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out since on any sufficiently small neighbourhood of v {dependent
on the slope of the tangent line), the variation in ¥; is much lar-
ger than the variation in ;. To make this idea rigorous, assume
G{zo,y0) = (up,vp). We solve the equation G(z,y) = (u,v) for
all (u,v) sufficiently near {ug,v0) by an iterative method. Having
found the approximate solution (zx,yr), we find (zr41, yr41) € 1,
a nearby point on the curve for which Fi(zr11) + Fi{ye) = (u,v).
With this hint, we leave the details to the reader.
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BERNSTEIN'S POLYNOMIAL INEQUALITIES
 AND FUNCTIONAL ANALYSIS

Lawrence A. Harris

1. Introduction

This expository article shows how classical inequalities for the
derivative of polynomials can be proved in real and complex Hil-
bert spaces using only elementary arguments from functional ana-
lysis. As we shall see, there is a surprising interconnection between

.an equality of norms for symmetric multilinear mappings due 1o

Banach and an inequality for the derivative of trigonometric poly-
nomials due to van der Corput and Schaake. We encounter little
extra difficulty in establishing our inequalities in several or infinite
dimensions. _

After giving the definitions of polynomials and derivatives in
normed linear spaces, we establish a lemma of Hormander, which
is an extension of a theorem of Laguerre to complex vector spaces.
This powerful lemma is the key to the proofs of the polynomial
inequalities we discuss; however, its proof is a simple argument
relying only on the fundamental theorem of algebra. Following
de Bruijn (who considered only the case of the complex plane),
we deduce a theorem which obtains discs inside the range of a
complex-valued polynomial on the closed unit ball of a complex
Hilbert space. Here the size of the disc is determined by the value
of the derivative.

An easy consequence is an extension to complex Hilbert
spaces of an estimate of Malik on the derivative of polynomials
whose roots lie outside a given disc. (Malik’s estimate generalized
a conjecture of Erdos that was proved by Lax.) Another con-
sequence is an extension 1o complex Hilbert spaces of the classical
complex form of Bernstein's inequality. Still another consequence
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is an inequality for the derivative of a polynomial on a complex
Hilbert space whose real part has a known bound on the closed
unit ball. When the Hilbert space is the complex plane, this
inequality contains an inequality of Szegd and leads to an inequal-
ity of van der Corput and Schaake for trigonometrie polynormnials,
which is a strengthened form of the Bernstein inequality.

Using methods of van der Corput and Schaake, we deduce an
inequality for the derivative of homogeneous polynomials on real
Hilbert spaces that extends a result of O. D. Kellogg for R™. A
slight extension of a result of Banach is an immediate consequence.
Specifically, the norm of a continuous symmetric multilinear map-
ping is the same as the norm of the associated homogeneous poly-
nomial on any real Hilbert space. From this, we deduce an estimate
on the derivative of polynomials which satisfy an £?-growth con-
dition on real Hilbert spaces. Finally, we give an argument which
shows how to derive the inequality of van der Corput and Schaake
for trigonometric polynomials from the two dimensional case of
Banach’s resuit. '

A source for this approach to polynomial inequalities is [8].
2. Definitions and notation’

The reader who wishes may take all vector spaces below to be
finite dimensional so that the definition of polynomials is already
familiar. To give the general definition, let X and Y be any real
or complex normed linear spaces and let

F: Xx - XY

be a continuous symmetric m-linear mapping with respect to the
chosen scalar field, where m is a positive integer. Define

Flz) = F(z,...,z)

for z € X. We say that a mapping P : X — Y is a homogeneous
polynomial of degree m if P = F for some continuous symmetric
m-linear mapping F' as above. Define a mapping P: X = YV to
be a polynomial of degree < m if

P=FR+PF + -+ P,

Bernstein’s polynomial inequalities 2

where Py : X — Y is a homogeneous polynomial of degree k for
k =1, .., m and a constant function when k = 0. (Note that
a constant polynomial is not a homogeneous polynomial by our
definition unless it is the zero polynomial.)

This definition of polynomials agrees with the classical defin-
ition when X = R" and ¥ = R and when X = C? and Y = C.
In either case,

T
ki, .. ke
Plzy,...,zn) = E g Tky. ko L7 T,

k=0 ki1+-+kn=k

where k1, ..., k, are restricted to the non-negative integers and
the coefficients ay,. 3, are in the appropriate scalar field, i.e.,
V. As expected, with our definitions, if a polynomial P satisfies

P(tz) = t™P(z) for all z € X and ¢t € R, then P is a homogeneous

polynomial of degree m. When F is as above, for convenience we
will write F(ziy*) for F(z,...,%,¥,-..,y). Thus, the binomial
\_W W—J
;i k
theorem for F' can be written as

e

b =3 () Pem @

k=0

It is not difficult to show, [10, §26.2], that a weaker definition
suffices. Specifically, a continuous mapping P : X = Y is a
polynomial of degree < m if and only if

QX)) = L(P{x + A\y)}, A scalar

is a polynomial of degree < m (in the classical sense) for every
z,y € X and every £ € Y™, where Y* denotes the space of all
continuous linear functionals on Y.

Let £{X,Y) denote the space of all continuous linear map-
pings L : X — Y with the operator norm, i.e.

ILf = sup [iLz|.
<3
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If P is a mapping of a domain D iz X into ¥ and if z € D, we
say that an L € £{X,Y") is the Fréchet derivative of P at z if
1P +y) - Plz) — L{y)|

litn =0.
y—0 Iyl

We denote the Fréchet derivative of P at x by DP(x). Clearly

DP(s)y = P+ ty) 2)
di t=0 '
when DP(z) exists. If P is a polynomial of degree < m, then
DP(z) exists for all z € X and ¢ — DP(z) is a polynomiat
mapping of X into £{X, Y} of degree < m — 1. Indeed, it suffices
to show this for homogeneous polynomials ¥ of degree m and here
the Fréchet, differentiability of 7 follows easily from (1) with

DF(z)y = mF(a™ ), 3)

For example, if P(z) = (Pi(z},..., Pn(z)) is a polynomial
mapping of R™ into R™, then the matrix of DP(z) is the m x n
Jacobian matrix [0F;(x)/0z;]. The same formula also holds when
R is replaced by C except that 8F;(z)/0z; now denotes a complex
derivative. (The proof in both cases follows easily from (2) and the

chain rule.) See {10} and [7] for further discussion of polynomials
and Fréchet differentiability.

3. Polynomials on complex spaces

The lemma below is the key to the proofs of the polynomial inequal-
ities we wish to give. Let X be a complex normed linear space.
Recall that a function f: X x X — C is called a Hermitian form
on X if f(x,y) is linear in x for each y € X and f(z,y) = f(y,z)
forallz,y € X. For example, when X = C", the Hermitian forms
fon X are given by

f(ma y) = Z Z aijxirj: ,

i=1 j=1

where @;; = aj; for all 1 <14, <n.
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Lemma 1. {Hormander [11].) Put

A={ze X flz,z) 20,z #0}.
IFP:X - Cis a (non-constant) homogeneous polynomial with
P(z) #0 for all z ¢ A, then DP{z)y # 0 for all z,y € A.

Proof: By definition, P = F for some continuous symmetric m-
linear mapping F on X. If the lemma is false, there exist z,y €
A with DP()r = 0, so F(y™2) = 0 by (3). Then by the
binomial theorem (1), the coefficient of A™ ! in the polynomial
A = P(z + M\y) is 0. By the fundamental theorem of algebra,

Plz+Ay)=clA = M) (A=),

where ¢ # 0, and hence 3\ Ay = 0. None of the roots A is 0
since P{z) # 0. Then z + Agy # 0 since otherwise y = ar, where

a = —1/Ag, and this gives

Ply) = F(y™ (o)) = aF(y™ 'z) = 0.

Hence by hypothesis, f{z+Azy, z+Ary) < 0since P(z+Ay) =0.
This-inequality expands to

f(ﬂ;,.']j) + 2Re ’\kf(ys Q?) + “)\klzf(y:y) < Oy
so Re Ag f(y.z) < 0. Therefore,

0= Re

m m
(Z Ak)f(y:m):\ = ZRG A fly,z) <0,
k=1 k=1

the desired contradiction. =

Note that the above lemma holds for any complex vector space
and without any continuity assumptions if formula (3) is taken as
a definition. See [15] for further discussion of Hérmander’s results
and related references.

We now apply the above lemma to obtain an extension of a
theorem of de Bruijn, {5}, who considered the case X = C and
deduced the Erdos-Lax theorem, [13]. We carry his argument fur-
ther to obtain an extension {Corollary 4 below) of Malik’s general-
ization, [14], of the Erdés-Lax theorem. We also deduce an exten-
sion (Corollary 3 below) of an inequality of Szegd, [18], which we
apply to trigonometric polynomials in the next section.
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Theorem 2. Let X be a complex Hilbert space and let P : X —
C be a polynomial of degree < m. Define

S{z) =mP{z) — DP(2)z
forz € X and let

X ={reX: o] <1}
Then

DP(z)y + 5(z) € mP(X;)
for all z,y € X,.
Corollary 3. If [Re P(z)| <1 for all z € X, then

IDP)yl + Re S(z)| < m
for all z,y € X;.

Corollary 4. Suppose that r > 1. If |P(z)| < 1 for all z € X
and if P has no zeros in the closed-ball in X about (1 with radius
r, then

IDP(2)l} <

1+7r

forallz € X;.

Proofs: Qur approach to the proof of Theorem 2 is to add an
additional dimension to X and use the extra variable to make P

into a homogeneous polynomial. Let X' = X x C and write the

elements of X' as ordered pairs (z, A). Define a Hermitian form f
on X by '

f((:l', A): (%M)) = /\E_ (Iay)
and note that

A={{z. Ny e X" {zi < |Al, A#£0}.
Suppose ¢ € C with o € P(X;). Define

Q. 2)) = A™[a - P(z/)]
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for A # 0 and note that @ extends to ail of X'. Then @ : X' -~ Cis
a homogeneous polynomial of degree v (by the equivalent weaker
definition mentioned in the introduction} and Q({z,A}) # 0 for
all (z,2) € A. Hence by Lemma 1, DQ({z,1}){y, 1) # 0 for all
z,y € X;. Now by (2) and the rules of differentiation,

DO, )y, 1) = Qe + 1,1+ 1)
t=0

oo e(520)

= ma — [DP{x)y + 5(z)].

t=0

Thus DP(x)y + S(x) # me, which proves Thecrem 2.
To deduce Corollary 3, observe that

[Re[DP{z)y + S(z)]| < m

for all 2,y € X; by Theorem 2. Here y can be replaced by Ay
where X is a complex number with |A| = 1 and A can be chosen
g0 that the left-hand side of the inequality above is the required
expression.
To prove Corollary 4, note that by Theorem 2, for each z,y €
X1, the closed (possibly degenerate) disc with center S{x) and
radius | DP(x)y| is contained in the closed disc about 0 with radius
m. Hence
PPy +15()] < m. (4)

Define P,(x) = P(rz) and put S,(z) = mP,(r) — DF.(z)x. By
hypothesis and Theorem 2, for each z,y € X, the closed disc
with center S.(z} and radius |DP,(x)y| does not contain 0 so
|DP,.{x)y! < |Sy(z)|. Since DP,(z)y = rDP(rz)y, S;(x) = S(rz)
and r > 1, it follows that

rIDP(@)yl < IS(@)] (5)
for all z,y € X;. Combining (4) and (5), we have

1+ )| DP{z)y| < m,
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which gives Corollary 4. &

The extended Erdds-Lax theorem is the case r = 1 of Corol-
lary 4. Note that this follows immediately from Theorem 2 since
for z,y € Xj, the closed disc A with center S{z) and radius
|DP(x)y| is contained in the closed disc about 0 with radius m
but A does not contain the point . The largest possible diameter
of A is m and hence |DP(x)y} < m/2.

To state our extensions of Bernstein’s theorem, define the
norm of a polynomial P: X —» Y by

iP|| = sup{||P(z)| : =€ X1} (6)
and define the norm of a continuous m-linear mapping
F:Xx---xXY

by .
|F|| = sup{{| F (=1, .-, xm)|l : T1,-- -, Zm € X1}

Obviously, [|[F|| < ||F||. (If X is a complex normed linear space,
by the maximum principle, [10, Th. 3.18.4], the value of || P}| does
not change when the supremum in (6) is taken over only the unit
vectors in X.) Suppose Y is any complex normed linear space.

Theorem 5. If X is a complex Hilbert space and if P : X — Y
is a polynomial of degree < m, then |DP| < m||P||.

Corollary 6. If X is a complex Hilbert space and if F : X x

-x X =Y is a continuous symmetric m-linear mappmg, then
HFII = |\F;. '

The corollary above will be generalized later (Theorem 9) to
real Hilbert spaces. See [9] for inequalities between ||F|| and || 7|
for other spaces.

Proofs: Without loss of generality, we may assume that ||Pj| = 1.
We first apply linear functionals to reduce to the case where ¥ =
C. Specifically, let £ € Y* with ||£|| = 1 and define Q{x) = £{P(z))
for x € X. Then @ : X — C is a polynomial of degree < m
satisfying |Q(z)] < 1 for all z € X, and D@Q(z)y = £(DP(x}y).
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Let 2,y € X;. Then [£(DP{x)y)| < m by Corollary 3 and by the

* Hahn-Banach theorem, [10, Th. 2.7.4], we may choose £ so that

#{DP{z)y) = | DP(z)yl|. Hence |[DP(x)y| < mfor all z,y € X3
and Theorem 5 follows.

We deduce Corollary 6. from the theorem above by induction.
The equality is obviously true when m = 1. Suppose it is true for
m — 1. Then holding x,, fixed, we have that

[F(zs,. . zm)ll < sup{iF (™ am)ll + = € Xn}

for all z1,...,%m—1 € X3. Since Dﬁ(x):cm =mF(z™ 'x,,), by
Theorem 5, |F{z™ tz )i < || for all z,z, € X1. Therefore,
(IFl < ||F|l, as required. =

4. Polynomiais on real spaces

The results of this section depend on an inequality for trigonomet-
ric polynomials which we will deduce from our previous results.

- By definition, a trigonometric polynomial T'(8} of degree < m is

given by
T(8) = (ax cos kO + by sin k#), (7)
k=0
where the coefficients dg, cevy G and by, ..., by are complex

numbers. If all the coefficients are real numbers, we say that T'(#) is
a real trigonometric polynomial. Tt is not difficult to show using the
addition formulae for the sine and cosine functions that the product
of a trigonometric polynomial of degree < m with a trigonometric
polynomial of degree < n is a trigonometric polynomial of degree
< m +n. Hence any sum

Z Cik cos’ #sin® @, (])

j+k<m

where j and k are non-negative integers and each c¢;; is a real
number, is a real trigonometric polynomial of degree < m.
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TI_Leorem 7. {van der Corput and Schaake [6].) If T{8)} is a real
trigonometric polynomial of degree < m satisfying |T(8)] < 1 for
all real @, then

TO)? + m2T(6)? <m? (9}
for all real 8.

Corollary 8. (Bermstein [2, p.39].) If T(6)} is a trigonometric
polynomial of degree < m satisfying |T(8)| < 1 for all real 6, then
|TV(8)| < m for all real 8.

_ Note that (9) holds with equality for all real ¢ when 7'(8) =
cosmf and when T'(#) = sin mf. Bernstein’s original statement of
Corollary 8 had the bound of 2m in place of m. (See {17, p.569]
for a discussion of priorities.)

Proofs: Our method of proof is to express T(8) as the real part of
a polynomial on the unit circle and apply Corollary 3 in the case
X = C. Let T be given by (7) and define the conjugate T' of T’ by

T(6) = Z(_bk cos k8 + ay, sin k@).
k=0

Define a polynomial P: C — C by

P{z) = Z crz”,
k=0 .
where ¢, = ay — by for k=0,...,m. Then
P(e) =T(6) +iT(8) (10)

for all real §. By hypothesis and the maximum principle for
harmonic functions, |ReP(z)] < 1 for all |z} < 1 and hence
|P'(=)| + \ReS{_z)i < m for all |z| <1 by Corollary 3.

Let z = ¢, Differentiating (10} with respect to #, we see
that izP'(z) = T"(#) +47"(6) and herice Re S(z) = mT(§) — T"(8).
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Now if £, and t, are any real numbers with #] + £ = 1, then by
the Cauchy-Schwarz inequality,

T ()41 + mT()ta] = |T'(0)ty + T'(8)t2 + Re S(2)t2]
< AT ()t + T'(0)ta] + |Re S(2)]

< \JT'(0)% + T(8)* + Re S(2)|

= |P'(z)| + |[Re 5{z)} < m.

The maximum of the left-hand side of the above is

r=/T"(#)2 + m2T(8)?

and it is attained when & = 77(8)/r and ¢, = mT(8)/r if r # 0.
Thus (9) holds.

One can deduce Corollary 8 easily by letiing A be a com-
plex number with |A| = 1 and applying Theorem 7 to S(8) =
Re[AT(f)]. &

Let ¥ be any real normed linear space.

Theorem 9. (Banach [1].) If X is a real Hilbert space and if
F: X x-xX =Y is a continuous symmetric m-linear mapping,
then ||[F]| = [|F[.

Lemma 10. If P : X = Y is a homogeneous polynomial of degree
m, then [DP|| < mlP].

Note that Lemma 10 is an analogue of Theorem 5 for the case
of real scalars. It was proved for the case X = R™ by Kellogg, [12].
See [3, p.62] for a direct proof of Theorem 9 using only Hilbert
space technigues.
Proofs: To prove the lemma, we may suppose that |[P|| = 1. Asin
the proof of Theorem 5, we may apply linear functionals to reduce
to the case Y = R. Let z and y be unit vectors in X and let
{z,w} be an orthonormal basis for the space spanned by x and y.
Then y = t;z + tow, where ¢ + t3 = 1. Define

T(8) = P({cos8)z + (sinf)w)
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and note that T'(4) is a real trigonometric polynomial of degree
< m since it is of the form (8) by the binomial theorem (1). Clearly
T(0) = P(z) and T'(0) = DP(z)w. By (3), we have DP{z)r =
m.P(z), and hence

DP(z)y = ti DP(z)x + to DP(x)w = tymT(0) + t2T7(0).

Since | P|| = 1, it follows that |T(#)| < 1 for all real  and hence
IDP{z)y)| < m by the Cauchy-Schwarz inequality and (9). In
fact, this inequality holds for all z,y € X3 since these vectors can
be written as scalar multiples of unit vectors.

Theorem 9 follows easily from the lemma above by induction
as in the proof of Corollary 6. B

The case X = R of our next theorem is a sharpening given
in [6! of a theorem of Bernstein.

Theorem 11. If X is a real Hilbert space and if P: X - R isa
polynomial of degree < m satisfying

1P(z)]* < (L+ [l=)*)™
for all x € X, then
[DP(@)|? + S(2)* <m*(1 + ||z|*)™

forallz e X.

Proof: Our approach is similar to that of the proof of Theorem 2.
Let X' = X x R and note that X’ is a real Hilbert space in the
norm [[{z,)|| = (||z]|* +¢*}!/2. Define a homogeneous polynomial
Q: X" = R of degree m by Q({z,t)) = t"P(z/t) for t # 0. By
hypothesis,

@t r < it (1+]5) = il

go |[Qfl < 1. By a differentiation as in the proof of Theorem 2,

DQ({z,1)){y, ) = DP(a)y +tS(x).
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Hence by Lemma. 10,
|DP()y + tS(e)| < ml(z, L™, .

By replacing y by ry in the above, where y € X, and maximizing
the left-hand side over all r and ¢ satisfying »? + % = 1, we obtain

m—=1
2

VIDP @y + S(z)? < m{1'+ ||z||*)

for all y € X, and Theorem 11 follows. &

We will show that Theorem 7 can be derived from the preced-
ing theorem using only the case X = R. Thus any of the results of
this section can be derived from any of the others (except Coral-
lary 8) by arguments given here.

Suppose T(6) is a real trigonometric polynomial of degree
< m satisfying |T(6)| < 1 for all real §. It suffices to prove (9) for
the case # = 0 since this case can be applied to the trigonometric
polynomial S(¢) = T(6 + ) for fixed 8. Let P be the polynomial
defined in the proof of Theorem 7 and define

Q1) = (1+*)™Re P(2(1)),
where z(t) = (1-+it)? /{1+#%). Then Q(1) is a polynomial of degree
<2monR. Ift = tan#, then z(#) = €2 so Q(t) = (1+£2)™T(26)
by (10}. Hence, |Q(¢}| < (14 ¢*)™ for all t € R and therefore
Q'(0)? + [2mQ(0))* < (2m)*

by Theorem 11. Clearly @Q(0) = T(0) and by differentiating

" Q(tan#d) at § = 0, we obtain Q'(0) = 27'(0). Thus (9) holds at

f = 0, proving Theorem 7.

Berustein theorems for arbitrary normed linear spaces are
given in [8] and [16]. In fact, an elementary argument is given in
[16] to show that Markov’s theorem for the first derivative holds in
any normed linear space. For a discussion of connections between
Bernstein’s inequality for entire functions and functional analysis,
see [4].
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