ON THE CONTINUATION
OF HOLOMORPHIC MAPPINGS

Maimoru Yoshida*

1. Introduction

In the theory of one complex variable, it is well known that holo-
morphic functions cannot in general be extended as holomorphic
functions to larger domains. For example, if Q(# C) is open and
a € 90, then

1

Q.

flz) =

cannot be extended across the boundary point a. Another classical
example is

g(z) =82 ;2™

which cannot be extended across any point of the boundary of the

unit disc. For any domain ) of C, there is a holomorphic function
which cannot be extended across any point of the boundary 1.

For functions of two variables, we have a new phenomenon.
For example if we consider the anmilus

={(z,22) s 1<|aal’ +|zl” < 4},
then all f holomorphic on {) can be extended to the ball
= {(z,22) 1 |21 +|2)? < 4}

A simple consequence of this result is that zeros of holomorphie
functions of more than one variable cannot be isolated.

* The author thanks University College Dublin for support
during the period this research was undertaken.
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Another classical example concerns the domain
1
f1s = {,(2.’]_,22) : |Z]_| <1, |;-:2{ < 1, t|z1| - |Zz|| << g}

All f holomerphic on {23 can be extended to the polydisc
Q= {(z1,22) : |2l <1, |z] < 1}

When this phenomenon, which was discovered by Hartogs, occurs,
it is natural to ask the following questions:

{A) Given f holomorphic on {1, is there a natural domain to which
all f holomorphic on {3 can be extended holomorphically ?

(B} Given {2, is there a natural domain ' to which all holomorphic
functions on §2 can be extended ?

if a natural domain for f exists, we call such a domain (in (A))
a doman of exisience of f and denote it by {I;. For example the
unit disc in C is the natural domain of existence of g(z) = T8, 2™,

¢ I8 Qlpunique? How does one construct §2,7

Such a natural-domain ¥’ (in(B)) is called a domain of holo-
morphy.

It is natural to expect that, in some sense, {1’ is related to
MNyena) £ where H({1) is the family of all holomorphic functions
in 2. Is it possible to characterize when {1 = (¥ geometrically or
algebraically?

Geometric characterization

The proper mathematical definitions are rather technical but
we can state some results which are readily understandable. For
example the following notion of helomorphically convezr domain
is related, by the Hahn-Banach Theorem, to the linear notion of
convexity.

Let {1 be a domain of C" and K any compact subset in {1,
We put

Ko={zeQ: |[f()| < Ifiix, f € H(Q)},

where || f|lx = sup{|f(z)] : z € K}.
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If K, is also compact for any K, 2 is said to be holomorphic-
ally convez. It is easily seen that convex domains are holomorph-
ically convex.

We have the following two equivalent properties for a domain
1 of C7:

(I) £ is a domain of holomorphy,

(IT) @ is holomorphically convex.

Metric characterization

A function u on a connected domain D (C C) is called subhar-
monic, if the following conditions are satisfied:

(1) g is upper semicontinuous,

(2} u is not identically —co,

(3) nle) < £ 027\' plc+re)dd, (r > 0: sufficiently small).

Condition (1) is a smoothness condition, while {2) is just to
exclude a trivial case and (3) is the main property which says that
the average over a disc dominates the value at the centre.

Let 2 be a connected domain of C™ and let Zp be any point
in {}. We put

Ey(z) = {z = zo+at: t G_C-}, {a e C?).

If p is not identically —oco and p satisfies (1) and (3) as a
function of £ in O N Eo(zp) forall zp € N and o € C”, then pu is
said to be plurisubharmonic on 0,

If —logd(z,CR) is plurisubharmonic in 2, then O is called
pseudoconver.

The following condition for a domain € of C" is equivalent
to conditions (I) and (II) above:

(ITI) £ is pseudoconvex.

It is not difficult to show that domains of existence are pseudo-
convex. The converse was conjectured by E. E. Levi in 1911 and
became known as the Levi problem and was solved by K. Oka in
1942 for domains in C? and for domains in C™ by F. Norguet and
H. Bremermann in 1954. The term ‘Levi problem’ (see section 2)

is still used for problems of this type in more abstract and general
settings,

Algebraic characterizations
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For a given family (data) of meromorphic functions which
are defined locally on a domain @ of C", can we find a global
meromorphic function which is locally identified, in a sense, by
the data? More precisely given an open covering U = {U; : i €
I} of © and a collection of meromorphic functions m;, with m;
meromorphic (i.e. a quotient of holomorphic functions) on U;.
Supposing that m; — m; is holomorphic on I/; N U;, then we wish
to find a global meromorphic function m on § such that m — m;
is holomorphic on U; for all 2. Let O be the sheaf of germs of
holomorphic functions over a domain £} of €. If a collection

7N, 0) = {zy : i, j € I} satisfies conditions (1), (2) and (3)

below, we call Z1(2, ©) a holomorphic cocycle of degree one on I4:
(1} 245 ts holomorphic on U; NU; (3 @) for all i and j in 7,
(2) 215 = —2js on U; N U; whenever U; NU; # @,
(3) Zijtzjp+2p; = 0on U;NU;NU whenever UiﬂUjﬂUk # 9.
I CYQ,0) == {z: i€ I} satisfies condition (4) below, we call
CY{Q, ©O) a holomorphic cochain of degree one on U:
(4) z; is holomorphic on U; for all 7 € I.
We put

B'(0,0)={z -z z, z; € CHD, O}

and call BY(Q, O) a holomorphic coboundary of degree one on If.

Z'(9,0) and BY(Q,0) are additive groups and BYN,O) is a

subgroup of Z'(, 7).

We put H'(Q,0) = Z2'(02,0) / B (£, O) and call HL(, O)
the first holomorphic cohomology group on U.

Clearly #'((2,0) = 0 if and only if Z'(2, Q) = B}(, ).

The following condition is equivalent to (I):

(V) HY(Q,0) = 0.

A very different algebraic characterization has been invest-
igated by other authors. If H{f) is endowed with the compact
open topology, then it becomes a complete metrizable topological
algebra (i.e. the operations of addition and multiplication are con-

‘timuous). We may then consider M(H(Q)), the set of all con-

tinuous C-valued multiplicative linear functions on #({1). Clearly
point evaluations belong to M(H(Q)) and thus the the mapping

v €=, € M(H(Q),
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where 8, is point evaluation at z, is well defined and easily seen
to be injective for {2 open in C”. The space M(H(£)) can be
endowed with the structure of a complex manifold and with this
structure the envelope of holomorphy of 2 can be identified with
the connected component of AM(H()) which contains »(). This
gives the following characterization equivalent to condition (1) for
a domain Q of C”.

(V) Q = M{H()).

Conditions (II) and (II) are geometric characterizations of

domains of holomorphy while (IV) and (V) are algebraic charac-

terizations. In particular, (II) reduces to whether — log d(z,C0)
is subharmonic on a domain of the complex plane C. Condition
(IV) is suitable for concrete calculations. _

These are parts of the basic classical backgroumd to more
recent results which we will now describe. The results we describe
involve a more general setting.

2. Setting up of the problem
We describe the more general setting,

(1) First it is more natural to discuss such. problems over -

Riemann domains than open sets of C™, since for example there
exists an open subset of C”, §, say, such that holomorphic func-
tions on {1 cannot be extended to any larger open subset of C*,
but if  is considered as a complex manifold, then all holomorphic
functions on © can be extended to a strictly larger complex man-
ifold.
The definition of Riemann domain is as follows:
if there exists a local biholomorphic mapping ¥ of a complex
manifold @ into the locally convex space E. (Q,4) is called a
Riemann domain over E. '
(2) We discuss Riemann domains over infinite dimensional
spaces rather than over C™. In this case 3 mapping is holomorphic
if it is continuous and its restriction to each finite dimensional
section is holomorphic as a mapping of several complex variables.
(3) We discuss mappings of a Riemann domain £} into a com-
plex manifold V. '

(4) We consider subsets F of the space of all holomorphic
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mappings. The two simplest examples are F = H (1) which leads
to the concept of domain of holomorphy and F = {f} (i.e. F con-
sists of a singie function f) and this leads to the concept of domain
of existence. We confine ourselves here to these two examples but
mention a further natural and useful example, H% ({})-the space
of bounded holomorphic functions on 3. Note that if O <
and each holomorphic function on  extends, as a holomorphic
function, to ' then if f € #(2), A € C and A & () then

g:i= }E—A € H{Y)

and hence admits a holomorphic extension § to (. By uniqueness
of holomorphic extensions it follows that (f — A)-g =1 on I and
(=X §=1on ¥, where f is the extension of f to §. Hence
A& F(¥) and it is now easy to see that whenever F e H={
then f € H>®(Q).

- Next-we :provide some terminology for mappings between

- Riemann domains in order to set up our problem precisely. Let

(2, ¥) and (', ') be Riemann domains over a local convex space
E. If a holomorphic mapping X of 2 into Q' satisfies 1 = ¢/ o X,
the mapping A is called a morphism of (0, ) into (9, ¢’ }. Let
N be a complex manifold and let F C H(82, N}, where

“H(Q, N) = {f: fisa holomorphic mapping of  into N1.

A morphism X of (@, ¢) into (€, %) is said to be an FN-
extension of {1 if for each f € F there exists a unique f' €
H(EY, N) such that f o X = f. When F = H(f)) and N = C
we simply say a holomorphic extension.

Q2 is said to be an FN-domain of holomorphy if each FN-
extenszion of {1 is an isomorphism.

{1 is said to be a domain of holomorphy if each holomorphic
exiension is an isomorphismt.

{1 is said to be a domain of ezistence if there exists f € H(0)
such that 2 is an {f}C-domain of holomorphy.
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Let (82, ) be a Riemann domain over the space E and let
F CH(, N). A morphism A: -5 Q' is called an F N-envelope
of holomorphy of O if:

(a) A is an FN-extension of {2, :

(b) if g : @ — Q" is an FN-extension of {2, then there exists
a morphism v : 0" — Q' such that v o u = .

Then (X, 0,4} or (¥ is also called FN-envelope of holo-
morphy of (§2,v) or . Note that condition (b) says that an FN-
extension is maximal.

Malgrange, [10, pp.29-34] for the finite dimensional case and
Mujica, {11, Theorem 56.4] for the infinite dimensional case,
proved that there exists an F N-envelope of holomorphy of } and
that this envelope is unique up to complex analytic isomorphism.

Let (£3,4) be a Riemann domain over the space E, (A, (1, 1,5)

its envelope of holomorphy and NV a complex manifold. '

Problem () : Can every f € #(f2, N) be extended holomorph-

ically to an element f of H(Q, N) such that f=fol7

3. Some results

We require certain restrictionson N. If N = C", it is clear that- -
there is a function f which solves Problem (*). (See, for example,

[71)

If the complex manifold G is a group and the mappings G x
Go(z,y) »z-ye€Gand @37 = 2! € & are holomorphic,
we call G a complex Lie group. I G is the tangent space at the
identity e € G, we call G the Lie algebra of G. For example, the
complex general linear group GL{n, C) consisting of all invertible
n X n complex matrices is a complex Lie group and the set of all
matrices of degree n, gl(n, C), is the Lie algebra with respect to the
commutator product (4, B] = AB — BA. Between a complex Lie
group  and its Lie algebra G, there exists an exponential mapping
exp : G — & which is a local biholomorphism of a neighbourhood
of 0 in G onto a neighbourhood of the identity e in 7. In the
example above, '

exp(A):In+A+§1TA2+$A3+ ......
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for any A € gi(n, C), where 1, is the identity matrix.
Ifm =dimG < 0o, we may take G as C™ and we consider a
complex Lie group G of positive dimension as a complex manifold.
Let {©2,4) be a Riemann domain over a Stein manifold S,

. (X, 0, 1) its envelope of holomorphy, G a complex Lie group and

f a holomorphic mapping of {1 into G.

Let (A, §,9") be the {f}G-envelope of holomorphy. By
pseudoconvexity of ({2',1') and the positive solution of Docquier-
Grauert, 3], to the Levi problem, (9, ¢) is a domain of existence
of a holomorphic function on {I. Since (}\,fl,ﬂ/;) is its envelope
of holomorphy, there is a mapping p of (},4) into ({¥,9'} such
that X = go X. Let # be the holomorphic continuation of f to
(A Q,¢"). Then f' o g is the holomorphic continuation of f to

(A, £, 9). Thus we obtain the following theorem.

Theorem 1. Let (12,%) be a Riemann domain over a Stein man-
ifold § and (A, §2,4) its envelope of holomorphy. Any holomorphic
mapping of §} into a complex Lie group G has a holomorphic con-

" tinuation to (A, Q,v).

Let E be a complex linear space with the finite open topology
Tp. S. Dineen, [4], proved the vanishing theorem H'(D, ) = 0 for
D pseudoconvex and O the structural sheaf over the C-linear space
(£,To) and L. Gruman, [5], solved the Levi problem by proving
that any finitely pseudoconvex domain D of the space (E,Ty) is
the ‘domain of existence of a holomorphic function on .

‘A complex manifold N is called a complex Banach manifold
if it is & complex manifold modelled on a complex Banach space.

A Banach complex Lie group is a group G which is a complex
Banach manifold and a complex Lie group.

Let U = {U;: ¢ € I} be an open covering of E. Assume that
a set -

Z = {Zij Doz € H{U;N Uj,G), i, j & I}

satisfies conditions similar to conditions (1), (2) and (3) for a holo-
morphic cocycle of degree one Z'(€2, O) which we gave in our
algebraic characterization of domains of holomorphy. We call Z
a helomorphic cocycle on Lf with values in 3 and call the pair
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F = {U, 2} a holomorphic principal fibre bundle with base space
E and structure group G.

We consider the continuation of holomorphic mappings of a
Riemann domain (f,4) over (E,Tp) into a complex Banach Lie
group . Let A be the set of finite dimensional C-linear subspaces
of E. For any L € A, we denote (tN~1(L) and PNy (L), by
{1, and ¥, respectively. Any holomorphic mapping f of (£17,4)
into (7 can be continued holomorphically to its envelope of holo-
morphy by the finite dimensional result. The authors, [6], proved
the following theorem, using the method of Kajiwara-Shon, [9],
and transfinite induction as in Dineen, [4].

Theorem 2. Let E be a complex linear space with the finite
open topology, ({2,1) a Riemann domain over E and (}, {1, )
the envelope of holomorphy of (§2,+). Let G be a complex Banach
Lie group. Then any holomorphic mapping of §} into G can be
holomorphically continued to the envelope of holomorphy (A, ), )
of (£2,1)}. :

The main problem with the finite open topology is that it
allows of too many holomorphic functions. In two cases in which

the base space F is endowed with stronger topologies, the.authors; .. .

[12], prove, using positive results of Schottenloher, [13], for the Levi
problem and methods similar to those used in finite dimension, the
following theorem.

Theorem 3. Let E be a separable Fréchei space with the
bounded approximation- property or a DFN-space and (Q,)
a Riemann domain over the space E. Let G be a complex Banach
Lie group and F a holomorphic principal fibre bundle with struc-
ture group G over E. Then a holomorphic section s of F over {}
can be continued holomorphically to the envelope of holomorphy
of the Riemann domain 1.

The proofs of the results above are rather technical and so we
do not provide details but give one brief example of the technical
aspects. Let

D={z=(21,) € C*: |z <1+, lza| < l}U
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{Z:(ZE,ZQ) ECZ'. 1—-e< lle <1l+eg, IZ;gI <1+E}
and
D={z=(z,2) € C?: || <l+4e(j=1,2)}

for a positive number e {< 1). It is classical that 1 is the envelope
of holomerphy of .

Lemma, Let & be a .compiex Lie group. For any hafomerphjp
mapping f of D inte &, there is a holomorphic mapping g of D
into G such that g =-§ in D.

Proof: We may assume that ¢ is connected. We introduce in
H{D, G) the compact-open topology 7y and let H = (H(D,G), ).
As D is analytically contractible to a point, H is a connected
topological group. Let

K@) ={z€C%: |z1| S1+e~6,im| <1 ~8U
{zeC?: l-e+dZ || 1+e—4lnl<l+e-d)

and :

K@) ={z€C: |5 <1l+e-4(=1,2))

for any positive number § with § < z. Let m be the complex
dimension of & and exp the exponential mapping of C™ into &.
The mapping exp maps an open neighbourhood

U={weC™: | <a (j=12,... ,m)}

of the origin in C™ biholomorphically onto an open neighbourhood
W of the identity element e of G. Hence log := {exp|U)~! is a
biholomorphic mapping of W onto {7. We let

V(1) = {he H; hK(S) c W

Then V(1) is a neighbourhood of the identity element 1 of the
topological group H. Since H is connected, H is generated by
V(1). There is a finite number s of elements fiafa, -, foy and
fs In V(1) such that

f=htfr fs
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in D. Each log f; is a holomorphic mapping of K (&) into the
polydisc U.
There is a holomorphic mapping G; of K'(8) into U such that

G; =log f; in K{(§) N K'(&)
forj=1,2,---,5 Welet
g=expGrexply - exp G,

in K'{§). Then g is a holomorphic mapping of K’ (8) in & such
that g = fin K(6) N K'(6). Since § is arbitrary, we obtain the
Lemma by the identity theorem for holomorphic mappings.

Further details and precise definitions are given in {1], [6] and
[12].
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