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Summary In this article, using a conjecture of Grothendieck as focal
point, we give a display of the interaction between various concepts
from the geometry of Banach spaces. These concepts include tensor
norms, the Banach-Mazur distance and uniformly complemented sub-
spaces. The interaction is achieved with the aid of three powerful res-
ults:
{a) an inequality on bilinear forms due to Hardy and Littlewood,

(b} F. John’s upper bound for projection norms,
and

(¢} Dvoretzky’s spherical sections theorem.
1. Tensor Products

For a vector space E, the tensor product E @ E of E with-itself
consists of all finite sums of the form §°, z; ® 4;. A. Grothendieck
was mainly responsible for the development of a theory of tensor
products in Banach spaces. He investigated norms on E ® F sat-
isfying
lz @yl = lizli - llyll. (%)
He observed that there is a largest norm = (and a smallest
norm &) which satisfies (x), where, taking z = 2Ty,

Izl = inf{Z sl - {lsll}

and

||2}ie = sup{] Zw(n)z/)(yni Do, € B llpl] < L{l9]| < 1}

Since

122wl < 3 liell el - 111 i < S el -V,

4
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we have
-l <0 i (#+)

Grothendieck conjectured that || - li. and || - ||, were equivalent
norms on E if and only if dim E < co. Over the years it has been
shown that Grothendieck’s conjecture is true for large (and import-
ant) collections of Banach spaces. However, in 1983, G. Pisier, 2],
showed that the conjecture is false in general. We show that the
conjecture is true for Banach spaces which contain uniformly com-
plemented I3’s and that any counterexample must contain a large
number of badly located almost Euclidean subspaces.

A comprehensive study of Grothendieck’s conjecture is given
in G. Pisier, [3], and our results are special cases of results given
there. The monograph [3] is extremely well written but technically
demanding. Qur aim in this article is to provide some insight for
the non-expert. '

2. An inequality of Hardy and Littlewood

Let j, k and n denote positive integers and let o, = e?miik/n,
where ¢ = y/—1. Let A denote the n x n matrix (ojk)1<)k<n
With. A we can associate, in a canonical fashion, a bilinear form
A as follows:

Al(z5) 00, ()0y) = > amiyy.
ik
Let
~' T n 7T
All, = sup{] > auzsul : 3 leitr <1, > Il < 1)
ik=1 ' i=1 k=1
Hardy and Littlewood, [1], proved that if

_|3/2-2/p forp>2
r](p)—{l—l/p for1<p<2,

then there exists ¢ > 0 such that

c-ntP) < [JA]], < no®
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for all » and p.

If 2z€ E®E, with » = 2.:T: ® yi, we associate with z
the bilinear form % on E' ® E' where E' denotes the space of all
continucus real valued linear forms on E, by the formula

Y= <p@><g,y >

and with this identification we have

lzlle = sup{|3(e, ) : [lell < 111wl < 1.

For a positive integer n and 1 < p < oo, we let {y denote C*
endowed with the norm

1/p

l(z )izt llp = Z |2;1%
i=1

and for p = oo, we let I? denote C" endowed w1th the supremum
norm

l(zi) i oo = sgp}zﬂ.

- 1 1
Forl<p<oo,let = =1-=andlet p’ =1 when p = co. Trans-

vy
lated into the language of tensor products the Hardy—thtlewood
inequality says that

Hi)
> ajee; @ exllm, e.1e, ~ n*?,
Jik=1

where e; = (0,---,0,1,0,---), the entry 1 occurring in the j-th
position.

For all finite dimensional Bana,ch spaces {and many infinite
dimensional spaces) we have

(E®: EY =FE'®.E
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where E'®. F' is the completion of E' ®, E’.
HE=0DFE = 5, and 1/p+ 1/p' = 1, then this duality is
given by

n : n - n
. f
< E 04.k€; @ ey, E b-,kej- ®ef >= E aj1b e,
j,k=1 k=1 T ogk=1

where (e})?_, is the standard dual basis to (e;)7,, that is,

i=1 j=1

<e,ep >= ;4 (the Kronecker § function).

Hence
T 13
n' =< Y ojaei®er, 3 Gjuei @) > |
fk=1 ik=1
n
<n*P| 3" a; e ® exllim, @,
j,k=.l
and
n
. - I
I3 asne; ®erlipooz > n? e, (+ % %)

Fh=1

To simplify our notation, we introduce the concept of tensorial
diameter (td). For a Banach space E, the tensorial diameter of E,
td(E) is defined by

td(E) = sup Hzllllw’ where z€ E®@ F, z £ 0.

By (#), td(E) > 1 and an infinite dimensional Banach space E
is a counterexample to Grothendieck’s conjecture if and only if
td(E) < 0. By (* * %), -

11 2255 @ike; ® exllup o m

r P
12255 cike; ® el gtz )
> p2-a(p)=a(s') _ b(e).

td(ir) >
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where
b(p) = 3/2—1/p for1<p<2
“l1/2+1/p forp>2.

3. The Banach-Mazur distance

When two Banach spaces are isomorphic, the Banach-Mazur dis-
tance d measures how close they are isometrically, For isomorphic
Banach spaces E and F

d(E, F) = inf{”T”-HT_lH : T: E — Fis a linear isomorphism}.

The function logd is symmetric and obeys the triangle inequality.
If E (and hence F) is finite dimensional then d(E, F) = 1 if and
only if £ and F are isometrically isomorphic.

Lemma I. If E and F are isomorphic Banach spaces then
td(E) < (d(E, F))* - td(F).

Proof: Every linear mapping T : E — ¥ gives rise to a cancnical
linear mapping '@ T: E® F - F Q F, where

(TeTHeky) =Tz Ty
and moreover,
IT@T|lx = [IT.2 Tl = ||TII*.

In addition, if T is a linear isomorphism then so alsois T ® T for
both ¢ and 7 and

T & T) M = (T @T) M. = |72
Now suppose T : E — F is a linear isomorphism. For z € E® E

llzllx = (T @ T)" T & T)(2)||~
ST RTY M - (T ® THZM|w
=0T7HP - T @ 1) (2)|ix
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Moreover,

T @ T)()]le <ITH? - ||zl
and hence, if z # 0,
Lol
lzlle = KT © T)(=)||

This implies

lellx . IIT

izl S iTenmn T I I8 D@l

By first taking the supremum with respect to z and then the
infimum with respect to T we get the required result.

- Lemma 2. If & and F are Banach spaces and P is a projection

of B onto F then
td(F) < ||P|]? - td(E).

Proof: This is similar to the the proof of Lemma 1, using the easily
verifiable fact that ||P @ Pj|, < ||P|]?.

We also require the following result of F. John: if F is a
finite dimensional subspace of a Banach space E then there exists
a projection P of £ onto F such that

1P|l < +/dim(F).

4. Local theory of Banach spaces

The study of the properties of the finite dimensional subspaces of
a Banach space is known as the local theory of Banach spaces.
This often leads to global results. For instance, if all the finite
dimensional subspaces of a Banach space E are isometric to a
Hilbert space, then E itself is a Hilbert space. The Dvoretzky
spherical sections theorem says that for every e > 0, every positive
integer n and every infinite dimensional Banach space F, there
exists an n-dimensional subspace F of E such that

dF13) <1+e.
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We say that a Banach space E contains I%’s uniformly if for every
€ > 0 there exists F,, C F such that

d(Fp,I2) <1 +&.

E is said to contain Iy’s uniformly complemented if, in addition, for
each n there exists a projection P, : £ — E such that P, (E)=F,
and ||P,|| < 1+¢. The infinite dimensional Banach space I,
contains I’s uniformly complemented.

Proposition 3. If for some p the Banach space E contains uni-
formly complemented I%’s, then E satisfies Grothendieck’s conjec-
ture.

Proof: We have

wdFmy ta(ly)
> > |P. 122 (E,, im)
) 2 e i 2 1 e i

> limsup n®®) = oo,
T

the first inequality holding by Lemma 2, the second by Lemma 1.
This proves the proposition. :

On the cther hand the proof of the proposition above together
with the precise growth rate of td(l7) as n — oo shows what bal-
ance must be maintained between the Banach-Mazur distance and
the projection norm in order to satisfy Grothendieck’s conjecture.
The proposition above also provides us with properties that any
counterexample to the conjecture must satisfy. For example, the
spherical sections theorem of Dvoretzky shows that any infinite
dimensional Banach space contains {3 and by the result of F. John
we can suppose that a projection P, onto IZ has norm < vn. By
the Hardy-Littlewood inequality we have td{l3) ~ n. Hence if E
is a counterexample to Grothendieck’s conjecture then

td(ly
00 > td(E) > limsup HP( Tf)z = limsup TIIJTEW

asymptotically the worst possible projection norm and may be said

Hence there exists ¢ > 0 such that |[P,|| > ey/A. Thus 17 has

(1]
2]
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to be badly located. G. Pisier, [3], showed that his counterexample
E has the foliowing stronger property:
there exists ¢ > 0 such that for any finite dimensional subspace F
of E and any projection P of £ on F

1] > ¢ /@m(F).
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