve
the equations f(u) = ¢ — 2rp, and f(») = ¢+ 2r,,. Writing
Inga = (u,v), we shall construct a nested binary tree of level-n
traps Ing, n > np, 1 < & <277, all contained in I, ;. In fact,
each [, ; will contain the closure of two disjoint traps I,,11 ; and
the length of I, ; will tend to 0 as » — oco. By continuity, any
nested sequence of intervals (I, x, )52 .. extracted from this tree
specifies a unique root of f -- ¢ (the single point which is in the
intersection of the I, x,’s). This root cannot be at the endpoint of
any of the containing traps (since they are compactly nested) and
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so different sequences of intervals lead to different roots. Thus
f ' (e) is uncountable as required.

Assume inductively that we have already defined I = I .
We must prove the existence of two disjoint level-(n + 1) traps
contained within it. Suppose z € I is a root of s, —¢. [sy| is
bounded by 2anb, and so, if dn = any1/(4anbn). then s, differs
from ¢ by less than a,4+1/2 on the interval [¢ — d, 7 + dy]. Since
I is a level-n trap, it must contain [z — dn, & + dy].

By hypothesis, 3L,,1 < 2d,,. Thus, [z — dn,z + d,) contains
subintervals of the form [mLy, (m+ 1) L,] for two consecutive val-
ues of m. Since a,+; cos(b,412) takes on the values xa,; at the
endpoints of such subintervals, it follows that the interiors of these
subintervals are the required level-(n + 1} traps, and so we are
done. ®

The constants 1/4 and 67 are only convenient values for the
proof and are far from sharp. If one examines the proof one sees
that the choice of the former constant affects the latter but, even if
we leave 1/4 unchanged, 67 can be replaced by, say, 187/7 if we
estimate things a little more carefully. In fact, since 187/7 is a little

" larger than 8, we can choose ng so large that |s/,| is less than sa,.by,
where s = 1/(1 — 7/18n) < 8/7. Thus if d,, = tanq1/(sa,by,) for
any { < 2/3, then s, differs from ¢ by less than ta,4; on the
interval [z — d,,, z + d,,|. Choosing ¢ close enough to 2/3, we have
t/s > 7/12, and s0 30,41 < 2d, as before.

Incidentally, it follows from the proof of Theorem 1 that any f
considered here exhibits the Weierstrass property of being nowhere
differentiable. In fact, the variation of f on I; = [z — L;,z + Lj]
is at least 2a;, ensuring that for some y € I,

[f(y) = f(@)/ly — 2] = a;bi/m — 00 (§ — o0).

This non-differentiability result is much less sharp, however, than
that of Hardy [3], who proved that 3} a™ cosb™nzx is a continuous
nowhere-differentiable function whenever 0 < a < 1, ab > 1. This
suggests the following question:

Question 2. Do all continuous nowhere-differentiable lacunary
series take on uncountably many values uncountably frequently?

= Space-filling curves 13

I have no answer to this question, but I would be rather
surprised if it were true; perhaps more likely to be true is the
conjecture that 3" a™cosb™nwx takes on a whole interval of values
uncountably frequently whenever §§ << a < 1, ab > 1 (since here we
have some “room to manoeuvre”).

Before going on to our next question, let us introduce some
terminology that we need here and later. Given 0 <t < 1, we say
f:[0,1] —» R" is t-Hélder continuous if, for some C > 0,

[flz) — Fw)| < Clz—yf', VYO<zy<L (1)

In the case t = 1, we instead say that [ is Lipschitz {continuous),
or C-Lipschitz if we wish to specify the constant.

Question 3. Do there emist Lipschitz functions f : [0,1] = R
which teke on each of uncountably many values uncountably often?

The answer to Question 3 is again “yes,” although examples

like the previous ones fail because f~1(z) must be finite almost
everywhere (see Theorem 2 below). Instead we first define f on
S < [0,1], the closed set of numbers whose decimal expansion
can be written using only the digits 0, 2, 7, and 9. For these
numbers, the decimal expansion of f(z) is calculated from that of
x by changing all 2’s to 0’s. and all 7’s to 9’s (and so f ' (z) is
uncountable for every o whose decimal expansion involves only 0's
and 9’s). We define f at all other values by linear interpolation. We
leave to the reader the task of verifying that the resulting function
f satisfies the Lipschitz condition |f(y) — f(&)|/ly —z| <2o0n S
{(and hence on [0, 1]).

For any exponent £ < 1, one can construct a t-Holder continu-
ous f : [0,1] = R which takes on all values in an interval uncount-
ably frequently. Our first digit-coding example f is an example
for t = 1/2. This construction is easily modified to handle any
t < 1. First let § to be the set of & € [0,1] for which the base-k
expansion has no digit equal to ¥ — 1 in any position whose sub-
script is divisible by -a fixed integer m > 1. We define f on S by
deleting all digits whose subscript is divisible by m, and extend
f using linear interpolation. Then f is t-Holder continuous for
t=(m—1)/m, and f~(z) is uncountable for all z € [0,1].
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The following theorem shows how different things are for
Lipschitz functions. This result is a special case! of a more
general result concerning Lipschitz maps between metric spaces
(see [2, Corollary 2.10.11]), but we give a short proof here for
completeness.

Proposition 2. If f : [0,1] - R is C-Lipschitz and N : R —
[0, 00] is the cardinality of f~*(z), then [ N(z)dz < C'. Con-
sequently, N{z) is finite almost everywhere.

Proof: For all § > 0, let A; be the collection of dyadic intervals
of the form [(k — 1)}277,k277), for 1 < k < 24, and {1 — 277 1].
Note that (A;)$2, is a nested sequence of partitions of [0, 1]. Let
N;(z) be the number of intervals f{I), I € A;, which contain .
Using the properties of A;, we see that for each z € R, N;{z)
is an increasing function of 7 which tends to N(z) as j = oc.
Furthermore, it is clear that ’

1
| m@a= ¥ rn1< Y ci=c,
0 Ted; IeA;
where |I| and | f{I)| denote the lengths of the intervals I and f(I).
An appeal to Lebesgue’s Monotone Convergence Theorem finishes
the proof. =
Question 4.  Does there emist a function f from [0,1] onto
U =10,1] x [0,1] which is t-Hdlder continuous for somet > 1/2°7
Question 4, like Question 3, is inspired by a shortcoming in
the earlier examples: our base-k Peano curve F' is {-Hélder con-
tinuous for ¢ = {log(k — 1))/(2log k), thus providing examples for
all t < 1/2. The following theorem answers Question 4.

Theorem 3. There exist Peano curves F : [0,1] — U which are

t-Hélder continuous for t = 1/2, but no such curve is {-Holder
continuous for t > 1/2.

Proof: We first examine the case t > 1/2. We define the Minkowski
dimension of a compact subset E of R™ by
M-dim E = sup{s > 0 : limsup H,(E,r) = oo},

r—0

! T would like to thank P. Hajtasz for pointing this out to me.
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where H.(E,r) is the «-dimensional Minkowski precontent,
defined as kr®, where k is the minimum number of balls of radius
r required to cover £. These concepts, and the related concept
of Hausdorff dimension, are discussed at greater length in [5] and
[1]. We shall need only the easily proven fact that any compact
E C R™ of positive measure has Minkowski dimension n. Also
noteworthy, although not needed by us, is the obvious fact that
the Minkowski dimension of a set is greater than or equal to its
Hausdorff dimension. '

Suppose that F' : [0,1] — U satisfies (1) for some ¢ > 1/2.
We claim that the Minkowski dimension of F([0,1]) is at most 1/t
(and hence the range of F cannot be all of U). To see this note
that the image of any interval [¢/k, (i -+ 1}/k] is contained in a ball
of radius C/k* about F(i/k). Thus Hy,(F([0,1]),C/k*) < CMY,
and our claim follows easily.

We next construct the required 1/2-Hélder continuous Peano

curve. The base-3 example I shall give is the same as Peano's

original example of a space-filling curve® {6]. The basic idea is
simple: we can “almost” get the solution by “chopping” z into its
base-k digits, allocating them one at a time to be the next base-k
digit of either fi(z) or fa(z). This certainly gives a space-filling
function but it is not 1/2-Hélder continuous {or even continuous)
because of the following phenomenon: if y = O.yyy2...yn ... in
base-k, where y,, # 0 and y, = 0 for all » > m, and if m is odd
(even) then the lefi- and right-hand limits for fo (respectively fi)
at y are different. The way out of this problem is fairly clear: we
allocate digits one at a time to fi(z) and fa{z) but introduce a
parity effect to compensate for these discontinuities. We describe
this process for base 3 where it is most easily described.

To avoid problems caused by non-unique expansions, we
define functions 4 : [0,1] — S and B : § — [0,1], where S is
the set of infinite sequences whose terms are restricted to the set
{0,1,2}. A maps numbers to (one of) their base-3 expansions,
and B maps (z, %32, Ts,...} to the number with base-3 expansion

2 T would like to thank the editor for sending me a copy of this
paper.
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0.x1z2%3 - --. We shall write values of these functions in the form
Ay and Bz. Whenever z € 5, we denote its i-th term by ;.

Let G = (g1,92) + S — 8§ xS be defined by G(z) = (u,v)
where

ko1
sy = { T if 3, Toi is even
- . k—1 .
2~ oy, I35 ®oiis odd,

- k .
v = { T2 if 307 | 221 is even
= g .
2— e, i 37, @21 is odd

We now define F(y) = (Bg(Ay), Bga(4y)) whenever y € [0,1].

Clearly F has range I7. We are left with showing that F'is 1/2-
Holder continuous. A simple case-by-case argument reveals that I’
is independent of the choice of A (for example, G{0,2,2,2,..) =
(1,0,0,0,...}). Whenever x € 5, G{z) = (u,v), let us call
Ui, v, U2, U, 3, Vs, . . . the standard order of the terms of G(x).

Suppose z,y € S and Bx < By. Let us assume that the
first term of (z) which differs from the corresponding digit of
G(y), using the standard order, is the m-th term of the go{y) (if
the first difference is in g (y), a similar argument applies). Then
|F{Bz} — F(By)| < 37™*1 If |Bz — By| > 37?™, we are done,
so we may assume |Bz — By| < 37%™. But then, if there is some
0 < g < 2msuch that #; = y; f { < § and z; # y;, we must
have z; +1 = y; and, whenever j < i < 2m, z; = 2 and y; = 0.
This forces the m-th digit of the second coordinates of F({Bz) and
F{By) to be equal, contrary to assumption. The only remaining
possibility is that z; = y; if ¢ < 2m and ya, = Zam + 1. In this
case, Bx < Bz < By, where z; = y; for i < 2Zm.and z; = 0 if
i>2m. i z # y and the j-th term is the first term where they
differ, then it is clear that

By—Bz>By-Bz>37, |Fly)-F(z)| <3792 (2

Next let z' be the sequence defined by z; = z; for ¢ < 2m and

z; =21l ¢ > 2m, so that Bz = Bz'. If 2’ # z and the k-th term is
the first term where they differ, then it is again clear that

By—Br>Bz-Bx>3"%  |Flz) F(z)| <317%2 (3

i
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Putting (2) and (3) together, we get the desired Holder continuity.
B

Our previous argument actually implies that there are no
Peano curves f : [0,1] — [0,1]", n > 2, which are ¢-Hdlder con-
tinuous for t > 1/n. The construction for ¢ = 1/2 also generalizes
to give an n-dimensional Peano curve which is 1/n-Hélder con-
tinuous in the higher dimensional seiting: again using a base-3
expansion, we “deal out” the digits one at a time to each of the n
coordinates, replacing each “0” by “2” and vice versa whenever the
sum of the digits previously dealt to the other coordinates is odd.
We leave the verification of 1/n-Hdlder continuity to the reader.

Questicn 5.  Does there erist o map G from the unit square
U =1[0,1] x [0,1] toe U such that the image of any non-trivial line
segment in U haes non-empty interior?

We give a couple of methods for constructing such a map
G. - The map A(z,y) = F(z), where F = (f,g) is the Peano

- curve defined earlier, has this property on all non-vertical lines.

Defining B: U — U by B(z,y) = ((z +v*)/2,y), G = Ao B has
the desired property (since if L C U is a non-trivial line segment,
the z-projection of B{L) is also a non-trivial line segment).

One might feel that the previous method is not completely
satisfactory since we have simply “hidden” the straight lines. Our
second method, has the advantage that it produces a function ¢
for which the image of GG o v has non-empty interior whenever
« is a non-trivial ¢! path in ¢/. First let Fy = (fr, g%} to be
our old base-k Peano curve F. Fy, is t-Holder continuous for ¢ =
(log(k — 1)}/{2log k) but not for any larger ¢; in fact, it is easily
seen that for any n, the image of any interval of length 1/k%"* under
F is contained in a square of length (k — 1)7"! and contains a
square of length (k — 1)~"~L.

We claim that G(z,y) = F;(z)+F;(y) is a function of the type
we require for any 3 < ¢ < j. We shall content ourselves here with
sketching the proof. Clearly images of vertical iine segments have
nen-empty interior. If «v is not a vertical line, then we need only
look in the vicinity of a single point (xg,yo) on ¥ where the tangent
line is non-vertical. In this case, one expects everything to work
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out since on any sufficiently small neighbourhood of v {dependent
on the slope of the tangent line), the variation in ¥; is much lar-
ger than the variation in ;. To make this idea rigorous, assume
G{zo,y0) = (up,vp). We solve the equation G(z,y) = (u,v) for
all (u,v) sufficiently near {ug,v0) by an iterative method. Having
found the approximate solution (zx,yr), we find (zr41, yr41) € 1,
a nearby point on the curve for which Fi(zr11) + Fi{ye) = (u,v).
With this hint, we leave the details to the reader.
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BERNSTEIN'S POLYNOMIAL INEQUALITIES
 AND FUNCTIONAL ANALYSIS

Lawrence A. Harris

1. Introduction

This expository article shows how classical inequalities for the
derivative of polynomials can be proved in real and complex Hil-
bert spaces using only elementary arguments from functional ana-
lysis. As we shall see, there is a surprising interconnection between

.an equality of norms for symmetric multilinear mappings due 1o

Banach and an inequality for the derivative of trigonometric poly-
nomials due to van der Corput and Schaake. We encounter little
extra difficulty in establishing our inequalities in several or infinite
dimensions. _

After giving the definitions of polynomials and derivatives in
normed linear spaces, we establish a lemma of Hormander, which
is an extension of a theorem of Laguerre to complex vector spaces.
This powerful lemma is the key to the proofs of the polynomial
inequalities we discuss; however, its proof is a simple argument
relying only on the fundamental theorem of algebra. Following
de Bruijn (who considered only the case of the complex plane),
we deduce a theorem which obtains discs inside the range of a
complex-valued polynomial on the closed unit ball of a complex
Hilbert space. Here the size of the disc is determined by the value
of the derivative.

An easy consequence is an extension to complex Hilbert
spaces of an estimate of Malik on the derivative of polynomials
whose roots lie outside a given disc. (Malik’s estimate generalized
a conjecture of Erdos that was proved by Lax.) Another con-
sequence is an extension 1o complex Hilbert spaces of the classical
complex form of Bernstein's inequality. Still another consequence
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