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NOTES ON APPLYING
FOR L.M.5. MEMBERSHIP

. The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member 1R £50.00
Ordinary member 1R£L15.00
Student member 1R£6.00
IM.T.A. reciprocity member IR£L5.00

The subscription fees listed above should be paid in lrish
pounds (puint) by means of a cheque drawn on a bank in
the Irish Republic, a Furocheque, or an international money-
order.

. The subscription fee for ordinary membership can also be paid

in a currency other than Irish pounds using a cheque drawn
on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US5$25.00.

If paid in sterling then the subscription fee is £15.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$25.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using

the form supplied by the Society.

The subscription fee for reciprocity membership by members
of the American Mathematical Society is US$10.00.
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Any ordinary member who has reached the age of 65 years and
has been a fully paid up member for the previcus five years
may pay at the siudent membership rate of subscription.

Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical

Society. If a Eurocheque is used then the card number should
be written on the hack of the cheque.

. Any application for membership must be presented to the

Committee of the I.M.S. before it can be accepted. This Com-
mittee meets twice each year.

Please send the completed application form with one year’s
subscription fee to

The Treasurer, I.M.S5.
Department of Math. Physics
University College, Dublin
Ireland
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
21st December 1995

The Irish Mathematical Society held an Ordinary Meeting at
12.15pm on Thursday 21st December 1995 in the Dublin Insti-
tute for Advanced Studies, 10 Burlington Road. There were 17
members present. The President, D. Hurley was in the chair.
Apologies were received from P. Mellon (Secretary).

1. The minutes of the meeting of 11th -April 1995 were approved
and signed. '

2. Matters arising

An amount of 120ECU has been paid to the E.M.S. towards the
LM.S.’s subscription. The reason for this reduced subscription was
explained in a letter by the Treasurer to the E.M.S. committee,
sent in October 1995. No reply has been received to date. E.M.S.
individual membership is available for £12.

The Chair thanked the organizers of the 1995 September meeting
at the University of Limerick: S. O’Brien, E. Gath and G. Lessells.
The next invited mathematics education talk to be organized by
the LM.S. will be arranged for the morning before the start of the
D.IA.S. Christmas Symposium in 1996. It was reported that M.
Tuite of UCG had been co-opted on to the committee.

3, Treasurer’s business

The Treasurer reported that the IM.S. had a surplus of £7.89 in
the year 1995. There are at present 196 members in the I.M.S.
There are 38 A.M.S. members and 5 institutional members. 32
members are in arrears. Local representatives will be approached
to follow up on these. The annual fee will be £15, as from st
January, 1996. The Treasurer will circulate a standing order form
to all members, so that the new rate may be introduced. Tt was
agreed that members may pay membership at any time for up to
five years in advance.
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The Treasurer, J. Pulé, proposed that any ordinary member, who
has reached the age of 65 years or older, and has been an I.M.S.
member for the previous five years, will then, and in all subsequent
years, be eligible for the student membership rate. The motion,
which was seconded by M. Tuite, was passed.

4. September Meeting 1996

The September Meeting 1996 will take place at the Queen’s Uni-
versity, Belfast on Monday and Tuesday, 2nd and 3rd September,
starting at 1lam. A. Wickstead announced that the organiza-
tion of the meeting is well underway. Some funding has already
been raised, accommodation booked and tentative plans made
for the banquet. He requested suggestions for speakers, and in
particular anyone visiting the island at that time, who would
not normally reside here. Ile may be reached by e-mail at
a.wickstead@qub.ac.uk. The Chair urged IM.S. members to
make a special effort to attend this meeting.

5. Elections

It was noted that P. Mellon (Secretary), J. Pulé (Treasurer), E.
Gath, R. Gow and R. Timoney have reached the end of their two-
year terms (J. Pulé having taken up the position vacated by M.
Van Dyck).

An election took place to fill the five vacant commiitee positions.
The nominations were as follows:

Position Nominee Proposer Seconder

Secretary | P. Mellon 7 D. Simms D. O Mathtina

Treasurer | J. Pulé t T. Murphy R. Timoney

Ordinary | A. Wickstead | E. Gath A, Woad

Members E. Gath 1t R. Timoney | D. Hurley
R. Gow t G. Lessells T. Laffey

&} Minutes 3

Since there was only one candidate for each position all five nom-
inees were elected. Each t denotes a previous term of office. Tt
was noted that D. Hurley (President}, C. Nash (Vice-President),
M. Clancy, B. Goldsmith, K. Hutchinson, G. Lessells and M. Tuite
each has one more year remaining in their current term of office.

6. Any other business

R. Timoney expressed concern about the proposed discontinu-
ation of the graduate program in Mathematics at the University
of Rochester (New York). He proposed that the I.M.S. should
write letters the President, Provost, Vice-Provost and Chairman
of the Board of University of Rochester to protest about this. A.
Wood proposed an amendment (seconded by M. Stynes) to the
letter drafted by R. Timoney. A vote was taken, resulting in 7 in
favour, 7 opposed and 3 abstentions. R. Timaoney then accepted
the amendment and it was agreed that the amended form of the
letter should be sent.

J. Pulé suggested that the L.M.S. establish a prize, such as a per-
petual trophy, for the winner of the Irish/International Mathem-
atical Olympiad contest(s). He noted that an annual prize, such
as medals, might be too costly for the Society. Some concern was
expressed about how this prize could affect the team aspect of
the international contest. T. Laffey, who is an LM.O. organizer,
noted that the publicity associated with the prize-giving ceremony
could be beneficial in terms of raising commercial sponsorship. It
was agreed that J. Pulé, T. Laffey and G. Lessells will consider the
various possibilities and report back to the next Ordinary Meeting
of the I.M.S.

The President reported that formal contact had recently taken
place with the Irish Mathematics Teachers’ Association. He pro-
posed that, with the IM.T.A., the I.M.S. should sponsor and
organize a lecture for transition (4th) year secondary school stu-
dents at vartous venues around the country. This would involve
two half-hour talks by people who could explain the uses of math-
ematics in industry efc.

R. Timoney proposed the formation of a World-Wide Web home-
page for the I.M.S. There was some discussion about the merits
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of using this to provide an electronic form of the Bulletin (e.g. as
a postscript file). Concern was expressed about the impact this
could have on membership. It was agreed that R. Timoney will
initiate the process of establishing a home-page. The Mathematics
Departments of the various institutions in Ireland will be requested
to add a pointer to the ILM.S. page in their own home-pages.

The meeting closed at 1.20pm.

Fugene Gath
University of Limerick.

THE LM.S. SEPTEMBER MEETING 1995
Fugene Gath

The eighth September meeting of the Irish Mathematical Society
took place on Tth and &th September 1995 on the University of
Limerick campus. The lectures were held in the new Foundation
Building, in a theatre adjacent to the University Concert Hall.
The attendance at the meeting was approximately 60, of whom 35

" travelled from outside of Limerick. Visitors were accommodated

in the Plassey Village, adjacent to the campus.

The meeting was opened by Dr Edward Walsh, President of
the University of Limerick. He talked briefly about the applic-
ability of mathematics, embellished with an anecdote about his
experiences of learning trigonometry. One of the guest speakers,
Prof. Chris Budd from the University of Bath gave a lecture on
impact oscillators, illustrating a model with a new type of bifure-
ation process, which has applications to the safety of fuel rods in
nuclear reactors. Dr Andrew Fowler of Oxford University spoke
on the dynamics of ice sheets, including an investigation of the
effect of the melting of the ice caps during the last Ice Age. The
standard of the talks was excellent and a wide variety of top-
ics was covered: algebra, analysis, numerical analysis, fluid and
solid mechanics, differential equations, theoretical computer sci-
ence, dynamical systems, differential geometry, operator theory,
mathematics education etc. Three speakers travelled from Bri-
tain and one from Northern Ireland. Serendipitously, there was,
concurrent with the LM.S. meeting, a Z Users’ Meeting also tak-
ing place in the Foundation Building. One of their speakers Prof.
David Gries, head of the Department of Computer Science at Cor-
nell University, gave a short talk at the L. M.S. meeting.

5
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The full program was:

Thursday 7th September, 1995

Dr E. Walsh (President, University of Limerick]
Welcoming address

Dr D. Hurley (IMS President)
Opening Remarks

Dr 8. O'Brien (University of Limerick)
Industrial coating flows

Prof. C. Budd (University of Bath)
" Grozing bifurcations in impact oscillators

Prof. M. Hayes (University College Dublin}
Directional ellipse method for solution
of partial differential equations

Prof. T. Laffey (University Coilege Dublin)
Some combinatorial properties of matrices
with nonnegetive entries

Prof. D. Gries (Cornell University)

students using the calculational approach to logic

The consequences of teaching proof to mathematics

Dr C. H. Chu (Goldsmiths’ College, London)
Ezponential functions

IMS Conference Report

Friday 8th September, 1995

Prof. John O'Donoghue {University of Limerick)
The mathematics of numeracy

Dr M. Mac an Airchinnigh (Trinity College Dublin)
Applied constructive mathematics in computing—
monoids and their morphisms

Dr D. Hurley (University College Cork)
Symmetric Attractors

Dr A. Fowler (Oxford University)
Large scale oscillotions in pleistocene ice sheets

Dr M. Stynes {University College Cork)
Efficient solution of convection—diffusion problems
using PLTMG

Prof. J. Miller {Trinity College Dublin)
Demonstration of Mathematica package for polynomial
root magnitude determination

Prof. S. Sen (Trinity College Dublin)
Abelion sandpiles

Prof. A. Wickstead (Queen’s University Belfast)
When do positive operators span the bounded ones?

Dr A. Hegarty (University of Limerick)

- Shishkin meshes for the numerical solution

of convection—diffusion problems

Dr D. Wraith {University of Notre Dame)
Exotic spheres with positive Ricci curvature

Prof. F. Hodnett (University of Limerick)
Closing remarks
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The conference banquet was held in Goosers’ restaurant, in
Ballina, Co. Tipperary —the ‘other side’ of Killaloe. The LM.S.
sponsored a free bus service from the University to Killaloe and
back. An optional cruise on the Shannon and the southern tip of
Lough Derg was arranged for before dinner. As one may recall,
the remnant of Hurricane Iris drenched the country on Wednesday
6th September, but luckily the weather was warm and sunny just
in time for our cruise the following evening! Of those who didn’t
join in the cruise, some took a walking tour of the town of Killaloe,
with its historic cathedral ete.

The meeting was sponsored mostly from a variety of sources
within the University of Limerick. Bank of Ireland and Aer Rianta
(in honour of their 50th year at Shannon) also gave generous dona-
tions. The Department of Mathematics and Statistics provided
stationery, secretarial support and postage. The organizing com-
mittee would like to gratefully acknowledge these, and to thank all
the speakers and everyone who contributed to the success of the
September Meeting 1995.

Conference organizers:

Eugene Gath, Gordon Lessells, Stephen O’Brien.-
Department of Mathematics and Statistics,
University of Limerick.

SPACE-FILLING CURVES
AND RELATED FUNCTIONS

Stephen M. Buckley

In this paper, we shall investigate several questions related
to space-filling curves. We start with a question whose answer
has been known (although not widely known, it. would appear) for
rather a long time.

Question 1. Do there exist continuous functions f : [0,1] = R

- which take on each of uncountably many velues uncountably often?

The answer is “yes”; in fact the first component of any space-
filling curve (Peano curve) is such a function. A recent rather
simple example of such a curve can be found in [8]; for more
information on space-filling curves, the reader should consult {7].

Here we shall give two rather different methods of construct-
ing examples of functions answering our question. Some examnples
using the first construction have zero derivative almost every-
where, while the second construction always leads to nowhere-
differentiable examples. We use the notation f~!(y) to denote the
set of all pre-images of y.

We begin with the “digit coding” construction. The example
we give maps the unit interval onto itself and takes on all its values
uncountably frequently. First note that any function continuous on
a closed subset S of [0, 1] (with respect to the subspace topology)
can be extended to a function continuous on the whole interval
simply by filling in the omitted open intervals with continuous
interpolating functions (for instance we can “join up the dots” in
a linear fashion, and extend the function in a constant fashion at
an omitted end-segment). Thus it suffices to find a continuous
function f : S — [0,1] such that f~'(y) is uncountable for all
y €[0,1]




10 IMS Bulletin 36, 1996 i

Suppose k > 3 is an integer. Any z in [0, 1] can be written
in at least one base-k expansion r = 0.7:TaTaZaTsTg.... Let S
be the {closed)} set of all z € [0,1] whose even-subscripted digits
are all less than k — 1. If z € S, then f(z) is defined as the
number whose base-k expansion is obtained by removing the even-
subscripted digits of z, ie. f(z) = 0.z12325.... Clearly f~(y)
is uncountable (it has the cardinality of the continuum) for every
y € [0,1]. We are left with showing that f is continuous on 5.
This is also easy but, as we shall use similar arguments several
times later, let us give a little more detail this first time. Suppose
f(x) # f(y) and the first difference occurs at the m-th digit in
their base-k expansion, and so |f(z) — f(y)| < k~™%'. It follows
that the (2m — 1)-st base-k digit of  and y must differ, and the
fact that z,y € S now implies that |o — y| > k™™, Thus we are
done.

The function f constructed above does not have the bonus
property of having zero derivative almost everywhere, but a smalt
adjustment fixes this: one simply uses singnlar continuous func-
tions to interpolate on the omitted segments rather than linear
ones. For instance if (a,b) is one of the omitted intervals, define

Fla+tb—a) = Fla) + (FB) — f(@)h(t), forall0<t<l,

where A : [0,1] — [0,1] is any increasing continuous function such
that h(0) = 0, A(1) = 1, k'(z) = 0 for almost all z € (0,1) (a
basic example of such a function, due to Lebesgue, is described in
[4, p.113)).

A slight variant of the above construction leads to a Peano
curve. For example in two dimensions, we first define S’ to be
the (closed) set of all z € [0,1] all of whose digits are less than
k—1. Ifz € 8, then f1(z) and fa(x) are defined as the numbers
whose base-(k — 1) expansions are given by fi(z) = 0.x1z3%5 . . .
and fo(x) = 0.z2T4ze.... We extend fi; and fz to all of [0,1] as
before. It follows readily that F = (fi, f2} is continuous from [0, 1]
onto [0,1] % [0,1].

Our second construction uses lacunary functions. Examples
of this type are easy to write down, but proving that they have

Space-filling curves 11

the required propertles requires some effort. A typical example is
fla) = 32720477 cos(100°z). More generally we have the follow-
ing result:

Theorem 1. Suppose f(z) = }:?';0 a; cos(b;x), wherea;, b; > 0,
and a;41 < a;/4, for all § > 0. Suppose further that there exists
an integer jo such that if j > jo then aj41b;41 > 6ma;b;. Then
f is continuous and takes on all values in the interior of its range
uncountably frequently.

Before proving Theorem 1, let us make a few remarks. First
of all, f is clearly uniformly continuous on R since a; < a;/4.
For the same reason, f takes on all values between —2a,/3 and
2a9/3, so Theorem 1 asserts that f takes on uncountably many
values uncountably frequently. The numbers b;.,/b; do not have
to be infegers, so f may not be periodic. '

Proof of Theorem 1. Let us write s,(z) = Z;‘L:o aj cosb;x, vy =
da;41/3, and L = 7/b;. We fix an arbitrary point ¢ in the interior

- of the range of f and let ng be chosen so large that ng > jo and

that f takes on all values in the interval [¢ — 2rp,, ¢ + 2rp,]. We
also assume ng is chosen so large that Z;;O a;b; € 2a,b, for all
n > ng; this is possible by the geometric growth assumption on
o,jbj. '
Given n > 0, we call an open interval I a level-n trap if the
values of 5, — e at the endpoints of I are of opposite sign and larger
than r, in absoclute value. Note that a level-n trap contains roots
of f —cand s, —cfor all m > n.

There exists a level-ng trap, call it (v, v), since we can solve
the equations f(u) = ¢ — 2rp, and f(») = ¢+ 2r,,. Writing
Inga = (u,v), we shall construct a nested binary tree of level-n
traps Ing, n > np, 1 < & <277, all contained in I, ;. In fact,
each [, ; will contain the closure of two disjoint traps I,,11 ; and
the length of I, ; will tend to 0 as » — oco. By continuity, any
nested sequence of intervals (I, x, )52 .. extracted from this tree
specifies a unique root of f -- ¢ (the single point which is in the
intersection of the I, x,’s). This root cannot be at the endpoint of
any of the containing traps (since they are compactly nested) and
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so different sequences of intervals lead to different roots. Thus
f ' (e) is uncountable as required.

Assume inductively that we have already defined I = I .
We must prove the existence of two disjoint level-(n + 1) traps
contained within it. Suppose z € I is a root of s, —¢. [sy| is
bounded by 2anb, and so, if dn = any1/(4anbn). then s, differs
from ¢ by less than a,4+1/2 on the interval [¢ — d, 7 + dy]. Since
I is a level-n trap, it must contain [z — dn, & + dy].

By hypothesis, 3L,,1 < 2d,,. Thus, [z — dn,z + d,) contains
subintervals of the form [mLy, (m+ 1) L,] for two consecutive val-
ues of m. Since a,+; cos(b,412) takes on the values xa,; at the
endpoints of such subintervals, it follows that the interiors of these
subintervals are the required level-(n + 1} traps, and so we are
done. ®

The constants 1/4 and 67 are only convenient values for the
proof and are far from sharp. If one examines the proof one sees
that the choice of the former constant affects the latter but, even if
we leave 1/4 unchanged, 67 can be replaced by, say, 187/7 if we
estimate things a little more carefully. In fact, since 187/7 is a little

" larger than 8, we can choose ng so large that |s/,| is less than sa,.by,
where s = 1/(1 — 7/18n) < 8/7. Thus if d,, = tanq1/(sa,by,) for
any { < 2/3, then s, differs from ¢ by less than ta,4; on the
interval [z — d,,, z + d,,|. Choosing ¢ close enough to 2/3, we have
t/s > 7/12, and s0 30,41 < 2d, as before.

Incidentally, it follows from the proof of Theorem 1 that any f
considered here exhibits the Weierstrass property of being nowhere
differentiable. In fact, the variation of f on I; = [z — L;,z + Lj]
is at least 2a;, ensuring that for some y € I,

[f(y) = f(@)/ly — 2] = a;bi/m — 00 (§ — o0).

This non-differentiability result is much less sharp, however, than
that of Hardy [3], who proved that 3} a™ cosb™nzx is a continuous
nowhere-differentiable function whenever 0 < a < 1, ab > 1. This
suggests the following question:

Question 2. Do all continuous nowhere-differentiable lacunary
series take on uncountably many values uncountably frequently?

= Space-filling curves 13

I have no answer to this question, but I would be rather
surprised if it were true; perhaps more likely to be true is the
conjecture that 3" a™cosb™nwx takes on a whole interval of values
uncountably frequently whenever §§ << a < 1, ab > 1 (since here we
have some “room to manoeuvre”).

Before going on to our next question, let us introduce some
terminology that we need here and later. Given 0 <t < 1, we say
f:[0,1] —» R" is t-Hélder continuous if, for some C > 0,

[flz) — Fw)| < Clz—yf', VYO<zy<L (1)

In the case t = 1, we instead say that [ is Lipschitz {continuous),
or C-Lipschitz if we wish to specify the constant.

Question 3. Do there emist Lipschitz functions f : [0,1] = R
which teke on each of uncountably many values uncountably often?

The answer to Question 3 is again “yes,” although examples

like the previous ones fail because f~1(z) must be finite almost
everywhere (see Theorem 2 below). Instead we first define f on
S < [0,1], the closed set of numbers whose decimal expansion
can be written using only the digits 0, 2, 7, and 9. For these
numbers, the decimal expansion of f(z) is calculated from that of
x by changing all 2’s to 0’s. and all 7’s to 9’s (and so f ' (z) is
uncountable for every o whose decimal expansion involves only 0's
and 9’s). We define f at all other values by linear interpolation. We
leave to the reader the task of verifying that the resulting function
f satisfies the Lipschitz condition |f(y) — f(&)|/ly —z| <2o0n S
{(and hence on [0, 1]).

For any exponent £ < 1, one can construct a t-Holder continu-
ous f : [0,1] = R which takes on all values in an interval uncount-
ably frequently. Our first digit-coding example f is an example
for t = 1/2. This construction is easily modified to handle any
t < 1. First let § to be the set of & € [0,1] for which the base-k
expansion has no digit equal to ¥ — 1 in any position whose sub-
script is divisible by -a fixed integer m > 1. We define f on S by
deleting all digits whose subscript is divisible by m, and extend
f using linear interpolation. Then f is t-Holder continuous for
t=(m—1)/m, and f~(z) is uncountable for all z € [0,1].
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The following theorem shows how different things are for
Lipschitz functions. This result is a special case! of a more
general result concerning Lipschitz maps between metric spaces
(see [2, Corollary 2.10.11]), but we give a short proof here for
completeness.

Proposition 2. If f : [0,1] - R is C-Lipschitz and N : R —
[0, 00] is the cardinality of f~*(z), then [ N(z)dz < C'. Con-
sequently, N{z) is finite almost everywhere.

Proof: For all § > 0, let A; be the collection of dyadic intervals
of the form [(k — 1)}277,k277), for 1 < k < 24, and {1 — 277 1].
Note that (A;)$2, is a nested sequence of partitions of [0, 1]. Let
N;(z) be the number of intervals f{I), I € A;, which contain .
Using the properties of A;, we see that for each z € R, N;{z)
is an increasing function of 7 which tends to N(z) as j = oc.
Furthermore, it is clear that ’

1
| m@a= ¥ rn1< Y ci=c,
0 Ted; IeA;
where |I| and | f{I)| denote the lengths of the intervals I and f(I).
An appeal to Lebesgue’s Monotone Convergence Theorem finishes
the proof. =
Question 4.  Does there emist a function f from [0,1] onto
U =10,1] x [0,1] which is t-Hdlder continuous for somet > 1/2°7
Question 4, like Question 3, is inspired by a shortcoming in
the earlier examples: our base-k Peano curve F' is {-Hélder con-
tinuous for ¢ = {log(k — 1))/(2log k), thus providing examples for
all t < 1/2. The following theorem answers Question 4.

Theorem 3. There exist Peano curves F : [0,1] — U which are

t-Hélder continuous for t = 1/2, but no such curve is {-Holder
continuous for t > 1/2.

Proof: We first examine the case t > 1/2. We define the Minkowski
dimension of a compact subset E of R™ by
M-dim E = sup{s > 0 : limsup H,(E,r) = oo},

r—0

! T would like to thank P. Hajtasz for pointing this out to me.
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where H.(E,r) is the «-dimensional Minkowski precontent,
defined as kr®, where k is the minimum number of balls of radius
r required to cover £. These concepts, and the related concept
of Hausdorff dimension, are discussed at greater length in [5] and
[1]. We shall need only the easily proven fact that any compact
E C R™ of positive measure has Minkowski dimension n. Also
noteworthy, although not needed by us, is the obvious fact that
the Minkowski dimension of a set is greater than or equal to its
Hausdorff dimension. '

Suppose that F' : [0,1] — U satisfies (1) for some ¢ > 1/2.
We claim that the Minkowski dimension of F([0,1]) is at most 1/t
(and hence the range of F cannot be all of U). To see this note
that the image of any interval [¢/k, (i -+ 1}/k] is contained in a ball
of radius C/k* about F(i/k). Thus Hy,(F([0,1]),C/k*) < CMY,
and our claim follows easily.

We next construct the required 1/2-Hélder continuous Peano

curve. The base-3 example I shall give is the same as Peano's

original example of a space-filling curve® {6]. The basic idea is
simple: we can “almost” get the solution by “chopping” z into its
base-k digits, allocating them one at a time to be the next base-k
digit of either fi(z) or fa(z). This certainly gives a space-filling
function but it is not 1/2-Hélder continuous {or even continuous)
because of the following phenomenon: if y = O.yyy2...yn ... in
base-k, where y,, # 0 and y, = 0 for all » > m, and if m is odd
(even) then the lefi- and right-hand limits for fo (respectively fi)
at y are different. The way out of this problem is fairly clear: we
allocate digits one at a time to fi(z) and fa{z) but introduce a
parity effect to compensate for these discontinuities. We describe
this process for base 3 where it is most easily described.

To avoid problems caused by non-unique expansions, we
define functions 4 : [0,1] — S and B : § — [0,1], where S is
the set of infinite sequences whose terms are restricted to the set
{0,1,2}. A maps numbers to (one of) their base-3 expansions,
and B maps (z, %32, Ts,...} to the number with base-3 expansion

2 T would like to thank the editor for sending me a copy of this
paper.
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0.x1z2%3 - --. We shall write values of these functions in the form
Ay and Bz. Whenever z € 5, we denote its i-th term by ;.

Let G = (g1,92) + S — 8§ xS be defined by G(z) = (u,v)
where

ko1
sy = { T if 3, Toi is even
- . k—1 .
2~ oy, I35 ®oiis odd,

- k .
v = { T2 if 307 | 221 is even
= g .
2— e, i 37, @21 is odd

We now define F(y) = (Bg(Ay), Bga(4y)) whenever y € [0,1].

Clearly F has range I7. We are left with showing that F'is 1/2-
Holder continuous. A simple case-by-case argument reveals that I’
is independent of the choice of A (for example, G{0,2,2,2,..) =
(1,0,0,0,...}). Whenever x € 5, G{z) = (u,v), let us call
Ui, v, U2, U, 3, Vs, . . . the standard order of the terms of G(x).

Suppose z,y € S and Bx < By. Let us assume that the
first term of (z) which differs from the corresponding digit of
G(y), using the standard order, is the m-th term of the go{y) (if
the first difference is in g (y), a similar argument applies). Then
|F{Bz} — F(By)| < 37™*1 If |Bz — By| > 37?™, we are done,
so we may assume |Bz — By| < 37%™. But then, if there is some
0 < g < 2msuch that #; = y; f { < § and z; # y;, we must
have z; +1 = y; and, whenever j < i < 2m, z; = 2 and y; = 0.
This forces the m-th digit of the second coordinates of F({Bz) and
F{By) to be equal, contrary to assumption. The only remaining
possibility is that z; = y; if ¢ < 2m and ya, = Zam + 1. In this
case, Bx < Bz < By, where z; = y; for i < 2Zm.and z; = 0 if
i>2m. i z # y and the j-th term is the first term where they
differ, then it is clear that

By—Bz>By-Bz>37, |Fly)-F(z)| <3792 (2

Next let z' be the sequence defined by z; = z; for ¢ < 2m and

z; =21l ¢ > 2m, so that Bz = Bz'. If 2’ # z and the k-th term is
the first term where they differ, then it is again clear that

By—Br>Bz-Bx>3"%  |Flz) F(z)| <317%2 (3

i
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Putting (2) and (3) together, we get the desired Holder continuity.
B

Our previous argument actually implies that there are no
Peano curves f : [0,1] — [0,1]", n > 2, which are ¢-Hdlder con-
tinuous for t > 1/n. The construction for ¢ = 1/2 also generalizes
to give an n-dimensional Peano curve which is 1/n-Hélder con-
tinuous in the higher dimensional seiting: again using a base-3
expansion, we “deal out” the digits one at a time to each of the n
coordinates, replacing each “0” by “2” and vice versa whenever the
sum of the digits previously dealt to the other coordinates is odd.
We leave the verification of 1/n-Hdlder continuity to the reader.

Questicn 5.  Does there erist o map G from the unit square
U =1[0,1] x [0,1] toe U such that the image of any non-trivial line
segment in U haes non-empty interior?

We give a couple of methods for constructing such a map
G. - The map A(z,y) = F(z), where F = (f,g) is the Peano

- curve defined earlier, has this property on all non-vertical lines.

Defining B: U — U by B(z,y) = ((z +v*)/2,y), G = Ao B has
the desired property (since if L C U is a non-trivial line segment,
the z-projection of B{L) is also a non-trivial line segment).

One might feel that the previous method is not completely
satisfactory since we have simply “hidden” the straight lines. Our
second method, has the advantage that it produces a function ¢
for which the image of GG o v has non-empty interior whenever
« is a non-trivial ¢! path in ¢/. First let Fy = (fr, g%} to be
our old base-k Peano curve F. Fy, is t-Holder continuous for ¢ =
(log(k — 1)}/{2log k) but not for any larger ¢; in fact, it is easily
seen that for any n, the image of any interval of length 1/k%"* under
F is contained in a square of length (k — 1)7"! and contains a
square of length (k — 1)~"~L.

We claim that G(z,y) = F;(z)+F;(y) is a function of the type
we require for any 3 < ¢ < j. We shall content ourselves here with
sketching the proof. Clearly images of vertical iine segments have
nen-empty interior. If «v is not a vertical line, then we need only
look in the vicinity of a single point (xg,yo) on ¥ where the tangent
line is non-vertical. In this case, one expects everything to work
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out since on any sufficiently small neighbourhood of v {dependent
on the slope of the tangent line), the variation in ¥; is much lar-
ger than the variation in ;. To make this idea rigorous, assume
G{zo,y0) = (up,vp). We solve the equation G(z,y) = (u,v) for
all (u,v) sufficiently near {ug,v0) by an iterative method. Having
found the approximate solution (zx,yr), we find (zr41, yr41) € 1,
a nearby point on the curve for which Fi(zr11) + Fi{ye) = (u,v).
With this hint, we leave the details to the reader.
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BERNSTEIN'S POLYNOMIAL INEQUALITIES
 AND FUNCTIONAL ANALYSIS

Lawrence A. Harris

1. Introduction

This expository article shows how classical inequalities for the
derivative of polynomials can be proved in real and complex Hil-
bert spaces using only elementary arguments from functional ana-
lysis. As we shall see, there is a surprising interconnection between

.an equality of norms for symmetric multilinear mappings due 1o

Banach and an inequality for the derivative of trigonometric poly-
nomials due to van der Corput and Schaake. We encounter little
extra difficulty in establishing our inequalities in several or infinite
dimensions. _

After giving the definitions of polynomials and derivatives in
normed linear spaces, we establish a lemma of Hormander, which
is an extension of a theorem of Laguerre to complex vector spaces.
This powerful lemma is the key to the proofs of the polynomial
inequalities we discuss; however, its proof is a simple argument
relying only on the fundamental theorem of algebra. Following
de Bruijn (who considered only the case of the complex plane),
we deduce a theorem which obtains discs inside the range of a
complex-valued polynomial on the closed unit ball of a complex
Hilbert space. Here the size of the disc is determined by the value
of the derivative.

An easy consequence is an extension to complex Hilbert
spaces of an estimate of Malik on the derivative of polynomials
whose roots lie outside a given disc. (Malik’s estimate generalized
a conjecture of Erdos that was proved by Lax.) Another con-
sequence is an extension 1o complex Hilbert spaces of the classical
complex form of Bernstein's inequality. Still another consequence

19
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is an inequality for the derivative of a polynomial on a complex
Hilbert space whose real part has a known bound on the closed
unit ball. When the Hilbert space is the complex plane, this
inequality contains an inequality of Szegd and leads to an inequal-
ity of van der Corput and Schaake for trigonometrie polynormnials,
which is a strengthened form of the Bernstein inequality.

Using methods of van der Corput and Schaake, we deduce an
inequality for the derivative of homogeneous polynomials on real
Hilbert spaces that extends a result of O. D. Kellogg for R™. A
slight extension of a result of Banach is an immediate consequence.
Specifically, the norm of a continuous symmetric multilinear map-
ping is the same as the norm of the associated homogeneous poly-
nomial on any real Hilbert space. From this, we deduce an estimate
on the derivative of polynomials which satisfy an £?-growth con-
dition on real Hilbert spaces. Finally, we give an argument which
shows how to derive the inequality of van der Corput and Schaake
for trigonometric polynomials from the two dimensional case of
Banach’s resuit. '

A source for this approach to polynomial inequalities is [8].
2. Definitions and notation’

The reader who wishes may take all vector spaces below to be
finite dimensional so that the definition of polynomials is already
familiar. To give the general definition, let X and Y be any real
or complex normed linear spaces and let

F: Xx - XY

be a continuous symmetric m-linear mapping with respect to the
chosen scalar field, where m is a positive integer. Define

Flz) = F(z,...,z)

for z € X. We say that a mapping P : X — Y is a homogeneous
polynomial of degree m if P = F for some continuous symmetric
m-linear mapping F' as above. Define a mapping P: X = YV to
be a polynomial of degree < m if

P=FR+PF + -+ P,

Bernstein’s polynomial inequalities 2

where Py : X — Y is a homogeneous polynomial of degree k for
k =1, .., m and a constant function when k = 0. (Note that
a constant polynomial is not a homogeneous polynomial by our
definition unless it is the zero polynomial.)

This definition of polynomials agrees with the classical defin-
ition when X = R" and ¥ = R and when X = C? and Y = C.
In either case,

T
ki, .. ke
Plzy,...,zn) = E g Tky. ko L7 T,

k=0 ki1+-+kn=k

where k1, ..., k, are restricted to the non-negative integers and
the coefficients ay,. 3, are in the appropriate scalar field, i.e.,
V. As expected, with our definitions, if a polynomial P satisfies

P(tz) = t™P(z) for all z € X and ¢t € R, then P is a homogeneous

polynomial of degree m. When F is as above, for convenience we
will write F(ziy*) for F(z,...,%,¥,-..,y). Thus, the binomial
\_W W—J
;i k
theorem for F' can be written as

e

b =3 () Pem @

k=0

It is not difficult to show, [10, §26.2], that a weaker definition
suffices. Specifically, a continuous mapping P : X = Y is a
polynomial of degree < m if and only if

QX)) = L(P{x + A\y)}, A scalar

is a polynomial of degree < m (in the classical sense) for every
z,y € X and every £ € Y™, where Y* denotes the space of all
continuous linear functionals on Y.

Let £{X,Y) denote the space of all continuous linear map-
pings L : X — Y with the operator norm, i.e.

ILf = sup [iLz|.
<3
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If P is a mapping of a domain D iz X into ¥ and if z € D, we
say that an L € £{X,Y") is the Fréchet derivative of P at z if
1P +y) - Plz) — L{y)|

litn =0.
y—0 Iyl

We denote the Fréchet derivative of P at x by DP(x). Clearly

DP(s)y = P+ ty) 2)
di t=0 '
when DP(z) exists. If P is a polynomial of degree < m, then
DP(z) exists for all z € X and ¢ — DP(z) is a polynomiat
mapping of X into £{X, Y} of degree < m — 1. Indeed, it suffices
to show this for homogeneous polynomials ¥ of degree m and here
the Fréchet, differentiability of 7 follows easily from (1) with

DF(z)y = mF(a™ ), 3)

For example, if P(z) = (Pi(z},..., Pn(z)) is a polynomial
mapping of R™ into R™, then the matrix of DP(z) is the m x n
Jacobian matrix [0F;(x)/0z;]. The same formula also holds when
R is replaced by C except that 8F;(z)/0z; now denotes a complex
derivative. (The proof in both cases follows easily from (2) and the

chain rule.) See {10} and [7] for further discussion of polynomials
and Fréchet differentiability.

3. Polynomials on complex spaces

The lemma below is the key to the proofs of the polynomial inequal-
ities we wish to give. Let X be a complex normed linear space.
Recall that a function f: X x X — C is called a Hermitian form
on X if f(x,y) is linear in x for each y € X and f(z,y) = f(y,z)
forallz,y € X. For example, when X = C", the Hermitian forms
fon X are given by

f(ma y) = Z Z aijxirj: ,

i=1 j=1

where @;; = aj; for all 1 <14, <n.
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Lemma 1. {Hormander [11].) Put

A={ze X flz,z) 20,z #0}.
IFP:X - Cis a (non-constant) homogeneous polynomial with
P(z) #0 for all z ¢ A, then DP{z)y # 0 for all z,y € A.

Proof: By definition, P = F for some continuous symmetric m-
linear mapping F on X. If the lemma is false, there exist z,y €
A with DP()r = 0, so F(y™2) = 0 by (3). Then by the
binomial theorem (1), the coefficient of A™ ! in the polynomial
A = P(z + M\y) is 0. By the fundamental theorem of algebra,

Plz+Ay)=clA = M) (A=),

where ¢ # 0, and hence 3\ Ay = 0. None of the roots A is 0
since P{z) # 0. Then z + Agy # 0 since otherwise y = ar, where

a = —1/Ag, and this gives

Ply) = F(y™ (o)) = aF(y™ 'z) = 0.

Hence by hypothesis, f{z+Azy, z+Ary) < 0since P(z+Ay) =0.
This-inequality expands to

f(ﬂ;,.']j) + 2Re ’\kf(ys Q?) + “)\klzf(y:y) < Oy
so Re Ag f(y.z) < 0. Therefore,

0= Re

m m
(Z Ak)f(y:m):\ = ZRG A fly,z) <0,
k=1 k=1

the desired contradiction. =

Note that the above lemma holds for any complex vector space
and without any continuity assumptions if formula (3) is taken as
a definition. See [15] for further discussion of Hérmander’s results
and related references.

We now apply the above lemma to obtain an extension of a
theorem of de Bruijn, {5}, who considered the case X = C and
deduced the Erdos-Lax theorem, [13]. We carry his argument fur-
ther to obtain an extension {Corollary 4 below) of Malik’s general-
ization, [14], of the Erdés-Lax theorem. We also deduce an exten-
sion (Corollary 3 below) of an inequality of Szegd, [18], which we
apply to trigonometric polynomials in the next section.
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Theorem 2. Let X be a complex Hilbert space and let P : X —
C be a polynomial of degree < m. Define

S{z) =mP{z) — DP(2)z
forz € X and let

X ={reX: o] <1}
Then

DP(z)y + 5(z) € mP(X;)
for all z,y € X,.
Corollary 3. If [Re P(z)| <1 for all z € X, then

IDP)yl + Re S(z)| < m
for all z,y € X;.

Corollary 4. Suppose that r > 1. If |P(z)| < 1 for all z € X
and if P has no zeros in the closed-ball in X about (1 with radius
r, then

IDP(2)l} <

1+7r

forallz € X;.

Proofs: Qur approach to the proof of Theorem 2 is to add an
additional dimension to X and use the extra variable to make P

into a homogeneous polynomial. Let X' = X x C and write the

elements of X' as ordered pairs (z, A). Define a Hermitian form f
on X by '

f((:l', A): (%M)) = /\E_ (Iay)
and note that

A={{z. Ny e X" {zi < |Al, A#£0}.
Suppose ¢ € C with o € P(X;). Define

Q. 2)) = A™[a - P(z/)]
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for A # 0 and note that @ extends to ail of X'. Then @ : X' -~ Cis
a homogeneous polynomial of degree v (by the equivalent weaker
definition mentioned in the introduction} and Q({z,A}) # 0 for
all (z,2) € A. Hence by Lemma 1, DQ({z,1}){y, 1) # 0 for all
z,y € X;. Now by (2) and the rules of differentiation,

DO, )y, 1) = Qe + 1,1+ 1)
t=0

oo e(520)

= ma — [DP{x)y + 5(z)].

t=0

Thus DP(x)y + S(x) # me, which proves Thecrem 2.
To deduce Corollary 3, observe that

[Re[DP{z)y + S(z)]| < m

for all 2,y € X; by Theorem 2. Here y can be replaced by Ay
where X is a complex number with |A| = 1 and A can be chosen
g0 that the left-hand side of the inequality above is the required
expression.
To prove Corollary 4, note that by Theorem 2, for each z,y €
X1, the closed (possibly degenerate) disc with center S{x) and
radius | DP(x)y| is contained in the closed disc about 0 with radius
m. Hence
PPy +15()] < m. (4)

Define P,(x) = P(rz) and put S,(z) = mP,(r) — DF.(z)x. By
hypothesis and Theorem 2, for each z,y € X, the closed disc
with center S.(z} and radius |DP,(x)y| does not contain 0 so
|DP,.{x)y! < |Sy(z)|. Since DP,(z)y = rDP(rz)y, S;(x) = S(rz)
and r > 1, it follows that

rIDP(@)yl < IS(@)] (5)
for all z,y € X;. Combining (4) and (5), we have

1+ )| DP{z)y| < m,
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which gives Corollary 4. &

The extended Erdds-Lax theorem is the case r = 1 of Corol-
lary 4. Note that this follows immediately from Theorem 2 since
for z,y € Xj, the closed disc A with center S{z) and radius
|DP(x)y| is contained in the closed disc about 0 with radius m
but A does not contain the point . The largest possible diameter
of A is m and hence |DP(x)y} < m/2.

To state our extensions of Bernstein’s theorem, define the
norm of a polynomial P: X —» Y by

iP|| = sup{||P(z)| : =€ X1} (6)
and define the norm of a continuous m-linear mapping
F:Xx---xXY

by .
|F|| = sup{{| F (=1, .-, xm)|l : T1,-- -, Zm € X1}

Obviously, [|[F|| < ||F||. (If X is a complex normed linear space,
by the maximum principle, [10, Th. 3.18.4], the value of || P}| does
not change when the supremum in (6) is taken over only the unit
vectors in X.) Suppose Y is any complex normed linear space.

Theorem 5. If X is a complex Hilbert space and if P : X — Y
is a polynomial of degree < m, then |DP| < m||P||.

Corollary 6. If X is a complex Hilbert space and if F : X x

-x X =Y is a continuous symmetric m-linear mappmg, then
HFII = |\F;. '

The corollary above will be generalized later (Theorem 9) to
real Hilbert spaces. See [9] for inequalities between ||F|| and || 7|
for other spaces.

Proofs: Without loss of generality, we may assume that ||Pj| = 1.
We first apply linear functionals to reduce to the case where ¥ =
C. Specifically, let £ € Y* with ||£|| = 1 and define Q{x) = £{P(z))
for x € X. Then @ : X — C is a polynomial of degree < m
satisfying |Q(z)] < 1 for all z € X, and D@Q(z)y = £(DP(x}y).
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Let 2,y € X;. Then [£(DP{x)y)| < m by Corollary 3 and by the

* Hahn-Banach theorem, [10, Th. 2.7.4], we may choose £ so that

#{DP{z)y) = | DP(z)yl|. Hence |[DP(x)y| < mfor all z,y € X3
and Theorem 5 follows.

We deduce Corollary 6. from the theorem above by induction.
The equality is obviously true when m = 1. Suppose it is true for
m — 1. Then holding x,, fixed, we have that

[F(zs,. . zm)ll < sup{iF (™ am)ll + = € Xn}

for all z1,...,%m—1 € X3. Since Dﬁ(x):cm =mF(z™ 'x,,), by
Theorem 5, |F{z™ tz )i < || for all z,z, € X1. Therefore,
(IFl < ||F|l, as required. =

4. Polynomiais on real spaces

The results of this section depend on an inequality for trigonomet-
ric polynomials which we will deduce from our previous results.

- By definition, a trigonometric polynomial T'(8} of degree < m is

given by
T(8) = (ax cos kO + by sin k#), (7)
k=0
where the coefficients dg, cevy G and by, ..., by are complex

numbers. If all the coefficients are real numbers, we say that T'(#) is
a real trigonometric polynomial. Tt is not difficult to show using the
addition formulae for the sine and cosine functions that the product
of a trigonometric polynomial of degree < m with a trigonometric
polynomial of degree < n is a trigonometric polynomial of degree
< m +n. Hence any sum

Z Cik cos’ #sin® @, (])

j+k<m

where j and k are non-negative integers and each c¢;; is a real
number, is a real trigonometric polynomial of degree < m.
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TI_Leorem 7. {van der Corput and Schaake [6].) If T{8)} is a real
trigonometric polynomial of degree < m satisfying |T(8)] < 1 for
all real @, then

TO)? + m2T(6)? <m? (9}
for all real 8.

Corollary 8. (Bermstein [2, p.39].) If T(6)} is a trigonometric
polynomial of degree < m satisfying |T(8)| < 1 for all real 6, then
|TV(8)| < m for all real 8.

_ Note that (9) holds with equality for all real ¢ when 7'(8) =
cosmf and when T'(#) = sin mf. Bernstein’s original statement of
Corollary 8 had the bound of 2m in place of m. (See {17, p.569]
for a discussion of priorities.)

Proofs: Our method of proof is to express T(8) as the real part of
a polynomial on the unit circle and apply Corollary 3 in the case
X = C. Let T be given by (7) and define the conjugate T' of T’ by

T(6) = Z(_bk cos k8 + ay, sin k@).
k=0

Define a polynomial P: C — C by

P{z) = Z crz”,
k=0 .
where ¢, = ay — by for k=0,...,m. Then
P(e) =T(6) +iT(8) (10)

for all real §. By hypothesis and the maximum principle for
harmonic functions, |ReP(z)] < 1 for all |z} < 1 and hence
|P'(=)| + \ReS{_z)i < m for all |z| <1 by Corollary 3.

Let z = ¢, Differentiating (10} with respect to #, we see
that izP'(z) = T"(#) +47"(6) and herice Re S(z) = mT(§) — T"(8).
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Now if £, and t, are any real numbers with #] + £ = 1, then by
the Cauchy-Schwarz inequality,

T ()41 + mT()ta] = |T'(0)ty + T'(8)t2 + Re S(2)t2]
< AT ()t + T'(0)ta] + |Re S(2)]

< \JT'(0)% + T(8)* + Re S(2)|

= |P'(z)| + |[Re 5{z)} < m.

The maximum of the left-hand side of the above is

r=/T"(#)2 + m2T(8)?

and it is attained when & = 77(8)/r and ¢, = mT(8)/r if r # 0.
Thus (9) holds.

One can deduce Corollary 8 easily by letiing A be a com-
plex number with |A| = 1 and applying Theorem 7 to S(8) =
Re[AT(f)]. &

Let ¥ be any real normed linear space.

Theorem 9. (Banach [1].) If X is a real Hilbert space and if
F: X x-xX =Y is a continuous symmetric m-linear mapping,
then ||[F]| = [|F[.

Lemma 10. If P : X = Y is a homogeneous polynomial of degree
m, then [DP|| < mlP].

Note that Lemma 10 is an analogue of Theorem 5 for the case
of real scalars. It was proved for the case X = R™ by Kellogg, [12].
See [3, p.62] for a direct proof of Theorem 9 using only Hilbert
space technigues.
Proofs: To prove the lemma, we may suppose that |[P|| = 1. Asin
the proof of Theorem 5, we may apply linear functionals to reduce
to the case Y = R. Let z and y be unit vectors in X and let
{z,w} be an orthonormal basis for the space spanned by x and y.
Then y = t;z + tow, where ¢ + t3 = 1. Define

T(8) = P({cos8)z + (sinf)w)
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and note that T'(4) is a real trigonometric polynomial of degree
< m since it is of the form (8) by the binomial theorem (1). Clearly
T(0) = P(z) and T'(0) = DP(z)w. By (3), we have DP{z)r =
m.P(z), and hence

DP(z)y = ti DP(z)x + to DP(x)w = tymT(0) + t2T7(0).

Since | P|| = 1, it follows that |T(#)| < 1 for all real  and hence
IDP{z)y)| < m by the Cauchy-Schwarz inequality and (9). In
fact, this inequality holds for all z,y € X3 since these vectors can
be written as scalar multiples of unit vectors.

Theorem 9 follows easily from the lemma above by induction
as in the proof of Corollary 6. B

The case X = R of our next theorem is a sharpening given
in [6! of a theorem of Bernstein.

Theorem 11. If X is a real Hilbert space and if P: X - R isa
polynomial of degree < m satisfying

1P(z)]* < (L+ [l=)*)™
for all x € X, then
[DP(@)|? + S(2)* <m*(1 + ||z|*)™

forallz e X.

Proof: Our approach is similar to that of the proof of Theorem 2.
Let X' = X x R and note that X’ is a real Hilbert space in the
norm [[{z,)|| = (||z]|* +¢*}!/2. Define a homogeneous polynomial
Q: X" = R of degree m by Q({z,t)) = t"P(z/t) for t # 0. By
hypothesis,

@t r < it (1+]5) = il

go |[Qfl < 1. By a differentiation as in the proof of Theorem 2,

DQ({z,1)){y, ) = DP(a)y +tS(x).
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Hence by Lemma. 10,
|DP()y + tS(e)| < ml(z, L™, .

By replacing y by ry in the above, where y € X, and maximizing
the left-hand side over all r and ¢ satisfying »? + % = 1, we obtain

m—=1
2

VIDP @y + S(z)? < m{1'+ ||z||*)

for all y € X, and Theorem 11 follows. &

We will show that Theorem 7 can be derived from the preced-
ing theorem using only the case X = R. Thus any of the results of
this section can be derived from any of the others (except Coral-
lary 8) by arguments given here.

Suppose T(6) is a real trigonometric polynomial of degree
< m satisfying |T(6)| < 1 for all real §. It suffices to prove (9) for
the case # = 0 since this case can be applied to the trigonometric
polynomial S(¢) = T(6 + ) for fixed 8. Let P be the polynomial
defined in the proof of Theorem 7 and define

Q1) = (1+*)™Re P(2(1)),
where z(t) = (1-+it)? /{1+#%). Then Q(1) is a polynomial of degree
<2monR. Ift = tan#, then z(#) = €2 so Q(t) = (1+£2)™T(26)
by (10}. Hence, |Q(¢}| < (14 ¢*)™ for all t € R and therefore
Q'(0)? + [2mQ(0))* < (2m)*

by Theorem 11. Clearly @Q(0) = T(0) and by differentiating

" Q(tan#d) at § = 0, we obtain Q'(0) = 27'(0). Thus (9) holds at

f = 0, proving Theorem 7.

Berustein theorems for arbitrary normed linear spaces are
given in [8] and [16]. In fact, an elementary argument is given in
[16] to show that Markov’s theorem for the first derivative holds in
any normed linear space. For a discussion of connections between
Bernstein’s inequality for entire functions and functional analysis,
see [4].
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JONSSON GROUPS, RINGS AND ALGEBRAS

Eoin Coleman’

A Jonsson group ( is one all of whose proper subgroups have
smaller cardinality than . Jonsson ringg and Jonsson algebras
are defined in a similar fashion. In this paper, we present an
introductory account of Jonsgson algebras in the light of pcf theory,
a recent development within set theory. In section 1, we give some
examples and summarize what is known about Jonsson groups and
rings. In section 2, we prove the basic results on Jonsson algebras.
Most of this section is self-contained, and the reader will need to
know little more than some naive set theory and first-order model
theory [H, HS or ChK!. Section 3 contains the elements of pcf
theory, deals with the most recent results on Jonsson algebras,
and summarizes the impact of additional set-theoretic axioms in
this area.

1. Jonsson groups, rings, algebras and cardinals

To start matters off, we define Jonsson groups, algebras and car-
dinals.

Definition : - S

1. A group G is a Jonsson group iff (¢ has no proper subgroup
H of the same cardinality as G, i.e. every proper subgroup of G
has fewer elements than G. :

2. Suppose that F' is a countable set of finitary operations on a
set A. The algebra A = (A, F) is a Jonsson algebra iff A has
no proper subalgebra B = (B, F{B) of the same cardinality as A.

11 am very grateful to Forbairt for financial support (SC/93/137)
and to the members of the collogquium in combinatorics and logic
at Queen Mary and Westfield College, University of London, who
expressed interest in hearing about the material in section 3.

34

Jonsson Groups, Rings and Algebras 35

3. A cardinal A is a Jonsson cardinal iff there is no Jonsson
algebra of cardinality A.

In writing F|B, we mean the family of operations in F', each
restricted to B™ for the appropriate number n of arguments, Since
the nature of the underlying set A is irrelevant, we shall often
assume without comment that it is a cardinal, and also say that
there is a Jonsson algebra on A meaning that there is one on a set
of power A. '

It seems that Jonsson algebras were identified by B. Jonsson
in the fifties, [EH]. Relatively little was known about them (at least
in ordinary set theory) until the early eighties. Devlin surveys the
state of play up to 1973 in section 3 of his paper [D].

Every Jonsson group is a Jonsson algebra (treating the iden-
tity element as a 0-ary operation). It is obvious that every finite

~ algebra is a Jonsson algebra. So the first natural question is

whether there are any (infinite) Jonsson cardinals at all.

Example 1: Let A = (w, {m}), where w (the first infinite ordinal}
is the set of natural numbers and m(z) := z — 1 for all z > 0,
m{0) := 0. The algebra A is a Jonsson algebra of cardinality Ng
(the first infinite cardinal), so ¥y is not a Jonsson cardinal. .

Example 2 [F]: Let p be prime number and let C(p") be the
cyclic group of order p™. Then the p-quasicyclic group,

C(p™) = Uil C"),

is a countably infinite abelian group all of whose proper subgroups
are fintte. In accordance with the convention in abelian group the-
ory, we shall write C'(p®°) additively. It is generated by elements
€1, €2 5 +++y Cny - -, such that

per =0,pcz =0C1,..., PCati = Cpy.- -
and o{c,) = p". It is easy to check that C(p™) is a Jonsson group
of cardinality ¥g. For, if H is a proper subgroup, then there exists

a least n such that ¢,.; does not belong to H. Now (c,) < H.
Conversely, if h € H, then h € C{p™), and so there exists k such
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that h = ke,,, where (p,k} = 1. Since (p™, k) = 1, there exist r
and s such that rk + sp™ = 1, and hence

= (rk + sp™)em =7h € H.

. S0 ¢ € H and m < n, so that h'€ {¢,) and H = (¢},

The family of p-quasicyclic groups contains all the countable
Jonsson abelian groups, since if G is infinite abelian with all its
proper subgroups finite, then 7 is a p-quasicyclic group for socme
prime p.

In 1979, OPshanskii, [O], proved the existence of an infinite
non-abelian group all of whose proper subgroups are finite, solving
Schmidt’s problem?.

Jonsson rings are rings all of whose proper subrings have smal-
ler cardinality.

Example 3 [L]: From the p-quasicyclic group C(p®), it is easy
to construct a countable Jonsson ring by defining all products to
be zero. Since every proper subring of C{p™) is also a proper
subgroup of C(p™), i must be finite.

We know all about countable Jonsson rings. Laffey classified
them in a slightly different terminology, proving in his paper [L]:
Theorem. If R is a countable Jonsson ring, then either
(i) R? = {0} and R = C(p™) for some prime p,
or
{ii) R = Gyp 4 for some primes p and g, where

Gp,q - U:f:oGF(Pqn)

and GF(p?") is the finite field of order p¢" .

In the early sixties, Kurosh conjectured that uncountable
Jonsson groups exist. This conjecture was settled positively by
Shelah in 1980. The group that Shelah built had even stronger
properties:

Theorem. [Sh80] There is a Jonsson group S of cardinality N;.
This group is simple. '

2 Professor Wilfrid Hodges kindly supplied this reference.
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1t follows that R, is not a Jonsson cardinal. We shall derive
a more general version of this consequence in section 2. Shelah
noted too that his group S has no maximal proper subgroup. In
particular, the operation of taking the Frattini subgroup does not
commute with direct products. For if 7(.9) is the Frattini subgroup
of S, i.e. the intersection of all the maximal subgroups of S, then
7(8) = 8, but 7(S x 5) = {{a,a) :a € S}.

To close this section, let us note a rather surprising connection
between Jonsson semigroups and Jonsson groups.

Theorem. [McK] If a semigroup G of cardinality A is a Jonsson
semigroup, then either G is a group, or else A has countable cofi-
nality and (A < A) (A < 27). ’

In particular, if A has uncountable cofinality or if £ < A
implies 2% < A, then every Jomsson semigroup of power A is a

Jonsson group. This means for example that if one wishes to

construct a Jonsson group of power A, where A has uncountable
cofinality (e.g. A a successor cardinal), then it is cuough (or s
hard) to build & Jonsson semigroup.

Within ordinary set theory, there seems to be no easy way to
climb from Jonsson groups of power ¥; to ones of power Ny. The
theory of Jonsson algebras is in this respect a good deal smoother.

2. Jonsson algebras

In this section we prove the easiest results on Jonsson algebras
in ordinary set theory. Although some of these can be established
using combinatorial arguments and historically were first obtained
in this way, one can abbreviate the arguments by employing ele-
mentary submodels. A Jonsson model is a model A = (A, R, F)
where R and F are countable sets of finitary relations and opera-
tions on the set A such that every elementary submodel of A has
smaller cardinality. So every Jonsson algebra is a Jonsson model,
since it has no relations and its elementary submodels are there-
fore subalgebras. The reader can find all relevant basic information
about elementary submodels in the appendix [pp.165-176] of the
monograph by Heindorf and Shapiro, [HS], or in the standard texts
[H, ChK]. :
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Propesition 1. There is a Jonsson algebra of power M\ iff there
1s a Jonsson model of power A.

Proof: For the non-trivial direction, add Skolem functions to the
Jonsson model; the Skolem hull is the required Jonsson algebra.
This is a standard and very useful technique for building algebras
from modeis. We give a brief sketch. Fix a well-order < of the
universe A of the Jonsson model A = (A, R, F'). For each formula
Plxy, ..., xn,y) in the language I = R U F of the model, define

a new n-ary operation fy on A™ as follows: fy(ai,...,a,) is the
<-least element b € A such that ¥(ay,...,a,,b) is true in A if
such an element exists, otherwise fy{as, . .., a,) is any element of

A. Repeat this process for the new (countable) language
Iy =Lu{fy,:¢isan L-formula},

and so on (countably many times) to get the expanded {still count-
able) language
L* =UlL,.

The required algebra is
A = (A, {fy : ¢ is an L*-formula}),

since any proper subalgebra of A** will give rise to a proper ele-
mentary submodel of the Jonsson model A of the same cardinal-
ity. ®

We combine Proposition 1 with some set theory to obtain
a necessary and sufficient criterion for the existence of Jonsson
algebras.

Recall that for a cardinal 8, the collection of sets which are
hereditarily of cardinality less than # is denoted H(d): a set z
helongs to H({#) iff {z| < @ and if y € #, then |y| < 4, and so
on. For reference, we summarize the main features of H{f) in a
theorem:

Theoremn. If # is a regular uncountable cardinal, then H(f) is a
transitive model of ZFC with the possible exception of the power
set axiom. If o Is an ordinal, then o < @ iff « € H(9).
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Intiitively, H(8) is a reasonably small universe of most of the
axioms of ordinary set theory. The main properties of elementary
submodels of H(f) are given in detail in [EM, pp.151ﬁ15_2}.

Lemma 2. [BM] Suppose that A is an infinite cardinal. There is
a Jonsson algebra on A iff: _

for some {all) regular cardinal(s) & > X and for all elementary
submodels M < H{#):

(*}if A€ M and [ANM| = A, then A C M.

Proof: For the forward direction, note that since M < H (), there
is a Jonsson algebra A € M on A, say A= (A {fn:n €w}). Let
B = M\ (by hypothesis unbounded in A). So B has cardinality
A (A is regular), and B = (B,{fa|B : n € w}) is a subalgebra of

'A. However, A is Jonsson, hence B = A = X, i.e. MNA = A,

and so AC M.
For the reverse implication, fix M < H(#), |M| =X, A C M.

‘Let h: A — M be a bijection. Then M1 = (M, €, k) is a Jonsson

model of power A. For, if N < M is an elementary submodel of
power A, then A € N (by elementarity, since A is the least ordinal
which does not belong to dom(h)). Also [N N Al = A, and hence
by () A € N, since N < H(#). Therefore range(h) C N. But
range(h) = M, so N = M, and M is a Jonsson model of power
). We appeal now to Proposition 1 to complete the proof. @

Theorem 3. [Sh, BM] If there is a Jonsson algebra on A, then
there is one on A*, where AT is the least cardinal greater than A.
Proof: We use the lemma. Suppose that M < H(A1T), At € M,
|M N AT| = M. We must show A* € M. Suppose that 3 < AT,
Note that A € M (since At € M by elementarity), and Ja €
M N AT, a > 8, such that [M Nal = A, because |[M N AT = AT,
M contains a bijection g from A onto a, hence |[M N Al = A,
and so A C M (applying the lemma to the hypothesis that there
is a Jonsson algebra on ). Therefore @ = range(g) € M. In
particular, 3 € M. Since 8 was arbitrary, it follows that AT C
M =

In fact, for a little move effort and terminclogy, a stronger
result is provable:

Theorem. (Tryba [T], Woodin) If A is regular and there is non-
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reflecting stationary subset of A, then there is a Jonsson algebra
on A.

The short proof can be found in [BM]. In particular, there
is a Jonsson algebra on AT whenever X is regular, since the set
{a < AT :¢f(@) = A} is non-reflecting and stationary in A*.

Example 1 and Theorem 3 yield a corollary:

Corollary 4. (Vn € N)(There is a Jonsson algebra on R,).

The simplest unanswered questions (at least to formulate)
thus far are whether there are Jonsson algebras on R, on Ny 1,
and more generally on the successors of singular cardinals. We
shall discuss these questions in section 3.

For completeness, let me mention two other equivalent condi-
tions for the existence of a Jonsson algebra. The first is based on
results of Los and Sierpiriski (see [D]):

Theorem. There is a Jonsson algebra of cardinality X if there is
a Jonsson algebra of cardinality A with exactly one commutative
binary operation.

The second characterization is related to a question of Myciel-

skt about locally finite algebras: :
Definition An algebra A = (4, {f. - n € N}) is locally finite iff
whenever X is a finite subset of A, then A|X (the subalgebra of 4
generated by X)) is finite.

What can one say about locally finite Jonsson algebras?
Improving a theorem of Erdos and Hajnal, Devlin proved:
Theorem. [D] There is a locally finite Jonsson algebra of cardin-
ality A iff there is a Jonsson algebra of cardinality .

3. pcf theory

Possible cofinality {pcf) theory is the study of the cofinalities of
ultraproducts of sets of cardinals. It was discovered (invented) by
Shelah, and developed in its fullest form in his work on cardinal
arithmetic, [Sh]. The theory has found applications in set theory,
infinitary combinatorics {partition calculus), model theory, algebra
(infinite abelian groups), set-theoretic topology, Boolean algebras
(productivity of chain conditions) and Jonsson algebras. We select
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just the definitions and result that are necessary to prove that there
is a Jonsson algebra on ¥, ;1. A lucid introduction to pef theory is
available in the paper by Burke and Magidor, [BM], which serves
also as an excellent entry-point to Shelah’s treatise.

Suppose that a is a set of regular cardinals and min(a) > |al.
Let D be an ultrafilter on a. The elements of Ile are functions f
such that dom(f) = a and (Va € a){f(a) < a). We can define an
equivalence relation =p on Ila by

f=pgif{a€a: fla) =gla}} € D,

and use the notation f/D {Ila/D) for the equivalence class of f
(the set {f/D : f € Tla}). The ultraproduct (Ila/D, <p), where

f<pgiff {e€a: flo) <gla)} €D,

is a linear order since D is an ultrafilter. Hence it has a true

cofinality:

Definition Suppose-that X is a cardinal. We say that A is the
true cofinality of Ila/D, and write A = tcf(Ila/D}, iff:
{1) A is regular;
(2) 3 a strictly increasing cofinal sequence {f; € Ila.: { < A} in
Ma/D, ie.
(21) ¢ < £ < Ximplies fe <p f:
and (2.2) (Yh € Ta)(3¢ < A)(h <p fo). .
To illustrate the idea, we compute some true cofinalities.

Example 4: If D is a principal ultrafilter on a (sd D is generated
by a singleton subset {a} of a say), then tcf(Ila/D) = a.

Example 5: Suppose that ¢ = {8, : 1 < n < w}. If D is
a non-principal ultrafilter on a, then tcf(Ille/D) > R,. Why?
Well, if {f; € Ia : i < W} is <p-increasing and & < w, then
(¥n > E}{f;:(R,) : # < N} is bounded in R, by 8; say, and so the
function '

G(R) — sup{Bi 1 < W} 4+ 1, ifm > k(= 0,if 1 <m < k)

is an element of [Ta and (¥i < R)(f; <p g), since D contains the
co-finite filter on a. In other words, {f; € Ila : ¢ < Ny} is not
cofinal in Ma/D.
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One of the fundamental tasks in pcf theory is to determine
which cardinals are the true cofinalities of the ultraproducts Ia/D,
or how many possible cofinalities the set o supports.

Definition We define pcf{a), the possible cofinalities of the set a,
to be the collection

{ : for some ultrafilter D on a, tef{Ila/D) = A}.

Example 4 tells us that a C pcf{a). We know too that

there arc 22 ultrafilters on @ (since every ultrafilter belongs to
P(P(a))). Thus trivially

la < [pefla)] < 22

It can be shown that |pcf(a)| < 217! and, for more money, |pcf(a)|
|a{"3. The major open guestion in pcf theory is whether |pcfia)|
|a-

<

For our purposes, we shall need a special case of one of She-
lah’s theorems:

Theorem. [Sh] Suppose that @ = {8, : 1 < n < w}. Then
Ro+1 € pef(a).

So one can represent Nw+] as the true cofinality of a/D for
gome ultrafilter D on a. Note that this does not tell us anything
about ®,, or other singular cardinals, since they can never appear
in a set of possible cofinalities (which are by definition regular).
Shelah demonstrated the power which this representation provides
in his proof of the existence of a Jonsson algebra of cardinality
Ryp1:

Theorem. [Sh] There is a Jonsson algebra on R, ;.
Proof: Let p = R, & = (28)", and fix M < H({#), pt € M,
IMNpt| = ut. We show that y™ C M (and appeal to Lemma 2).

We know that u* € pef{a), where a = {R,, : 1 < n < w}. By

elementarity, it follows that:

(1) a € M;

(2) a C M;

(3) there is an ultrafilter I on a, D € M, and a sequence

{firi<p'te MNIla
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such that {f;/D :i < g} is increasing and cofinal in fla/D.
Claim: {a € a : |M M o} = a} is cofinal in a.
Proof of claim: Otherwise, let g(a) = sup{M Na) (gla) = 0 if
sup(M Na) = ). So g & Ila, and hence by (3) there is k£ < T
such that ¢/D < f./D. So for some a € a, 0 < gla) < fulr)
(D contains the co-finite filter). But fe(a) € M N, and g(a) =
sup{M Na), contradiction. Hence {a € a : |M Na| = a} is cofinal
in a. By Corollary 4, there is a Jonsson algebra on « for each
o € a, and so « € M (by (2) and Lemma 2). Thus: g C M.
Finally, for £ € M N g, u), there is a bijection ¢ from g onto &,
and hence £ € M. But |[Mnut| = pt, hence pt C M. By Lemma
2, this establishes that there is a Jonssen algebra on pt =N, 1. @
Shelah has extended this result to cover a wide class of suc-
cessors of singular cardinals and also the class of inaccessible car-
dinals which are not in some degree Mahlo or have a stationary

‘subset not reflecting in any inaccessible cardinals. These results

are presented in [Sh]. Their broad import is to make it progress-
ively more difficult for Jonsson cardinals to exist. And indeed, if
one increases one’s axiomatic commitments beyond ordinary set
theory {ZFC), this difficulty becomes an impossibility:

Theorem [Frdés-Hajnal-Rado, Keisler-Rowbottom]

(1) If 2* = AT, then there is a Jonsson algebra on At

(2) If V = L, then for every infinite cardinal A, there is a Jonsson
algebra on A.

The relatively easy proofs of these can be found in [BM] or [J]
or [EHMR]). Thus it is consistent that there are no Jonsson cardin-
als at all. For Jonsson groups, additional set-theoretic hypotheses
also have decisive implications:

Theorem. [Sh80] Suppose that X is an uncountable cardinal and
2* = At
(1) There is a Jonsson group of cardinality X™.
(2) Moreover this group is a Jonsson semigroup, is.simple, and
there is a natural number n such that for any subset X of the
group of cardinality A*, any element of the group is equal to the
product of n elements of X.

Whether there can be a Jonsson algebra of singular cardin-
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ality (e.g. N,,) appears more difficult to resolve and different in
character from the regular case. In 1988, Koepke [K], building on
the work of Jensen on inner models of set theory, proved results
‘which indicate that the non-existence of Jonsson algebras of singu-
lar cardinality is essentially connected with large cardinal axioms:
if there is a Jonsson cardinal ¥ such that £ < ¥, then for each w
there is a model of ZFC whose set of uncountable measurable car-
dinals has order type . He also showed that if there is a singular
Jonsson cardinal of uncountable cofinality &, then there is an inner
model of ZFC with & measurable cardinals. These results estab-
lish that the assumption of the non-existence of a Jonsson algebra
of singular cardinality is much stronger than the assuraption that
ZFC is consistent.

To conclude this brief survey, let me mention perhaps the
most attractive open question about Jonsson algebras: can one
prove in ordinary set theory (ZFC) that every successor cardinal
carries a Jonsson algebra?
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INTEGRAL INEQUALITY ESTIMATES
FOR P.D.E.s IN UNBOUNDED BOMAINS

J. N. Flavin

1. Introduction

In the context of problems involving P.D.E.s (boundary value prob-
lems, initial boundary value problems etc.), inequality estimates
for certain, non-negative, L? integral measures of the solution are
of interest: typically, they yield, inter alia, uniqueness of solution
and continuous dependence upon data. The purpose of this note is
to show how such estimates for weighted measures may be obtained
in the context of unbounded domains where (prescribed) growth of
the solution at infinity is allowed. Three results are proved which
represent perhaps the simplest cases of such; they are believed to
be new, or, at least, not well known.

In the matter of notation, subscripts denote partial differenti-
ation, and if will be convenient occasionally to write (for the weight
function) '

glé) = e,

where A is a constant, £ being the appropriate independent vari-
able.

2. An Hyperbolic Equation

Let us commence with (arguably} the simplest example of the (lin-
ear) wave equation in an unbounded region, where growth at infin-
ity 1s allowed which is not faster than exponential. A weighted
energy inequality is derived therefor which has obvious analogues
in all the common cases of wave-like equations in unbounded media
(of whatever type); morecver, it has analogues in nonlinear elast-
odynamics and electrodynamics for certain classes of constitutive
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equations. It is an easy matter to modify the proof of the pro-
position given hereunder in order to include a source term {as in
subsequent Propositions). .

Consider €? solutions of the initial boundary value problem:
u(z,t) satisfies

utt=um,0<$<oo,t>0,
u{x,0), us(z,0) specified , 0 < z < o0,
u(0,t) =0,

Ug, 1wy = O(e"™) as © — oo,

g
b2
e

N

where p is a given positive constant (here and subsequently}.

Proposition 1. The weighted energy associated with the forego-
.ing, namely

Bl = [ o5 (i +u)de 5
where A is a constant such that
A > 2p, ' (6)
satisfies the inequality
E(t) < B(0) exp(t). (7)

Proof: Differentiation, use of (1), followed by integration by parts
using (3)-(6) yields

b g(z) (wpue ), dz = A / g(z)u usde.
dt 0 Jo

Use of the arithmetic-geometric inequality gives

dF
— < AFE
dt —

and the required estimate (7) follows on integration.
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Remark 1. Uniqueness of solution, and continuous dependence
{in a certain sense)} on data, for the problem (1)-{4} follow by
standard means.

Remark 2. The inequality (7) is sharp in the sense that

E()/{E(0) exp(At)} ~ 1 as 2u/1 1 1

when
w(x,t) = sinh px et

Remark 3. An estimate for u(x, ), in terms of the initial data,
follows from {7) via Schwarz’s inequality:

u?{z, t) = (j[; quz)z < (.[ow e)‘”’dm) (/: e‘“’uida:)

<2x ! (e? — 1) E(2).

3. A Parabolic Equation

Consider smooth solutions of the I.B.V.P. for the heat equation
{with source) in a semi-infinite rod: w(z,t) satisfies

Uy = Upe + f2), 0 < 2 < 00, £ >0, (8)
u(z,0) = specified, (9)
u(0,8) =0, | (10)
U, Ug, g = O(e?®) as ¢ — 00, (11)

where p is a positive constant, and f is a given function such that
fF=0(e’*) as £ — o0. {12)

Proposition 2. The weighted L? measure of solution associated
with the foregoing, namely

F(t) = jgm e Moyt da (13)
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=

where A is a constant such that

A> 24, (14)
satisfies .
F(t) < [{FY2(0) + a}e* /% = a]?, (15)
where
o =451 (16)
with

s={ mg(z)fﬂafar}é | (17)

Proof: Differentiation, use of (8), integration by parts (twice) using
(10), (11}, (13}, (14) yields

dF & i =
o= —2j[; g(z)uidr + Aj£ g(z) (ug)mdr + 2]0 glz)ufde

=-2 /:0 g(@)uids + NF + 2 ]'00 g(z)ufde. {18)

Applying the inequality of Appendix 1 to the first term, and
Schwarz’s inequality to the last, we obtain

dF 1 .
— < A2F+ 2812 (19}
whence the proposition. follows by straightforward integration

Fl/z \/_)
Remark 4. Similar to Remark 1.
Remark 5. The inequality {15) is sharp in the sense that both
sides are asymptotically equivalent as 2u/A + 1 when w has the
form

w(z,t) = U(t) sinh pz

{the associated f(z), u(z,0) also being proportional te sinh pz).
Remark 6. A similar-though more involved—analysis may be
carried out, mutatis mutandis, for the measure

F(t):/ e_)‘“’uidz.
0
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Moreover, one may deduce therefrom pointwise bounds, in terms
of data, for |u{z, )| (cf. Remark 3).

4. An Elliptic Equation

Consider smooth solutions of Poisson’s equation in a semi-infinite
strip: u{x,y) satisfies

Ugy + Uyy = (@, y), 0 <o < 1,0 <y < oo, {20)
wiz,0) =0, (213
w(0,y), #(1,y) specified, (22)
U, Uy, 1y = O (") as y — o0, (23)

where y is a given positive constant, and f(z,y) is a given function
such that
flz,y) = O (e} as y = o0 (24)

Proposition 3. The weighted L? (cross-sectional) measure of
solution of the foregoing, namely

o
F(z) z/ e Muldy (25)
0
where \ is a constant such that
A > 2u, (26)
satisfies the estimate
F'2(z) < G(x), (27)

where ((x) satisfies the {simple) boundary value problem
A2
" (I) G = — (), (28)

wherein

o) = { [T y)dy}1/2 , (29)

=i
o
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subject to
G0y = FY2(0), G(1) =F72(1), (30)

(both of which are available from data) PROVIDED
A< 2m. {31)
Proof: Successive differentiations, use of (20) and integration by

parts using (21), (23), (25), (26}, together with the inequality in
Appendix 1, yield '

Flo)= [ 2gyuuedy, (32)
]
) o0 AZ o
F'(z) zzf guidy — ?F+f 29 fudz. (33)
0 0

Assume that £ > 0 strictly. Noting that
12y _ Yozt Lo
(FY2)" = SF AP~ o),

(25), (26), (32), (33), together with Schwarz’s inequality (used
twice) lead to

(FU/2)" 4 (1_2) FY2 > g(x).

The proof is completed on invoking Appendix 2 with A identified
with F'/? — G. The restriction that F > 0 strictly may be removed
without difficulty, but this is not pursued here.

Remark 7. The restriction (31) is irremovable as the example
u = sinh 7y sin wx shows.

Remark 8. It is verifiable that the inequality (27} is shorp in the
sense that both sides are asymptotically equivalent as 2p/X + 1
when w has the form

u = U(z) sinh py




(2]
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(the associated f(x,y), u(0, ¥}, «(1,y) being suitable constant mul-
tiples of sinh zy).

Inequality estimates for integral measures of P.D.E.s in many
contexts are treated in [1]. They include ones for unbounded
regions which allow (prescribed) growth at infinity, of which the
ones given here are perhaps the simplest examples: one of the
earliest - perhaps even the earliest - examples of these latter tech-
nigues in mechanics occur in [2] and in the papers cited therein.

We conclude with the remark that where estimates for
unbounded media of the type considered in this paper are con-
cerned, the exponential weight function used throughout is by
no means essential: growth conditions other than the exponential
ones together with complementary weight functions, can equally
well be contemplated.
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Appendix 1

Proposition. If &(z) € C1(0 < r < o0) is such that $(0) = 0
and

[ e (B2 + %) dr <

Jo

for some positive constant A, but is otherwise arbitrary, then

A? * — AT g2 = —Az 52
— e hdr < e~ dr.
4 Jo 0

Proof: The hypotheses imply that

/ (ff"““I'?)aJ dz =0,
(€] B

[1A]

(24]
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whence

AQ o ; 2 [s'a] 2
(—) (J[ e‘”@zdm) = U e“”@@zd:c)
4 13 0

[aw] 0 .
< / e AP f e Mo dy
0 ¢

by Schwarz's inequality. {For a proof under weaker hypotheses,
see [2].)

The inequality above is sharp in the sense that both sides are
asymptotically equivalent when

& = sinh px,
© being a constant such that A > 2u, and 2u/A 1 1.
Appendix 2
Proposition. Suppose that h{z) € C(0 < x < 1) satisfies
R4 AR 0, =e)0,i(
R(0) = h(1) = 0, '
where A Is any positive constant such that A < w°, then
h<0.

The case A = 0 is geometrically obvious (curve under chord
property for convex functions). Different proofs of the proposition
méay be found in {1A] by means of maximum principles, and in
[2A] by means of Wirtinger’s inequality.
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SOME NEW RESULTS
IN RICCI CURVATURE

David Wraith

The purpose of this note is to announce some new results (see [10])
concerning manifolds of positive Ricci curvature.

The motivation for this line of study is ultimately to under-
stand the relationship between curvature and topology. The earli-
est result in this direction was the Gauss-Bonnet Theorem:, which
states that for a closed Riemannian 2-manifold, the Euler char-
acteristic is proportional (by a factor of 27) to the integral of
the Gausstan curvature. ‘As a consequence we have for example
that any 2-manifold admitting a metric of everywhere positive
curvature must have a positive Fuler characteristic.

In dimensions greater than two, there are various competing
notions of curvature: the scectional, the Riccl and the scalar. The
scalar curvature, being the weakest, has proved the easiest to ana-
lyse, and much work has been carried out into understanding its
topological implications.

It turns out that there are in fact no topological restrictions
for negative scalar curvature in dimensions > 3. In other words
any closed manifold of dimension > 3 can be equipped with a
metric of negative scalar curvature - even a sphere!

The case of positive scalar curvature is more interesting. The
topological implications are not fully known, but partial resuits
include the following (see [9]}:

Theorem. (Stolz) Let M™ be a smooth, closed, simply-connected
manifold with n > 5. If M is non-spin, then M admits a metric
of positive scalar curvature. If M is spin, then M has a positive
scalar curvature metric if and only if a(M) = 0, where @ is a
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certain (topologically defined) homomaorphism of spin bordism into
connective K-theory.

o QP ko,

The key to much of the progress with scalar curvature involves
the concept of “surgery’, which we describe presently.
Given an embedding

t: D x S — M,

where M is a manifold of dimension n+m, we form a new manifold
M in the following way:

o

M= (M\ (D" x $™ LS x D))/ ~

where o denotes the interior and ~ denotes identification of the
boundaries via the map ¢. (Note that (D™ x §™) = (&1 x
D™y = §7=1 % §7) This process is known as performing an
m-surgery. If we wish to be more precise we speak of performing
a surgery on the embedded sphere «(%x x S™) C M. The number
n is called the codimension of the surgery, and M is the result of
the surgery. '

The relevance of surgery to questions of curvature arises from
the following theorem, which is due to Gromov and Lawson [2] and
independently to Schoen and Yau {7].

Theorem. (Gromov, Lawson, Schoen, Yau) Suppose M is a man-
ifold of dimension > 5 with a positive scalar curvature metric. Let
M be the result of performing a surgery of codimension > 3 on
M. Then M has a positive scalar curvature metric

We turn our attention now to Ricei curvature. It has been
established that there are no topological restrictions also for neg-
ative Ricci curvature in dimensions > 3 (see [6]). Since a positive
Ricel curvature metric is also a positive scalar curvature metric,
any obstruction to admitting a positive scalar curvature metric is
also an obstruction to admitting a positive Ricci curvature metric.
The only known restriction to positive Riccl curvature which does
not, arise from positive scalar curvature is stated in the following
theorem which is due to Myers:
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Theorem. (Myers) If M is compact and has a positive Ricei
curvature metric then the fundamental group m M is finite.

Althongh there are manifolds (such as 5% x §') which admit
metrics of positive scalar curvature but not of positive Ricci
curvature, none of the known examples are simply connected.

In the light of the progress made for positive scalar curvature,
it 1s reasonable to look for surgery results in the realm of Ricci
curvature. In [8], Sha and Yang prove such a result, though it
only applies in very special circumstances.

Note that the normal bundle of the sphere 5™ in the product
8™ x 5™ has a canonical trivialization, te there Is a canonical
emhedding

¢ D" ox 8™ (s x 8 C 87 x 8™

Suppose that ¢ is actually an isometry, where the metric on §™ x
5™ is a product of round metrics and the normal bundle fibres
have constant radius. Sha and Yang show that provided m + 1,
n > 2, the result of performing any number of surgeries using
such embeddings yields a manifold which admits a positive Ricci
curvature metric.

Qur first result is a surgery theorem with more flexibility than
that of Sha and Yang. It can be shown that Sha and Yang's con-
clusion remains true if the embedding ¢ is replaced by an arbitrary
one, provided m + 1 > n > 3. More generally we have the follow-
ing: - :

THEOREM A. Suppose we have a manifold M of positive Ricci
curvature together with an isometric embedding

t: DR(N) x 8™ (p) ~— M,

where DR (N) denoles a geodesic ball of radius R in the n-sphere
with the round metric of radius N, and where 5™ (p) is the m-
sphere with the round metric of radius p. Suppose further that
m+1>n >3 We can twist ¢ to a non-isometric embedding by
composing with a map '

T:D" X 85— D" x ST

-
B
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[

(z,y) — (T(y)z,y)

where T : 8™ — SO{n). Let {0} denote the centre point of D™,
Performing surgery on +({0} x S™) using the map ¢ o T, we again
obtain a manifold of positive Ricci curvature provided the ratio %
is suitably small.

Using this result we can prove the following:

THEOREM B. Homotopy spheres which bound parallelizable
manifolds admit metrics of positive Ricci curvature.

(Note that a homotopy sphere is a manifold homotopy equivalent
to a sphere, and that a parallelizable manifold is a manifold with
trivial tangent bundle.)

Many examples of Ricel positive manifolds are homotopy
spheres. However, by a result of Hitchin, [4], this is not true for
all homotopy spheres. Indeed some admit no metric of positive
scalar curvature. One would like to find criteria for deciding
whether a given homotopy sphere admits a Ricci positive metric
or not.

We can divide the set of homotopy spheres into those which
bound a parallelizable manifold and those which do not. It is
reasonable to ask if this division mirrors the division by posit-
ive/negative Riccl curvature.

The diffeomorphism classes of homotopy spheres bounding
parallelizable manifolds of dimension m form an abelian group

_under the connected sum operation. This group is denoted bF,,. It

was shown by Kervaire and Milnor in [5] that bF,q4 = 0, bP4g40 is
either 0 or Zy (depending on k), and bPyy is cyclic. In [3] Hernan-
dez showed that a certain class of Brieskorn manifolds carry Ricci
positive metrics. This class includes homotopy spheres repres-
enting the non-trivial element of those groups bPig4e which are
isomorphic to Z, {a case previously covered by Cheeger in [1]),
as well as many elements in bP. Until now, however, it was an
apen question whether in fact all such homotopy spheres admit
Ricci positive metrics.

On the other hand, using these methods it can be shown that
there is a homotopy sphere of dimension 8 which admits a Ricecl
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positive metric, although it is not the boundary of a parallelizable
manifold. Henee the converse to Theorem B is false.
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THE 36TH INTERNATIONAL
MATHEMATICAL OLYMPIAD

Fergus Gaines

The 36th International Mathematical Olympiad tock place in York
University, Ontario, Canada, on 18th and 20th July 1995. 412
students participated from 73 countries and Ireland was repres-
ented by Robert Hayes (8t Thomas Community College, Bray),
Gavin Hurley (Coldiste an Spioraid Naocimh, Cork), Brian Jones

{Gonzaga College, Dublin), Peter McNamara (East Glendalough

School, Wicklow), Deirdre O'Brien (Mount Mercy College, Cork)
and Gregory Wall (St Mary’s Academy, Carlow). The team
consisted of the top six performers in the Irish Mathematical
Olympiad, which took place on 6th May 1995. The University
of Limerick hosted a three-day intensive training session for the
team from 5th to 7th July. The training involved staff from UL,
UCC and UCD and some previous Irish Olympiad team mem-
bers. The team leader was Gordon Lessells of UL and the deputy
leader was Eugene Gath, also of UL. T accompanied Gordon as an
“observer”.

Gordon and I flew to Toronto on 12th July, whence we were
taken to the University of Waterloo. The first job of the team lead-
ers was to select six problems, from a short list of 28, which would
form the two papers of the IMO exam. A local committee had
chosen the short-listed questions from a total of about 200 prob-
lems which were submitted by the participating countries. The
leaders and observers were free to work on the problems for 24
hours, without the distraction (7) of having the official solutions!
I felt a bit disappointed because I only managed to solve four of
the problems in that time, but felt a little less chastened on dis-
covering that many of the team leaders had similar success! One

59




60 IMS Bulletin 36, 1996 ]

of the questions submitted by Ireland was shortlisted and was in
contention for a long time, before being eliminated from consider-
ation. 'T'he problem subsequently appeared on this year’s Iranian
Mathematical Qlympiad. The problem, which was composed by
Tom Laffey, is as follows:

At a meeting of 12k people, each person exchanges greetings
with exactly 3k + 6 others. For any two people, the number who
exchange greetings with both is the same. How many people are
at the meeting? Prove that such a meeting is possible.

The team, accompanied by Eugene Gath, arrived in Toronto
on 15th July and were taken to York University. A lot of social
activities were organized for them and there was plenty of time
to establish friendships with students from other countries. For
two days after the exams the leaders and deputy leaders were
fully involved in marking the students’ work and agreeing marks
with the Canadian problem coordinators - this was an acrimonious
business, at times. Gold, silver and bronze medals were awarded
to the top performers - not more than 50% of the students can
get medals. The performance of the Trish team was a bit disap-
pointing. They won no medals, although Deirdre O'Brien and
Peter McNamara got an “honourable mention” for their solutions
to Question 1. Overall the team came 61st out of 73 countries.

Before the exam took place, some team leaders were vocifer-
ous in their claim that the-exam was too easy - one leader going so
far as to claim that each member of his team would get full marks.
However, once the exam had taken place, no more such remarks
were to be heard, although it was generally agreed that Question
1 was a bit too easy. China took first place, with Romania second
and Russia third. The United States was very disappointed with
11th place, particularly after their unique performance in Hong
Kong in 1994, when all their students got. full marks. Questions 2
and 6 turned out to be very difficult for most students, although
one Bulgarian student was given a special prize for the elegance
of his solution to Question 6 (the second solution given on p.75).
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Here are the questions.
First Day

1. Let A, B, C and DD be four distinct points on a line, in that
order. The circles with diameters AC' and BD intersect at the
points X and ¥. The line XY meets B at the point Z. Let P be
a point on the line XY different from Z. The line C'P intersects
the circle with diameter AC at the points € and M, and the line
B P intersects the circle with diameter BD at the points B and V.
Prove that the lines AM, DN and XY are concurrent.

2. Let a, b and ¢ be positive real numbers such that abc = 1.
Prove that

1 1 1
a®(b+c) + Plc+a) + c3{a +b)

3
> =
2

3. Determine all integers n > 3 for which there exist n points A;,

Ay, ..., A, inthe plane, and real mmmbers vy, ra, ..., 7, satisfving
the following two conditions:
(i) no three of the points 4;, As, ..., 4, lie on a line;

(i) for each triple ¢, j, &k (1 <4 < j < k < n) the triangle A; 4; A,
has. area equal to r; +r; +r¢.
Time Allowed — 43 hours.

Second Day

4. Find the maximum value of xy for which there exists a sequence
of positive real numbers xg, 1, ..., 1995 satisfying the two con-
ditions:

1
=2;; + — for i = 1,2,...,1995.
Li1 &

1) wo = wygos (i) i1 +

5. Let ABCDEF be a convex hexagon with

AB=BC =CD
DE = FEF =FA

and

/BCD =/EFA=60°
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Let 7 and H be two points in the interior of the hexagon such that
[AGEB = /DHE = 120°. Prove that

AGH+GB+GH+ DH+HE > CF.

B. Let p be an odd prime nuwmber. Find the number of subsets A
of the set {1,2,...,2p} such that

(i) A has exactly p elements, and

{ii} the sum of ail the elements of A is divisible by p.

Time Allowed— 41 hours.

The solutions to these problems are on pp.69-76.
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University College,
Belfield

Dublin 4.

1]

Research Announcement

OPTIMAL APPROXIMABILITY OF SOLUTIONS
OF SINGULARLY PERTURBED
DIFFERENTIAL EQUATIONS

R. Bruce Kellogg and Martin Stynes

Using the theory of n-widths, the approximability of solutions of
singularly perturbed reaction-diffusion and convection-diffusion
problems in one dimension is quantified. Tull details appear in

1.
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Research Announcement

FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS USING
EXPONENTIAL SPLINES ON TRIANGLES

Riccardo Sacco and Martin Stynes

A new family of Petrov-Galerkin finite element methods on trian-
gular grids is constructed for singularly perturbed elliptic prob-
lems in two dimensions. It uses divergence-free trial functions
that form a natural generalization of one-dimensional exponential
trial functions. This family includes an improved version of the
divergence-free finite element method used in the PLTMG code.
Numerical results show that the new method is able to compute
strikingly accurate solutions on coarse meshes. An analysis of the
use of Slotboom variables shows that they are theoretically unsat-
isfactory and explains why certain Petrov-Galerkin methods lose
their stability when generalized from one to two dimensions. Full
details appear in [1].

Reference

R. Sacco and M. Stynes, Finite element methods for convection-diffusion
problems using exponential splines on triangles (1995) (Preprint 173/P,
Mathematics Department, Politecnico di Milano, Milan).

Riccardo Sacco,
Department of Mathematics,
Politecnic of Milan,
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Department of Mathematics,
University College,
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Research Announcement

NECESSARY CONDITIONS
FOR UNIFORM CONVERGENCE
OF FINITE DIFFERENCE SCHEMES
FOR CONVECTION-DIFFUSION PROBLEMS
WITH EXPONENTIAL AND PARABOLIC LAYERS

Hans-Gérg Roos and Martin Stynes

A difference scheme for a convection-dominated problem is said to
be uniformly convergent when its convergence behaviour is essen-
tially independent of the diffusion parameter. In this paper we
discuss necessary conditions that uniformly convergent schemes
must satisfy in the presence of exponential and parabolic bound-
ary layers. Full details appear in [1].

Reference

H.-G. Roos and M. Stynes, Necessary conditions for uniform conver-
gence of finite difference schemes for convection-diffusion problems with
exponential and boundary Iayers (1995) ( Math. Appl. (to appear)).

Hans-Gérg Roos,

Institute of Numerical Analysis,
Technische Universitit Dresden,
Germany,

Martin Stynes,

Department of Mathematics,
University College,
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Besearch Announcement

EFFICIENT GENERATION OF SHISHKIN MESHES
IN SOLVING CONVECTION-DIFFUSION PROBLEMS

Neil Madden and Martin Stynes

A description of Shishkin meshes for resolving boundary and
interior layers is given. It is shown how PLTMG can be used
to construct such meshes with minimal effort. Several types of
singularly perturbed convection-diffusion problems are solved on
these meshes. These solutions are compared with those obtained
on uniform meshes and on meshes adaptively refined by PLTMG;
it is seen that Shishkin meshes yield much more accurate solutions
with little additional computational effort. Full details appear in

(1.

Reference

N. Madden and M. Stynes, Efficient generation of Shishkin meshes in
solving convection-diffusion problems (1995) (Preprint 1995-2, Math-
ematics Department, University College Cork).

Neil Madden and Martin Stynes,
Department of Mathematics,
University College,
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Research Annocuncement

ANALYSIS OF
A CELL-VERTEX FINITE VOLUME METHOD
FOR CONVECTION-DIFFUSION PROBLEMS

K.W. Morton, Martin Stynes and Endre Suli

The cell-vertex finite volume approximation of an elliptic

convection-dominated diffusion equation is considered in two
dimensions. The scheme is shown to be stable and second-order
convergent in a mesh-dependent Ly norm. Full details appear in

[1]-

Reference

K. W, Morton, M. Stynes and B. Siili, Analysis of a cell-vertex finite

volume method for convection-diffusion problems-(1994) (Report Num-
ber 94/6, Oxford University Computing Laboratory).
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Oxford University Computing Laboratory,
Numerical Analysis Gronp,

Wolfson Building,
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Oxford 0X1 3QD, UK.
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Book Review

Mathematics—The Music of Reason
Translated from the French by J. Dales and H. G. Dales

J. Dieudonné
Springer-Verlag 1992, 287 pp.
ISBN 3-540-53346-X
Price DM 71.00.

Reviewed by Robin Harte

Here is a master of exposition at the peak of his form - the inter-
preter and expositor of Grothendieck’s theories offers us a dancing
run over the surface of modern mathematics, carrying us from
astronomy in the ancient world to Godel, “independence” and
Cohen “forcing” .. As we might expect,.the perspective throughout
is very “Bourbaki”. After two more or less introductory chapters
on “Mathematics and Mathematicians” and “The Nature of Math-
ematical Problems”, each chapter is addressed to non-specialists
and then furnished with an Appendix for the professionals. Thus
we have “Objects and Methods in Classical Mathematics” , with an
Appendix ranging from ratios 4 la Euclid to limits via exhaustion,
“Some Problems of Classical Mathematics™ with an Appendix
covering prime numbers and the Riemann zeta function, “New
Objects and New Methods”, whose Appendix is about (Galois The-
ory and the foundations of metric spaces, and finally “Problems
and Pseudo-problems about Foundations”, with an Appendix
about surface geometry and models of the real numbers. The
translation, by J. and H. G. Dales, is uniformly excellent: only
the typeface seems to have an old fashioned air about it.

Robin Harte,

School of Mathematics,
Trinity College,
Dublin 2.
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Sclutions to the Problems of the 36th IMO

1. First solution. Let DN meet XY at the point R. The tri-
angles RZD and BZP are similar and hence RZ/ZD = BZ/ZP.
Thus RZ — BZ.ZD/ZP = ZX%/ZP. If § is the point of inter-
gection of AM and XY, then a similar argument proves that
57 = ZX*/ZP. Thus the points R and S coincide and the result
follows.

Second solution. Choose coordinates so that the line ABCD
is the z-axis with Z as origin and XY is the y-axis. Let the
coordinates of A, B, C, D and P be (&,0), (5,0), {c,0), (d,0) and
{0, p), respectively. The problem can now be solved using routine
calculations.

2. The expression on the left hand side of the inequality can be
made a little more friendly by letting a = 1/2, = 1/yand c = 1/=z.
Then zyz = 1 and the inequality to be proved is:

:L.2 y2 2’2

+ +
y+z z+x zTH+Y

3
o=,
-2
If § denotes the left hand side, then

ety +2S=[x+y)+y+2)+{(z+2)8
(VT +u) + (Vy+2)° + (Ve + 2)*]x

[(m)zf(\/m) (x/—)]

by Cauchy’s ineguality. But the arithmetic-geometric mean
inequality gives x +y + z > 3, since zyz = 1. Thus

(z 4z +7y)*

Az +y+2)8 >3z +y+2).

Hence S >'3/2 and the result is proved.

3. If 4,, As, Az, Ay are the vertices of a square of unit area and
if 7, = 1/6 for i = 1,2,3,4, then the triangle A;4;Ax has area
ri +r; +rg for each triple ¢, j, K (1 <7 < j < k < 4). Sothe
result holds for n = 4. :
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Suppose that By By B3 B, is a convex guadrilateral and that
there exist real numbers 7y, 72, r3, r4 such that the area of the
triangle By B; By is r; +r; +ry, for all integers 4, 4, k with 1 <4 <
j < k <4. Let B be the point of intersection of B; B3 and BsBy.
Then, by considering the areas of the triangles BB3 B4, BBy B3,
BBy B, By BBy, it is not difficult to prove that

(%) r1+ 713 =rg 4+ 4.
Let » > b and suppose there exist n points 4, A, ..., A, and n
real numbers ry, ra,. . ., 7, satisfying the conditions of the problem.

Form the smallest convex set C' containing all the points 4;, A,
..y As.

Case 1. Suppase C is a convex pentagon. Apply (*) to the convex
quadrilaterals A; Az A3 A4 and 41 A9 A3 A5 to get

ri+73 =73 +74 and 7] + 73 = Ty + 5.

Thus ry = r;. Repeating this argument for the appropriate pairs
of quadrilaterals we get

P1="Fg=T3 =74 =75 =T,

say. Then the area of the triangle 4,A43544 = 3r = the area of
the triangle A, Az Ay and thus A; A5 is parallel to 4,45, Algo, the
area of Ay A A3 = the area of A3 A3 Ax and hence As A, is parallel
to A1 As. Thus A;, Ay and Ay are collinear. This contradiction
proves that C is not a convex pentagon.

Case 2. Suppose (' is a convex quadrilateral. Without loss of
generality, let C' be A; As A3 44. Since no three of the points A,
A, ..., Ay are collinear we may also suppose, without loss of
generality, that Ag 1s strictly inside the triangle A4; A5A4;. The
equation

area A1 A Ay + area A, 4344 =

area A, Az A5 + area Az A, A+
area, A4A145 + area Ay Ay Ax

=
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implies that vy +r3 +4ry = 0 and, hence, v + 14+ 4r5 = 0 (using
{(#)). The equation

area A1 A, Ay = area A1 AsAr + area A; AgAs + area Ap A4

implies that r; + r3 + 74 + 3r5 = 0. Thus r; = r5. Thus the
triangles A2 A3 Ay and As Az A4; have the same area. Hence the
triangle A; A; A5 has zero area. This implies that 4;, 4, and As
are collinear, which is impossible. Hence € is not a quadrilateral.

Case 3. Suppose (' is a triangle. Then, without loss of generality
(' = A1 A2 A3. The points Ay and As are inside the triangle. The
equation ' '

area Ay Ay Ay + area A, A4, + area A3 A1 Ay = area 4; 454,

implies that r1 + 72 +r3 + 3r4y = 0. Similarly, on replacing A4 by
As, we get 1y +re + 13 +3rs = 0. Thus vy = rs. Then

7'1+T;3 +T4 - M +T'2+T‘5
implies that A4 Ag is parallel to 4; As and
TN+ T3+Try =71 +73+T75

implies that AyAs is parallel to A; Ay, Thus Ay, As, Ay are col-
linear. This contradiction implies that ' is not a triangle.

Since we get a contradiction in all cases we must have n <
5. Hence n = 4 is the only integer greater than 3 satisfying the
conditions of the problem.

4. It is easy to deduce from condition (i1} that, for each integer
i > 1, )

1
Tiy

. 1
either x; = 5:35_1 or Iy =

For each integer ¢ > 1, induction can be used to prove that z; =
27x3, for some integer r with — < r < i and s = (—1)""¢, where
t=lr|
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Let 21095 = 27x). Then o = z,995 gives z; © = 27. If
s = 1 then » = 0. But this gives the contradiction 1 = s =
(~1)19%5=0 == 1. Hence s = —1 and 22 = 27. So the largest

value zg can have is attained when r here has its largest possible
value. Now —1995 < v < 1995. The value r = 1994 is attained for
the sequence which satisfies

1

T19949

Lig1 = %.’Ei, fori= 0, 1, ey 1993 and X199 =

Then 71995 = 2'9%%2;!. So, in this case, z3 = 2'9%4, Thus 7, =
2997 ig the maximum value of zy for which a sequence with the

required properties exists.

5.

Form the quadrilateral ABDFE. The triangles BCD and FAE
are clearly equilateral. On the line segment AB construct the
(exterior) equilateral triangle AC"E and on the line segment DI

K
Ha
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construct the {exterior) equilateral triangle EDF'. In the quad-
rilaterals CBAF and C'BDF' we have CB = ("B, BA = BD
and AF = DF’. Also /CBA = /C'BD and /BAF = /BDF'
because /BAE = /BDE, since the triangles ABD and AED
are isosceles. Thus the quadrilaterals CBAF and C'BDF' are
congruent. So CF = C'F'.

Since ZAC'B = 60° and /AGB = 120°, the quadrilateral
AC'B@G 15 cyclic. Ptolemy’s theorem then says that

AC'.BG + BC'.AG = AB.C'G
and thus, _
BG + GA =G,

since the triangle AC'B is equilateral.
Similarly
EH+HD = HF'.

Thus
AG+GB+G@H+HD+HE=C'G+GH+HF' > (C'F' = CF,

and the result is proved.

Note. The result is still true without the condition /AGB =
/DHE =120°. This follows from the fact that the extended ver-
sion of Ptolemy’s theorem (applied to the quadrilateral AC'BG):

AC'".BG + BC' AG > AB.C'G
applies when the angle / AGB is arbitrary {< 180°). The inequal-
ities i
BG+GA>(C'G and DH + HE > HF'
can then be used to prove the result. o

8. [Iirst solution. Set @ = {1,2,...,2p} and let S be the
collection of all the subsets of £ each of which contains p elements.
Then S contains (2;’) sets.
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For each set X € S let s(X) denote the sum of the elements of
X. Let B={1,2,...,p}and C = {p+ 1,p+2,...,2p}. Then
B,CeSand s(B)=s{(C)=0modp. f A€ Sand 4% B,C
then ANB # Pand ANC # 8. Let T be the collection of sets
obtained by excluding B and C from 5. Then T contains (2;’) —2
sets. Partition T into collections of sets as follows: two sets A and
A" are in the same collection if and only if ANC = A’ N and
there exists an integer m with 0 < m < p such that

ANB={x+mmodp:z€ AN B}.

Then each such collection contains p sets. Let A and A’ be distinct
sets in the same collection and suppose ANDB has n elements. Then
0 < n < p and there exists an integer m with 0 < m < p such that

AAnB=XuY,
where

X={z+m:ze AnB,z+m < p}
and .
Y={z+m-p:z € AN B,z +m > p}.
Then s{A") — s(4) = mn mod p. But p does not divide mn. Thus,
if we calculate s{A) mod p for each of the p sets in any of the

collections, we get all of the residues 0, 1, ..., p—1. In particular,
each collection contains exactly one set A satisfying s{4) = 0 mod

p. Hence T' contains
1 /72
:(()-2)
p P

sets such that the sum of the elements in each set is divisible by
p. Hence the number of p-element subsets of {2 such that the sum
af the elements in each subset is divisible by p is

()

Thus
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Second Solution. Set @ = {1,2,...,2p} as before and let n;

denote the number of p-element subsets of 2 such that the sum of

the elements of each subset is congruent to j mod p, for 3 =0, 1,
.., p— 1. Form the generating function

r—1
flz) = Zn_jﬂcj
0

of the sequence ng, n1,..., Np_1. Let « be a pfimitive p-th root
of 1. If A = {iy,42,...,ip} is a p-subset of £ such that

i1+t + ... +ip, = j modp,

then

itz 7

f(w) — z wi1+i2+‘..+z‘p’

where the sum 13 taken over ali p-subsets A of {t as above. The
coefficient of x? in the product

(z —w)(z —w?)--(z — )

is
(1P o wh et = flw).

But the product equals
{lz —w)(z—-wh) ... (2 -w’)}? = (&P - 1)* =% - 227 + 1.
Thus f{w) =2. So
ng — 2 + nw + now? + ...+ np_1w”71 =0.
But w is any primitive p-th root of 1. So, if

glz) =ng —2+m1x + 102t 4 - +np,1:r:p*1,
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then ) _
glw) = glw?) = - =g =0,

2 P! are all the primitive p-th roots of 1. Thus

because w, w ;

o(@) = (z — w)(z —w?) - (@ — W Ih(@),

for some polynomial h(z). By comparing deprees we see that
h(z) = k, a constant. Thus

g@) = k(l+z+a+- - +2777).

Thus
Ng—2=1m) = ="Np_1 = k.
But "
ng+n,+---+np—1= .
P
Hence
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