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Introduction

Our aim is to provide precise definitions of some musical concepts,
mainly tuning system and mode, in order to begin a rigorous search
of the theorems uncovered by the main scales currently used in
Western art music. .

We shall consider musical concepts that only depend on the
tones of sounds, disregarding any other characteristic of sounds
(timbre, volume, duration, ...). We shall ground our study on

the structure of pitches, assuming that each musical pitchy is fully. ..

determined by the frequency of vibration of the sound wave that
produces it. Given a pitch ¢ and a positive real number A, we have
a pitch At whose frequency is the product of A by the frequency of
t and so we obtain & free and transitive action of the group of all
positive real numbers on the pitches. This is the only structure of
sounds that we shall consider and our first goal is to show how the
concepts of musical scale and mode may be reduced to this simple
structure. ’

Given a pitch ¢, the most consonant pitch is ¢ itself, then
2t, 3t ard so on. At the basis of the whole theory is the natural
identification between # and 2¢ that most men make unconsciously.
Hence we consider families of pitches S such that t € § implies:

(i) 2"t belongs to S for any integer n.

(i) only a finite number of elements s € S satisfy ¢ < s < 2¢ (this
number does not depend on ¢ and it is said to be the number of
notes of &).
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Two families S, &' are said to be equivalent when &' = AS for
some positive nuinber A and tuning sysiems or sceles are defined
to be equivalence classes.

Any finite family of pitches F, such as a melody or the keys
of a piano, defines a scale F = {2"t:n € &, t € F}. For example,
the classical diatonic scale is defined by any geometric progression
t, 3¢, ..., 3%, and it is a good scale from the melodic point of view.
From the point of view of modulation good scales are tempered
scales (scales- defined by geometric progressions ¢, ri, r2t, ..,
r™ = 2t} and the scale defined by the keys of a piano is the
tempered scale of 12 notes. From the point of view of harmony, one
should like to have 3t and 5t in the scale whenever ¢ is. Therefore

. (neglecting the temperament for the moment) we should look for a

scale S such that 3t,. . ., 3% and 5¢ belong to & whenever ¢t € S; but
any one of these conditions contradicts the finiteness of the number
of notes, so that no scale may fulfil them. However, men cannot
distinguish two pitches when their frequencies are very close, so
that a scale fuifilling these conditions up to a small error would

‘be a perfect one for human hearing. We shall prove that any scale

improving the error of the tempered scale of 12 notes must have
16 or more notes. Even if one disregards modulation, the usual
tempered scale is the best scale (from the point of view of melody
and harmony) with less than 16 notes.

1. Tuilihg Systems

Given a pitch £ and a positive real number A, we shall denote by M
the pitch whose frequency is the product of A by the frequency of
t; so that 1t = £ and A(ut) = (Au)t. Moreover, given two pitches s
and ¢, there exists a unique positive real number X such that ¢ = As
and this number A is sald to be the intervel from s to t. This is
the only structure of sounds that we shall consider, so that our
starting point is the following definition of the structure of tones
of sounds: :

Deﬁnition: Any set P endowed with a free transitive action of
the (multiplicative) group 7 of all positive real mumbers is said to
be a system of pitches. (By a free transitive action, we mean any
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map I x P — P,(At) = M, such that 1t = ¢, A{ut) = (Au)t
and such that, for any pair ¢,5 € P, we have s = At for a unique
A € 7.) The elements of P are said to be pitches and the elements
of 7 are said to be intervals.

We shall always consider the usual order on 7 = R, so that
pitches inherit an order: s < ¢ when ¢ = As, A > 1.

Some important intervals have a proper name: 2 is the ectave
(so that between the pitches ¢ and 2°¢ there are a octaves), 3/2
is the perfect fifth and 5/4 is the major third. The basis of any
tuning system is the identification between sounds forming octaves,
so that we consider the subgroup 22 = {A€Z:A=2"ne Z}.

Definition: The quotient set O = P /2% is said to be the Octave,
so that 7 acts transitively on the Octave and the quotient group
T/2% acts transitively and freely on .

(Geometric representation:

We denote pitches by Latin letters and their projéction on the
Octave by the corresponding capital letter. -

If a pitch ¢ is fixed, then pitches correspond with positive real
numbers, but this representation takes octaves into segments of.
different lengths. To avoid this problem it is convenient to use
an additive notation; hence, we represent the pitch At by the real
number a = log, A, so that the interval from ¢ to ¢ is represented
by a segment of length a. We put ¢ + « instead of At when this
additive notation is used (+e is translation by e octaves). For
example, if [ = log, 3, we have: ' )

& 2t 3t 4t

t
: | — -
—i -1 1-1 o 2-1 1 { 2

When the group 7 is identified with R via log,, the subgroup 2% is
identified with %, so that Z/2% is isomorphic to R/Z. Therefore,
we 'may represent the Octave by the points of a cirtle and it is
quite natural to fix the length of this circle as the unit of length
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and to measure angles by octaves (i.e., complete turns, so that the
angle o has 2wa radians): »

T
o = log, A

"This geometric representation of the Octave allows us to define
the distance between two elements of (@ as the distance of their
corresponding points in the circle.

Note that the order of P defines an order on the complement
O =T of any element T' € O, so that any finite subset of the
Octave. inherits a “circular order” (we always represent it in the
ceunter—clockwise sense)

Definition: Two finite subsets S and 5 of the Qctave ¢ are said
to be equivalent if §' = AS for some interval A (if there exists a

- rotation of the Octave transforming S into S"). Equivalence classes

of finite subsets of () are said to be tuning systems or scales. The
number of notes of a scale is the common cardinal number of all
finite subsets of (? representing it.

By definition, a scale 8 may be represented by a finite subset
S of the Octave (whose elements are said to be notes) or by a
family of pitches S with the following property: if t € S , then
2"t € S for all n € Z and there is a finite number of elements of S
between ¢ and 2¢. Two such families § and S’ define the same scale
when &' = AS for some interval A. Moreover, any finite family of
pitches, such as the keys of a piano or a melody, define a scale
when we project it on the Octave, :

“Take a finite subset S of the Octave representing a given scale
S of n notes and let us consider the circular order (I1,...,T,) of its
notes. Then we get an n-cycle (o, ..., a,) of intervals (in fact of
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elements of 7/2%), where Tiy, = T} +a;. This n-cycle (@1, vy o)
only depends on the scale 8§ and it is catled the symbol of S because
it is clear that any scale is determined by its symboal,

The symbol of a scale is not an arbitrary cycle of intervals
because we have o) +. . .+a; < 1 when i < n and aL+.. . ta, =1
(identifying 7/2% with (0, 1)).

Modes: A finite subset A/ of the group Z /2% is said to be a mode
if it contains the neutral element 1.

Each mode M defines, once you fix a pitch ¢, a finite set
Mt = {AT': A € M} in the Octave; hence M defines a scale,
since MAt = A(Mt). Conversely, given a scale represented by a
finite subset S of the Octave, each note T € § defines a mode
M ={X€Z/2% AT € S} but this mode depends on the note T
Each scale of n notes defines, in general, # different modes.

Since 7/2% = R/Z = [0,1}, every mode M is a sequence
O0=mi <mg < ... <m, <1, so that M is determined by the
Sequence ay, ..., &, where a; = m; 1 —-m; and a,, = 1 —my. The
symbol of the scale defined by M is just (o, ..., an). Conversely,
the modes defined by the scale of symbol (a1, ..., a,) are just the
modes corresponding to the n sequences: o

QYo no1,0n
2, Q3, ... Oy, O
(A o5 PN & Fo |

Tempered scales: A scale is said to be tempered if it divides the
Octave in equal parts; that is to say, the symbol of the tempered
scale of n notes is {1/n,...,1/n).

The scale defined by the sounds of a piano is the tempered
scale of 12 notes. The reader may obtain the symbol of the scale of
7 notes defined by the white keys and the corresponding 7 modes.

Scales of fifths: The scale of fifths of n notes is the scale defined
by any geometric progression of ratio 3 and n terms, n > 2. It is
the scale represented by {1,37,...,3""1T}. In this scale every
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note S, except for 3" '7, has its perfect fifth 35, but no one has
its major third 5S. Scales of fifths cannot be tempered because
3" is not a power of 2.

When n = 5, one finds the pentatonic scale, frequently used
in folk music (according to the Britannica, the pentatonic scale is

“used more widely than any other scale and Western art music is

one of the few traditions in which pentatonic scales do not pre-
dominate):
32
34T 32T

3T

32
BT
symbol

When n = 7, one obtains the classical diatonic scale (the
traditional name of each note figures inside the circle):

3
3T symbaql -
Do=C Re =D, M: =E,Fa=F, 80 =G,La=A,5 =B

and each note of this scale defines one of the seven classical modes:
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Major C 1 3% 3* 3-13 33 3o Ionian

D 1 3 33313 3 32 Dorlan

E 1 3°%3%313 3732 Phrygian

F 1 3 3% 368 3 33 35 Lydian

G 1 3 3% 33 3 3?2 Mixolydian
Minor A 1 32 38313 3432 Aeolian

B 1 37°3°%3713°9 3432 Hypophrygian

"The last one is rarely used because it does not contain the.

perfect fifth (= 3). On the other hand, no mode contains the
major third (= 5), but the major mode contains 3* = 81/64 =
1.265625 which is much closer to 5/4 = 1.25 than the interval
373 = 32/27 = 1.185 of the minor mode. -

When n = 12, one obtains the chromatic scale (a sharped
note 5% denotes 375 and a flatted note 5% denotes 3779):

375, ¥
37 375
9-5 37
3-5 3-8
47 3-s
35 7
symbol

In this scale A% is the unique note without perfect fifth in
the scale. In fact, the distance from F to 34# is about 0.02. No
note has its major third in this scale. The distance from 58 to the
closest note in the scale is about 0.018 when S=A,B,C,D,E, F,
G, F# and it is about 0.002 when S=A#, C#, D* and G*. The
temperament of this scale is quite good, since its symbol only has
two different intervals (37 and 3-5) of similar length: the length
of 37 is about 0.095 and the length of 35 is about 0.075.
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The figure above shows that scales of fifths of 5 and 7 notes
also have symbols with only two different intervals, while scales of
fifths of 4, 6, 8, 9, 10 and 11 notes do not have this property. A
scale of fifths is said to be pythagorean when its symbol has only
two different intervals. .

Theorem 1. The numbers of notes of the pythagorean scales form
the following sequence (a;)

2,3,5,7,12,17,29,41,53,94, . . ., 306, 359, 665,971, ..., 15601,...
Nt Mo o N e \_Vm/\._.v._/\—.ﬁzgmd
2 2 3 5 2

where a;y1 = a; + b; and b; is the term preceding the group of
a;. Moreover, the lengths of these groups are the terms (or partial
quotients} of the continued fraction

log(3/2) _ 1+ 1
log,(4/3) 94 1

2+
3+
1+

1

1
5+ —

Furthermore, if 0 > ey are the lengths of the two intervals of the
symbol of the pythagorean scale of a; notes, then the lengths of
the two intervals of the next one (the scale of @iy1 notes) are cep
and oq — as, which is the distance of 3%T to T,

Note 1.1: The first 36 terms of the continued fraction above are:
1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1, 15, 1,9,2,5,7,1,1,
4,8,11,1,20,2,1,10,1,4, ...

It is has been well-known for a long time that coutinued frac-

‘tions are closely related to musical scales (see [1], [2], [6], [7] and

[8]) and the theorem above shows a new relation.
If 11, I are two positive real numbers, then the terms 1, T3,
T3 .- -, of the continued fraction l; /I, have the following geometric
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interpretation: if Iy, I» are two segments of lengths Iy, Iy in a
straight line, then I, fits »; times in [, and there remains a smaller
segment /3, then I3 fits r times in I and there remains a smaller
segment [y, then 74 fits r3 times in I3, and so on.

Since log, (3/2) and log,(4/3) are the lengths of the two inter-
vals of the pythagorean scale of 2 notes, we conclude that

(1.2): The last terms of the groups of the sequence (a;) above are
~ the natural numbers n such that 3T it is closer to T than 3™T for
any number 1 < m < n and they correspond to the pythagorean
scales such that the smaller interval does not it twice in the higger
one,

The symbol of a pythagorean scale only has two different -

intervals a; > @y, but it may be that this scale is highly non-
tempered because a; may be much bigger than . A pythagorean
scale is said to be quasi~tempered when «; is smaller than 2q5 and,
by 1.2, these scales correspond to the last terms of the groups of the
sequence (a;} above. According to the geometric interpretation of
the terms of a continued fraction, in such case the difference of the
two intervals fits r(n) times in @y, where r(n) denotes the length
of the group following n; so that the scale has “better tempera-
ment” when r(n) is bigger. From 1 and 1.1, one directly obtains
the numbers of notes of the first 36 quasi-tempered pythagorean
scales:

{1.3): '

no = 2051241 53 306 665 15601 31867 79335 111202 190537
rn)=223 15 2 23 2 2 1 1 55

We see that the first one improving the temperament of the chro-
matic scale has. 33 notes and that the scale of 665 notes has a
very good temperament. Moreover, (1.1) shows that the scale of
190537 notes has the best temperament among the first 36 terms.
Since the 36th term is easily estimated to be greater than 108
any pythagorean scale improving the temperament of the scale
of 190537 notes must have more than 1018 notes. However, if one
looks for a scale improving the temperament more than it increases
the number of notes, that is to say a number n > 13 such that
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7(12) _ r(n) n
T < n or 4 < T(n)

then (1.1) shows that the first 36 terms of this sequence do not
fulfil this condition. We should wonder at the existence of a
quasi-tempered pythagorean scale of more than 12 notes such that
7(n)/n is bigger than r(12)/12; but, unfortunately, we have no
evidence to conjecture that no pythagorean scale with more than
12 notes improves the temperament more than it increases the
number of notes (remark that r(n) /n is not a decreasing sequence).

Euler’s construction: The divisors of a given natural num-
ber form a mode, hence they define a scale. Euler considered the
scale defined by the divisors of d = 3%5%. It is a scale of (a+1)(b+1)
nctes such- that any note, except 3°5iT, has its perfect fifth and
any note, except 3757, has its major third. These scales cannot
be tempered, but Euler remarked that the scale of 12 notes cor-

- responding to d = 3252 =675 is quite close to the chromatic scale

and to the tempered scale of 12 notes:

Eulerian scale for 675
3°5 | 3% [35%] 5 135 [ 3%5 | 3 5 | 3% [3%5%3 .5
1.055]1.125 [1.17{1.25]1.318 [1.406] 1.5 {1.562 |1.6011.76|1.875
Pythagorean scale of 12 notes
1] 37 [ 37 T3% [a¥ 3T | 3° 3 | 3% [3F[397 §°

=

=

1]1.06811.125 | 1.2 [1.27(1.333 {1.424| 1.5 |1.602 1.697 1.8 {1.898
Tempered scale of 12 notes
1 r ,r2 Td T'4 rﬁ TG ?,,7 T'S 'rg TlG T'II

111.0591.122 11.19]|1.26|1.335 [1.414{1.498]1.588 |1.68|1.7%|1 888

r o= 91712

(Instead of the scales, this table shows one mode of each scale.
For the chromatic scale, it is the mode corresponding to C=Do.)
The symbol of the eulerian scale is
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In this scale, the distance from 3- 3T to the closest note (in fact
5T’) is about 0.018 and the distance from 5-527" to the closest note
(in fact T') is about 0.034.

2. Approximation Indices

We should like to have “ideal scales” containing the diatonie scale
T, 3T, ..., 35T based on any note T of the scale, as well as its
major third 5T. Clearly no scale may satisfy these conditions
(since no power of 2 is a power of 3 or 5); but we may look for
scales fulfilling them approximately.

Definition: Let us consider a scale 8 and let S be a finite subset
of the Octave representing 8, We define 3(8) to be the infimum
of all real numbers a such that the distance of 3T to S is < a for

~any T' € S (hence the perfect fifth of any note in S is in S up to
an error bounded by a3(8)). We define as(8) to be the infimum
of all real numbers o such that the distance of 5 to S is < « for
any T € S. We define the approzimation index of the scale S to
be a(8) = max{6as(S), 5(S)}.

By definition, if T € S, then 37,...,3%T and 5T may be
replaced by notes of § at a distance < a(S). Therefore, if a{8)
were smaller than the human perception of acoustic pitch differ-
ences, then 8 could be considered as a human realization of the
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“impossibie ideal scale”. In fact it seems that most men cannot
differentiate two pitches when the distance is smaller than 0.003
(3 thousandths of the octave).

Let us consider the tempered scale T, of n-notes. This scale
is represented by all rational numbers with denominator n. Hence,
if a/n is the best approximation of log, 3 with denominator n, then

‘we have a3(T,) = |log, 3 — a/n |. Therefore:

n-a3(T,) = {nlog, 3}
n-as(Th) = {n-log, 5}

where {z} denotes the distance of # to the closest integer number.
For the 13 first tempered scales we obtain

n| 2|3 |415] 6 71819 |10[11{12 {13
o3| 85182 |85 (15] 82 [13.5|40 (294 |15 [39.5:1.63 [304
5178 14 | 72 [78|11.4 | 36 |53 |11.4 (22| 42 {114 | 14
a |5101490 |510|190(490 [81.2(240}176 |90 |237[11.4 [182
nog 1701245 [340[751 490 194.5]320] 265 [150] 435 [19.6 | 395

where all the values are given in thousandths of octave, so that
a(T)2) = 0.0114. We may see that the approximation index of T1i2
is much better than the indices of the previous tempered scales.
The first tempered scales improving the index a3 of Ty5 are Tag
and T4, and the first tempered scale improving the index o of
Tiz is T4y, In fact we have:

a3(Ta1) = 0.0004, (Tg) = a5(Ty) = 0.0049

so that a(Ty,) is quite close to the human perception of tonal
differences.

Moreover, the tempered scale of 12 notes has a very good
approximation index even if we consider arbitrary tuning systems.
Any scale improving the index of T, has more than 15 notes:

Theorem 2. If the approximation index of a musical scale S is
smaller than the approximation index of the tempered scale of 12
notes, then the number of notes of 8 is greater than 15.
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Proof of Theorem 1

If z is a real number, we shall denote by [z] the decimal part
of z; that is to say, 0 < [z] < 1 and = = n + [z] for somé integer
7, s0 that [z] may be considered as the image of  in R/Z.

We shall always identify the Octave with the-interval 0, 1],
where the end points 0 and 1 are identified. Hence, the scale of
fifths of n notes is represented by 0 = [04], [I], [21], ..., [(n — 1],
where [ = log, 3. In fact, we shall only use that { is an irrational
number.

Let I be a fixed irrational number and let n be a natural
number, n > 2, _
If we consider the arithmetic progression 0, L., (n—-1)
of n terms and we consider the increasing order of [0f], 1, ...,
[{n — 1)I], we obtain a partition of the interval [0, 1

- | — =
o=@ Bl g 1

with an initial interval of length [p/] and a final interval of length
[—al] = 1—[g!]. This arithmetic progression of n terms is said to be
pythagorean when the distance between two consecutive points of
the partition is [pl] or [~¢l]. A pythagorean arithmetic progression
1s said to be quasi-tempered when the smaller interval is greater
than a half of the bigger one.

Lemma. If the arithmetic progression of n terms is pythagorean,
then the corresponding partition of [0, 1] has q intervals of length
[pl] and p intervals of length [—ql], so that p + g = n. Moreover

1) If the initial interval is smaller than the final one, [pl] < [—ql],

2

then the next pythagorean Dprogression has n + p terms and the
initial and final intervals of the corresponding partition are

L | ] [ E |
| —

0 ] @] [ 1
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2} If the final interval is smaller than the initial one, [—el] < (pl],
then the next pythagorean progression has n + q terms and the
initial and final intervals of the corresponding partition are

H b ]
— T 1 —
1

0 ] [l 2l

Proof: First we prove 1 and 2 assuming that the corresponding
partition has ¢ intervals of length [pl] and p intervals of length
[—ql],m = p+ g; so that the p intervals of length [—¢l] are just the
intervals from {{g + 4)!] to [il],0 < i < p, and the g intervals of
length [pl] are just the intervals from {jI] to [(j + p)l],0 < j < ¢
(remark that the two ends of any interval of length [pl] or [—gl] are
consecutive points of the partition because no integer multiple of
[pl] may coincide with [—¢i] and no integer multiple of [—gl] may
coincide with [pl], since I is assumed to be irrational).

We shall only consider the first case, the other being quite
similar. In this case we have [¢f] + [pl] < 1, so that [nl] = [pl} + [¢i]
lies between [gl] and 1; hence [nl] divides the final interval in two
intervals of lengths [pl] = [nl] - [ql] and [—nl]. For the same reason,
[(n + i}i] divides the interval from [(g + i)I] to [il],0 < i < p— 1,
in two intervals of lengths [pl] and [~nl]. Therefore, the next
pythagorean progression has n + p terms, the length of the initial
interval is again [pl] and the length of the final interval is just
[-nl]. Hence assertion 1 is proved. Moreover, we obtain that the
pythagorean progression of n + p terms has p intervals of length
[-nl] and n intervals of length [pl]. .

We conclude the proof of this lemina by induction on 7, since
it is obvions when n = 2. '

Coerollary. K oy > o, are the lengths of the intervals of the par-
tition of [0,1] defined by a pythagorean progression of n terms,
then we havc_a: C :

1) the lengths of the intervals of the next pythagorean progression
are ag and o — ag;

2) the distance from [nl] to 0= 1 is just oy — ap;
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3) If rag < @y < {r + 1)ay, then the consecutive pythagorean
progressions have

n+p,...,n+rp terms when [pl] < [—ql]
n+gq,...,n+rq terms when [—ql] < [pl].

Corollary. If{—!] < [I] and ro, 11, T3, 73, ...are the partial quo-
tients of the continued fraction of []] /[~1], then the numbers of
terms of the pythagorean arithmetic progressions defined by [ are

2""17-0 + ];rfl =T 12)' L )ar1‘r&1+1: ':‘r'aar1+‘r‘2"5---
i} T1 T2

where a;.q = a; + b; and b; is the term preceding the group of a;.

Proof:  According to ‘the geometric interpretation of the partial
quotients of a continued fraction, this result follows directly from
the corollary above, since the first pythagorean progression has 2
ter(;n[s a]nd the lengths of the corresponding intervals are just {I]
and [-{]. '

Corollary. The last terms of the groups of the sequence above
are the natural numbers n such that [nd] is closer to O than [mi]
for any 1 < m < n and they correspond to the numbers of terms
of the quasi-tempered pythagorean progressions. .

Proof of Theorem 2

Let o = a(Ty,y) =4 log,(%) and 3 = logz(z—gz%) be the
approximation of the major third in Ty5 and the chromatic scale
respectively (the interval 81/80 from 57 to 3*T is usually named
the comma).

(1) The distance between any two notes of the chromatic scale is
larger than 5a + 8 and 6er.
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In fact, the smallest interval between two notes of the chro-
matic scale is 2°/3%. Since it is easy to check that & < 3, we must
show that, 2%/35 is greater than

24/124 5 34 )
( 5 ) 2457,
or, equivalently, 37 < 2. 5' and this inequality may be tested
directly.

Now, let S be a scale such that a(S) < a and let § be a
subset of the Octave representing 8. If 7' € S, then there are
notes 71,..., Ty in S approaching 37,. . ., 35T more than . There
are notes 77,...,T1; in S approaching 3T}, ..., 3%T,; more than
o; hence approaching 37T, ...,3'T more than 2a. Therefore,
the notes in F' = {T=1,,Ty,...,T11} approach the notes of the
chromatic scale {T,37,...,3" T} with an error < 2.

(2) The distance between T; and T; is larger than 20 when i £ .
In particulor F' has 12 different notes.
Otherwise, the distance from 3T to 3/7" would be bounded
by 6ev, contradicting (1). : '
(3) The distance from T; to 5T} is larger than o when jFi+4.
Otherwise, the distance from 37" o 34T would be bounded
by d(3'T,T5) + (T}, 5T;) + d(5T3, 3*T3) + d(3%7T;, 3*3'T) < 20 +
@ + 8+ 2a, contradicting (1).

Finally, we compare the 12 intervals of F with the equal inter-
vals of T12. Let a4,...,a15 be the differences with 1/12 of the
lengths of the 12 consecutive intervals that F defines in the Octave,
so that, ay+... +-ﬂ‘:12 =0.

If aj,a541,8;42,a;13 are the differences corresponding to the
four intervals following a note T; € F, then the end of the fourth
interval is just 714 (the index must be considered modulo 12, see
the symbol of the chromatic scale). Hence:

Ti+4—_—ﬂ + a; +...+aj+3 +4/12
and we obtain that the distance from Tiry to 5T is exactly a +
@ + ...+ a3, because the distance from 57 to T + 4/12 is




(1]

(3]
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a(Tz) =a. Ifa; +...+a;.3 > 0, by (3) we conclude that no
note in F' approaches 57; more than e, so that the note S, eS8
approaching 57; more than o does not belong to . Now, each one
of the following additions (i = 1,2, 3,4)

(*) (ai+. . .+ai+3)+(ai+4+. . .+ai+7}+(ai+g+. . .+ai+11) =0

has at least one non-negative addend. So we obtain four different.

notes T%, T2, 7% T € F such that the notes S° € § approaching
57" more than o do not belong to F. We conclude that S contains
at least 16 different notes 7p,T1,...,711,8%,. .., 5% because we
have S* # S’ when i # j. Otherwise, the distance from 57" to
577 would be smaller than 20, contradicting (2). :

Note: Let S represent a scale S such that a(8) = a{Ty3). The
argument above also shows that F C S has 12 different notes.
Hence, if § only has 12 notes, then F = S and a5(8) > a when
some addend a; + ... +a;.3 is positive. By (*), it follows that
a4 +...+a;43 = 0 for any index j and a5(8) = a = a5 (Tha).
Now, it is easy to prove that the closest note to ;in F =8
is just T;4;, the end of the seventh interval following T5; so that
a3(8) > as{T12)~aj41—aji5—aj16 = @3(T12)+a;47. Therefore,
if &3(8) < a3(Ty2), then a; < 0 and we conclude that a; = 0 for
any index j; that is to say, 8 = Tys. Resuming, the tempered
scale of 12 notes is the best tuning system with no more than 12
notes in a very precise sense: '

Suppose that n < 12. If S is a scale of n notes such that
a(8) < a(T1s), then n = 12, a(S) = a(T1s), as(S) = as(Ty2),
@3(8) > a3(T12) and the last inequality is strict when § £ Tys.
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