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NOTES ON APPLYING
FOR I.M.S5. MEMBERSHIP

1. The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member IR£L50.00
Ordinary member ' ®.£10.00
Student member RL4.00
LM.T.A. reciprocity member - IR£5.00

The subscription fees listed above should be paid in Irish

‘pounds (puint) by means of a cheque drawn on a bank in

the Irish Republic, a Eurocheque, or an international money-
order,

- The subscription fee for ordinary membership can also be paid

in a currency other than Irish pounds using a cheque drawn
on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US§18.00.

If paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.
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. Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card nimber should
be written on the back of the cheque.

. Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This Com-
mittee meets twice each year.

. Please send the completed application form with one year's
subscription fee to

The Treasurer, I.M.S.
Department of Math. Physics
University College, Dublin
Ireland
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
11th April 1995

The Irish Mathematical Society held an ordinary meeting at
12.15pm on Tuesday 11th April 1995 in the Dublin Institute
for Advanced Studies, 10 Burlington Road. 11 members were
present. The Presideni, D. Hurley, was in the chair. Apologies
were received from Pauline Mellon.

1. The minutes of the 21st December 1994 meeting were approved
and signed.

2. Matters arising

Gordon Lessells reported that the current (Easter 1995) issue of
the LM.S. bulletin is now available for circulation. It was noted

.that the bulletin is now completely up-to—date and on time. Mem-
* bers were urged to submit articles for the next issue. It was sug-

gested that the talks at the September meetmg could be a source
of articles for the bulletin.

3. Treasurer’s business

‘The Treasurer circulated an interim report on the state of the soci-
ety’s finances. Additional postage costs of £400 for the bulletin
were added.- It was agreed that the LM.S. is pro tem no longer
in a position to offer conference support. When the financial situ-
ation of the LM.S. improves, such support may be resumed. The
projected deficit for 1995 is £550. The issue of the societies’ sub-
scription to the European Mathematical Society was raised in this

regard. There are presently six 1.M.S. members also in the E.M.S.

It was reported that individuals have an alternative route to mem-
bership of the E.M.S. through the London Mathematical Society.
A motion was proposed by Diarmuid O Mathiina and seconded
by Séan Tobin that the 1.M.S. explain its financial difficulties to
the E.M.S. and offer 120 ECU as our annual subscription. The
motion was passed.
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4. Membership fees

The committee proposed to the meeting an increase in the annual
membership fees as follows;

Ordinary membership £15 (or $25 U.S.).

Student membership £6.

Institutional membership £50 (unchanged).

Reciprocity membership unchanged.
A motion was proposed by Diarmuid O Mathtina and seconded
by Timothy Murphy that a new category of membership, viz. life
membership, be introduced concurrently with these changes and
that this be set at £200. The meeting voted to approve this motion
and the changes above, to be implemented as from Ist Jamuary
1996. It was noted that members would require good advance
notice of these changes to facilitate changes in standing orders etc.

5. Septemnber meeting 1885

Eugene Gath reported that the planning of the 1995 September
Meeting at University of Limerick on 7th and 8th September is
well under way. Most of the principal speaker have been invited.

The conference dinner will take place.at. Goaser’s Eating House-

in Killaloe, Co. Clare and this will be preceded by a cruise on
Lough Derg. It was suggested that Belfast be the venue for the
1996 September Meeting. Séan Dineen undertook to discuss this
with members at Queen’s University, Belfast when he visits there
in June. '

6. Mathematics education

It was noted that Elizabeth Oldham gave an invited address to the
I.M.S. at the Dublin Institute of Advanced Studies on the morning
of 10th April 1995. The talk, and the discussion which followed,
were agreed to have been stimulating and successful. The meeting
agreed that such talks should become a regular feature of the LM.S.
calendar. A discussion took place as to the best time for these
talks. It was agreed that the morning before the first day of the
D.I.A.S. Christmas Symposium or after the sherry reception that
evening would be best. The President, on behalf of all members
of the T.M.8,, recorded his gratitude to the Dublin Institute for

Minutes of IMS meeting 3

Advanced Studies for providing the facilities for these talks as

well as for the committee meetings and ordinary meetings of the
IM.S5.

The meeting closed at 1.15pm.

Eugene Gath
University of Limerick.




TENSOR PRODUCTS AND PRCJECTIONS

Seédn Dineen and Mamoru Yoshida

Summary In this article, using a conjecture of Grothendieck as focal
point, we give a display of the interaction between various concepts
from the geometry of Banach spaces. These concepts include tensor
norms, the Banach-Mazur distance and uniformly complemented sub-
spaces. The interaction is achieved with the aid of three powerful res-
ults:
{a) an inequality on bilinear forms due to Hardy and Littlewood,

(b} F. John’s upper bound for projection norms,
and

(¢} Dvoretzky’s spherical sections theorem.
1. Tensor Products

For a vector space E, the tensor product E @ E of E with-itself
consists of all finite sums of the form §°, z; ® 4;. A. Grothendieck
was mainly responsible for the development of a theory of tensor
products in Banach spaces. He investigated norms on E ® F sat-
isfying
lz @yl = lizli - llyll. (%)
He observed that there is a largest norm = (and a smallest
norm &) which satisfies (x), where, taking z = 2Ty,

Izl = inf{Z sl - {lsll}

and

||2}ie = sup{] Zw(n)z/)(yni Do, € B llpl] < L{l9]| < 1}

Since

122wl < 3 liell el - 111 i < S el -V,

4
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we have
-l <0 i (#+)

Grothendieck conjectured that || - li. and || - ||, were equivalent
norms on E if and only if dim E < co. Over the years it has been
shown that Grothendieck’s conjecture is true for large (and import-
ant) collections of Banach spaces. However, in 1983, G. Pisier, 2],
showed that the conjecture is false in general. We show that the
conjecture is true for Banach spaces which contain uniformly com-
plemented I3’s and that any counterexample must contain a large
number of badly located almost Euclidean subspaces.

A comprehensive study of Grothendieck’s conjecture is given
in G. Pisier, [3], and our results are special cases of results given
there. The monograph [3] is extremely well written but technically
demanding. Qur aim in this article is to provide some insight for
the non-expert. '

2. An inequality of Hardy and Littlewood

Let j, k and n denote positive integers and let o, = e?miik/n,
where ¢ = y/—1. Let A denote the n x n matrix (ojk)1<)k<n
With. A we can associate, in a canonical fashion, a bilinear form
A as follows:

Al(z5) 00, ()0y) = > amiyy.
ik
Let
~' T n 7T
All, = sup{] > auzsul : 3 leitr <1, > Il < 1)
ik=1 ' i=1 k=1
Hardy and Littlewood, [1], proved that if

_|3/2-2/p forp>2
r](p)—{l—l/p for1<p<2,

then there exists ¢ > 0 such that

c-ntP) < [JA]], < no®
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for all » and p.

If 2z€ E®E, with » = 2.:T: ® yi, we associate with z
the bilinear form % on E' ® E' where E' denotes the space of all
continucus real valued linear forms on E, by the formula

Y= <p@><g,y >

and with this identification we have

lzlle = sup{|3(e, ) : [lell < 111wl < 1.

For a positive integer n and 1 < p < oo, we let {y denote C*
endowed with the norm

1/p

l(z )izt llp = Z |2;1%
i=1

and for p = oo, we let I? denote C" endowed w1th the supremum
norm

l(zi) i oo = sgp}zﬂ.

- 1 1
Forl<p<oo,let = =1-=andlet p’ =1 when p = co. Trans-

vy
lated into the language of tensor products the Hardy—thtlewood
inequality says that

Hi)
> ajee; @ exllm, e.1e, ~ n*?,
Jik=1

where e; = (0,---,0,1,0,---), the entry 1 occurring in the j-th
position.

For all finite dimensional Bana,ch spaces {and many infinite
dimensional spaces) we have

(E®: EY =FE'®.E

Tensor Products and Projections 7

where E'®. F' is the completion of E' ®, E’.
HE=0DFE = 5, and 1/p+ 1/p' = 1, then this duality is
given by

n : n - n
. f
< E 04.k€; @ ey, E b-,kej- ®ef >= E aj1b e,
j,k=1 k=1 T ogk=1

where (e})?_, is the standard dual basis to (e;)7,, that is,

i=1 j=1

<e,ep >= ;4 (the Kronecker § function).

Hence
T 13
n' =< Y ojaei®er, 3 Gjuei @) > |
fk=1 ik=1
n
<n*P| 3" a; e ® exllim, @,
j,k=.l
and
n
. - I
I3 asne; ®erlipooz > n? e, (+ % %)

Fh=1

To simplify our notation, we introduce the concept of tensorial
diameter (td). For a Banach space E, the tensorial diameter of E,
td(E) is defined by

td(E) = sup Hzllllw’ where z€ E®@ F, z £ 0.

By (#), td(E) > 1 and an infinite dimensional Banach space E
is a counterexample to Grothendieck’s conjecture if and only if
td(E) < 0. By (* * %), -

11 2255 @ike; ® exllup o m

r P
12255 cike; ® el gtz )
> p2-a(p)=a(s') _ b(e).

td(ir) >
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where
b(p) = 3/2—1/p for1<p<2
“l1/2+1/p forp>2.

3. The Banach-Mazur distance

When two Banach spaces are isomorphic, the Banach-Mazur dis-
tance d measures how close they are isometrically, For isomorphic
Banach spaces E and F

d(E, F) = inf{”T”-HT_lH : T: E — Fis a linear isomorphism}.

The function logd is symmetric and obeys the triangle inequality.
If E (and hence F) is finite dimensional then d(E, F) = 1 if and
only if £ and F are isometrically isomorphic.

Lemma I. If E and F are isomorphic Banach spaces then
td(E) < (d(E, F))* - td(F).

Proof: Every linear mapping T : E — ¥ gives rise to a cancnical
linear mapping '@ T: E® F - F Q F, where

(TeTHeky) =Tz Ty
and moreover,
IT@T|lx = [IT.2 Tl = ||TII*.

In addition, if T is a linear isomorphism then so alsois T ® T for
both ¢ and 7 and

T & T) M = (T @T) M. = |72
Now suppose T : E — F is a linear isomorphism. For z € E® E

llzllx = (T @ T)" T & T)(2)||~
ST RTY M - (T ® THZM|w
=0T7HP - T @ 1) (2)|ix

Tensor Products and Projections 9

Moreover,

T @ T)()]le <ITH? - ||zl
and hence, if z # 0,
Lol
lzlle = KT © T)(=)||

This implies

lellx . IIT

izl S iTenmn T I I8 D@l

By first taking the supremum with respect to z and then the
infimum with respect to T we get the required result.

- Lemma 2. If & and F are Banach spaces and P is a projection

of B onto F then
td(F) < ||P|]? - td(E).

Proof: This is similar to the the proof of Lemma 1, using the easily
verifiable fact that ||P @ Pj|, < ||P|]?.

We also require the following result of F. John: if F is a
finite dimensional subspace of a Banach space E then there exists
a projection P of £ onto F such that

1P|l < +/dim(F).

4. Local theory of Banach spaces

The study of the properties of the finite dimensional subspaces of
a Banach space is known as the local theory of Banach spaces.
This often leads to global results. For instance, if all the finite
dimensional subspaces of a Banach space E are isometric to a
Hilbert space, then E itself is a Hilbert space. The Dvoretzky
spherical sections theorem says that for every e > 0, every positive
integer n and every infinite dimensional Banach space F, there
exists an n-dimensional subspace F of E such that

dF13) <1+e.
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We say that a Banach space E contains I%’s uniformly if for every
€ > 0 there exists F,, C F such that

d(Fp,I2) <1 +&.

E is said to contain Iy’s uniformly complemented if, in addition, for
each n there exists a projection P, : £ — E such that P, (E)=F,
and ||P,|| < 1+¢. The infinite dimensional Banach space I,
contains I’s uniformly complemented.

Proposition 3. If for some p the Banach space E contains uni-
formly complemented I%’s, then E satisfies Grothendieck’s conjec-
ture.

Proof: We have

wdFmy ta(ly)
> > |P. 122 (E,, im)
) 2 e i 2 1 e i

> limsup n®®) = oo,
T

the first inequality holding by Lemma 2, the second by Lemma 1.
This proves the proposition. :

On the cther hand the proof of the proposition above together
with the precise growth rate of td(l7) as n — oo shows what bal-
ance must be maintained between the Banach-Mazur distance and
the projection norm in order to satisfy Grothendieck’s conjecture.
The proposition above also provides us with properties that any
counterexample to the conjecture must satisfy. For example, the
spherical sections theorem of Dvoretzky shows that any infinite
dimensional Banach space contains {3 and by the result of F. John
we can suppose that a projection P, onto IZ has norm < vn. By
the Hardy-Littlewood inequality we have td{l3) ~ n. Hence if E
is a counterexample to Grothendieck’s conjecture then

td(ly
00 > td(E) > limsup HP( Tf)z = limsup TIIJTEW

asymptotically the worst possible projection norm and may be said

Hence there exists ¢ > 0 such that |[P,|| > ey/A. Thus 17 has

(1]
2]

Tensor Products and Projections i1

to be badly located. G. Pisier, [3], showed that his counterexample
E has the foliowing stronger property:
there exists ¢ > 0 such that for any finite dimensional subspace F
of E and any projection P of £ on F

1] > ¢ /@m(F).
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ON THE CONTINUATION
OF HOLOMORPHIC MAPPINGS

Maimoru Yoshida*

1. Introduction

In the theory of one complex variable, it is well known that holo-
morphic functions cannot in general be extended as holomorphic
functions to larger domains. For example, if Q(# C) is open and
a € 90, then

1

Q.

flz) =

cannot be extended across the boundary point a. Another classical
example is

g(z) =82 ;2™

which cannot be extended across any point of the boundary of the

unit disc. For any domain ) of C, there is a holomorphic function
which cannot be extended across any point of the boundary 1.

For functions of two variables, we have a new phenomenon.
For example if we consider the anmilus

={(z,22) s 1<|aal’ +|zl” < 4},
then all f holomorphic on {) can be extended to the ball
= {(z,22) 1 |21 +|2)? < 4}

A simple consequence of this result is that zeros of holomorphie
functions of more than one variable cannot be isolated.

* The author thanks University College Dublin for support
during the period this research was undertaken.
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Another classical example concerns the domain
1
f1s = {,(2.’]_,22) : |Z]_| <1, |;-:2{ < 1, t|z1| - |Zz|| << g}

All f holomerphic on {23 can be extended to the polydisc
Q= {(z1,22) : |2l <1, |z] < 1}

When this phenomenon, which was discovered by Hartogs, occurs,
it is natural to ask the following questions:

{A) Given f holomorphic on {1, is there a natural domain to which
all f holomorphic on {3 can be extended holomorphically ?

(B} Given {2, is there a natural domain ' to which all holomorphic
functions on §2 can be extended ?

if a natural domain for f exists, we call such a domain (in (A))
a doman of exisience of f and denote it by {I;. For example the
unit disc in C is the natural domain of existence of g(z) = T8, 2™,

¢ I8 Qlpunique? How does one construct §2,7

Such a natural-domain ¥’ (in(B)) is called a domain of holo-
morphy.

It is natural to expect that, in some sense, {1’ is related to
MNyena) £ where H({1) is the family of all holomorphic functions
in 2. Is it possible to characterize when {1 = (¥ geometrically or
algebraically?

Geometric characterization

The proper mathematical definitions are rather technical but
we can state some results which are readily understandable. For
example the following notion of helomorphically convezr domain
is related, by the Hahn-Banach Theorem, to the linear notion of
convexity.

Let {1 be a domain of C" and K any compact subset in {1,
We put

Ko={zeQ: |[f()| < Ifiix, f € H(Q)},

where || f|lx = sup{|f(z)] : z € K}.
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If K, is also compact for any K, 2 is said to be holomorphic-
ally convez. It is easily seen that convex domains are holomorph-
ically convex.

We have the following two equivalent properties for a domain
1 of C7:

(I) £ is a domain of holomorphy,

(IT) @ is holomorphically convex.

Metric characterization

A function u on a connected domain D (C C) is called subhar-
monic, if the following conditions are satisfied:

(1) g is upper semicontinuous,

(2} u is not identically —co,

(3) nle) < £ 027\' plc+re)dd, (r > 0: sufficiently small).

Condition (1) is a smoothness condition, while {2) is just to
exclude a trivial case and (3) is the main property which says that
the average over a disc dominates the value at the centre.

Let 2 be a connected domain of C™ and let Zp be any point
in {}. We put

Ey(z) = {z = zo+at: t G_C-}, {a e C?).

If p is not identically —oco and p satisfies (1) and (3) as a
function of £ in O N Eo(zp) forall zp € N and o € C”, then pu is
said to be plurisubharmonic on 0,

If —logd(z,CR) is plurisubharmonic in 2, then O is called
pseudoconver.

The following condition for a domain € of C" is equivalent
to conditions (I) and (II) above:

(ITI) £ is pseudoconvex.

It is not difficult to show that domains of existence are pseudo-
convex. The converse was conjectured by E. E. Levi in 1911 and
became known as the Levi problem and was solved by K. Oka in
1942 for domains in C? and for domains in C™ by F. Norguet and
H. Bremermann in 1954. The term ‘Levi problem’ (see section 2)

is still used for problems of this type in more abstract and general
settings,

Algebraic characterizations

The Continuation of Holomorphic Mappings 15

For a given family (data) of meromorphic functions which
are defined locally on a domain @ of C", can we find a global
meromorphic function which is locally identified, in a sense, by
the data? More precisely given an open covering U = {U; : i €
I} of © and a collection of meromorphic functions m;, with m;
meromorphic (i.e. a quotient of holomorphic functions) on U;.
Supposing that m; — m; is holomorphic on I/; N U;, then we wish
to find a global meromorphic function m on § such that m — m;
is holomorphic on U; for all 2. Let O be the sheaf of germs of
holomorphic functions over a domain £} of €. If a collection

7N, 0) = {zy : i, j € I} satisfies conditions (1), (2) and (3)

below, we call Z1(2, ©) a holomorphic cocycle of degree one on I4:
(1} 245 ts holomorphic on U; NU; (3 @) for all i and j in 7,
(2) 215 = —2js on U; N U; whenever U; NU; # @,
(3) Zijtzjp+2p; = 0on U;NU;NU whenever UiﬂUjﬂUk # 9.
I CYQ,0) == {z: i€ I} satisfies condition (4) below, we call
CY{Q, ©O) a holomorphic cochain of degree one on U:
(4) z; is holomorphic on U; for all 7 € I.
We put

B'(0,0)={z -z z, z; € CHD, O}

and call BY(Q, O) a holomorphic coboundary of degree one on If.

Z'(9,0) and BY(Q,0) are additive groups and BYN,O) is a

subgroup of Z'(, 7).

We put H'(Q,0) = Z2'(02,0) / B (£, O) and call HL(, O)
the first holomorphic cohomology group on U.

Clearly #'((2,0) = 0 if and only if Z'(2, Q) = B}(, ).

The following condition is equivalent to (I):

(V) HY(Q,0) = 0.

A very different algebraic characterization has been invest-
igated by other authors. If H{f) is endowed with the compact
open topology, then it becomes a complete metrizable topological
algebra (i.e. the operations of addition and multiplication are con-

‘timuous). We may then consider M(H(Q)), the set of all con-

tinuous C-valued multiplicative linear functions on #({1). Clearly
point evaluations belong to M(H(Q)) and thus the the mapping

v €=, € M(H(Q),
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where 8, is point evaluation at z, is well defined and easily seen
to be injective for {2 open in C”. The space M(H(£)) can be
endowed with the structure of a complex manifold and with this
structure the envelope of holomorphy of 2 can be identified with
the connected component of AM(H()) which contains »(). This
gives the following characterization equivalent to condition (1) for
a domain Q of C”.

(V) Q = M{H()).

Conditions (II) and (II) are geometric characterizations of

domains of holomorphy while (IV) and (V) are algebraic charac-

terizations. In particular, (II) reduces to whether — log d(z,C0)
is subharmonic on a domain of the complex plane C. Condition
(IV) is suitable for concrete calculations. _

These are parts of the basic classical backgroumd to more
recent results which we will now describe. The results we describe
involve a more general setting.

2. Setting up of the problem
We describe the more general setting,

(1) First it is more natural to discuss such. problems over -

Riemann domains than open sets of C™, since for example there
exists an open subset of C”, §, say, such that holomorphic func-
tions on {1 cannot be extended to any larger open subset of C*,
but if  is considered as a complex manifold, then all holomorphic
functions on © can be extended to a strictly larger complex man-
ifold.
The definition of Riemann domain is as follows:
if there exists a local biholomorphic mapping ¥ of a complex
manifold @ into the locally convex space E. (Q,4) is called a
Riemann domain over E. '
(2) We discuss Riemann domains over infinite dimensional
spaces rather than over C™. In this case 3 mapping is holomorphic
if it is continuous and its restriction to each finite dimensional
section is holomorphic as a mapping of several complex variables.
(3) We discuss mappings of a Riemann domain £} into a com-
plex manifold V. '

(4) We consider subsets F of the space of all holomorphic
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mappings. The two simplest examples are F = H (1) which leads
to the concept of domain of holomorphy and F = {f} (i.e. F con-
sists of a singie function f) and this leads to the concept of domain
of existence. We confine ourselves here to these two examples but
mention a further natural and useful example, H% ({})-the space
of bounded holomorphic functions on 3. Note that if O <
and each holomorphic function on  extends, as a holomorphic
function, to ' then if f € #(2), A € C and A & () then

g:i= }E—A € H{Y)

and hence admits a holomorphic extension § to (. By uniqueness
of holomorphic extensions it follows that (f — A)-g =1 on I and
(=X §=1on ¥, where f is the extension of f to §. Hence
A& F(¥) and it is now easy to see that whenever F e H={
then f € H>®(Q).

- Next-we :provide some terminology for mappings between

- Riemann domains in order to set up our problem precisely. Let

(2, ¥) and (', ') be Riemann domains over a local convex space
E. If a holomorphic mapping X of 2 into Q' satisfies 1 = ¢/ o X,
the mapping A is called a morphism of (0, ) into (9, ¢’ }. Let
N be a complex manifold and let F C H(82, N}, where

“H(Q, N) = {f: fisa holomorphic mapping of  into N1.

A morphism X of (@, ¢) into (€, %) is said to be an FN-
extension of {1 if for each f € F there exists a unique f' €
H(EY, N) such that f o X = f. When F = H(f)) and N = C
we simply say a holomorphic extension.

Q2 is said to be an FN-domain of holomorphy if each FN-
extenszion of {1 is an isomorphism.

{1 is said to be a domain of holomorphy if each holomorphic
exiension is an isomorphismt.

{1 is said to be a domain of ezistence if there exists f € H(0)
such that 2 is an {f}C-domain of holomorphy.
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Let (82, ) be a Riemann domain over the space E and let
F CH(, N). A morphism A: -5 Q' is called an F N-envelope
of holomorphy of O if:

(a) A is an FN-extension of {2, :

(b) if g : @ — Q" is an FN-extension of {2, then there exists
a morphism v : 0" — Q' such that v o u = .

Then (X, 0,4} or (¥ is also called FN-envelope of holo-
morphy of (§2,v) or . Note that condition (b) says that an FN-
extension is maximal.

Malgrange, [10, pp.29-34] for the finite dimensional case and
Mujica, {11, Theorem 56.4] for the infinite dimensional case,
proved that there exists an F N-envelope of holomorphy of } and
that this envelope is unique up to complex analytic isomorphism.

Let (£3,4) be a Riemann domain over the space E, (A, (1, 1,5)

its envelope of holomorphy and NV a complex manifold. '

Problem () : Can every f € #(f2, N) be extended holomorph-

ically to an element f of H(Q, N) such that f=fol7

3. Some results

We require certain restrictionson N. If N = C", it is clear that- -
there is a function f which solves Problem (*). (See, for example,

[71)

If the complex manifold G is a group and the mappings G x
Go(z,y) »z-ye€Gand @37 = 2! € & are holomorphic,
we call G a complex Lie group. I G is the tangent space at the
identity e € G, we call G the Lie algebra of G. For example, the
complex general linear group GL{n, C) consisting of all invertible
n X n complex matrices is a complex Lie group and the set of all
matrices of degree n, gl(n, C), is the Lie algebra with respect to the
commutator product (4, B] = AB — BA. Between a complex Lie
group  and its Lie algebra G, there exists an exponential mapping
exp : G — & which is a local biholomorphism of a neighbourhood
of 0 in G onto a neighbourhood of the identity e in 7. In the
example above, '

exp(A):In+A+§1TA2+$A3+ ......
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for any A € gi(n, C), where 1, is the identity matrix.
Ifm =dimG < 0o, we may take G as C™ and we consider a
complex Lie group G of positive dimension as a complex manifold.
Let {©2,4) be a Riemann domain over a Stein manifold S,

. (X, 0, 1) its envelope of holomorphy, G a complex Lie group and

f a holomorphic mapping of {1 into G.

Let (A, §,9") be the {f}G-envelope of holomorphy. By
pseudoconvexity of ({2',1') and the positive solution of Docquier-
Grauert, 3], to the Levi problem, (9, ¢) is a domain of existence
of a holomorphic function on {I. Since (}\,fl,ﬂ/;) is its envelope
of holomorphy, there is a mapping p of (},4) into ({¥,9'} such
that X = go X. Let # be the holomorphic continuation of f to
(A Q,¢"). Then f' o g is the holomorphic continuation of f to

(A, £, 9). Thus we obtain the following theorem.

Theorem 1. Let (12,%) be a Riemann domain over a Stein man-
ifold § and (A, §2,4) its envelope of holomorphy. Any holomorphic
mapping of §} into a complex Lie group G has a holomorphic con-

" tinuation to (A, Q,v).

Let E be a complex linear space with the finite open topology
Tp. S. Dineen, [4], proved the vanishing theorem H'(D, ) = 0 for
D pseudoconvex and O the structural sheaf over the C-linear space
(£,To) and L. Gruman, [5], solved the Levi problem by proving
that any finitely pseudoconvex domain D of the space (E,Ty) is
the ‘domain of existence of a holomorphic function on .

‘A complex manifold N is called a complex Banach manifold
if it is & complex manifold modelled on a complex Banach space.

A Banach complex Lie group is a group G which is a complex
Banach manifold and a complex Lie group.

Let U = {U;: ¢ € I} be an open covering of E. Assume that
a set -

Z = {Zij Doz € H{U;N Uj,G), i, j & I}

satisfies conditions similar to conditions (1), (2) and (3) for a holo-
morphic cocycle of degree one Z'(€2, O) which we gave in our
algebraic characterization of domains of holomorphy. We call Z
a helomorphic cocycle on Lf with values in 3 and call the pair
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F = {U, 2} a holomorphic principal fibre bundle with base space
E and structure group G.

We consider the continuation of holomorphic mappings of a
Riemann domain (f,4) over (E,Tp) into a complex Banach Lie
group . Let A be the set of finite dimensional C-linear subspaces
of E. For any L € A, we denote (tN~1(L) and PNy (L), by
{1, and ¥, respectively. Any holomorphic mapping f of (£17,4)
into (7 can be continued holomorphically to its envelope of holo-
morphy by the finite dimensional result. The authors, [6], proved
the following theorem, using the method of Kajiwara-Shon, [9],
and transfinite induction as in Dineen, [4].

Theorem 2. Let E be a complex linear space with the finite
open topology, ({2,1) a Riemann domain over E and (}, {1, )
the envelope of holomorphy of (§2,+). Let G be a complex Banach
Lie group. Then any holomorphic mapping of §} into G can be
holomorphically continued to the envelope of holomorphy (A, ), )
of (£2,1)}. :

The main problem with the finite open topology is that it
allows of too many holomorphic functions. In two cases in which

the base space F is endowed with stronger topologies, the.authors; .. .

[12], prove, using positive results of Schottenloher, [13], for the Levi
problem and methods similar to those used in finite dimension, the
following theorem.

Theorem 3. Let E be a separable Fréchei space with the
bounded approximation- property or a DFN-space and (Q,)
a Riemann domain over the space E. Let G be a complex Banach
Lie group and F a holomorphic principal fibre bundle with struc-
ture group G over E. Then a holomorphic section s of F over {}
can be continued holomorphically to the envelope of holomorphy
of the Riemann domain 1.

The proofs of the results above are rather technical and so we
do not provide details but give one brief example of the technical
aspects. Let

D={z=(21,) € C*: |z <1+, lza| < l}U
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{Z:(ZE,ZQ) ECZ'. 1—-e< lle <1l+eg, IZ;gI <1+E}
and
D={z=(z,2) € C?: || <l+4e(j=1,2)}

for a positive number e {< 1). It is classical that 1 is the envelope
of holomerphy of .

Lemma, Let & be a .compiex Lie group. For any hafomerphjp
mapping f of D inte &, there is a holomorphic mapping g of D
into G such that g =-§ in D.

Proof: We may assume that ¢ is connected. We introduce in
H{D, G) the compact-open topology 7y and let H = (H(D,G), ).
As D is analytically contractible to a point, H is a connected
topological group. Let

K@) ={z€C%: |z1| S1+e~6,im| <1 ~8U
{zeC?: l-e+dZ || 1+e—4lnl<l+e-d)

and :

K@) ={z€C: |5 <1l+e-4(=1,2))

for any positive number § with § < z. Let m be the complex
dimension of & and exp the exponential mapping of C™ into &.
The mapping exp maps an open neighbourhood

U={weC™: | <a (j=12,... ,m)}

of the origin in C™ biholomorphically onto an open neighbourhood
W of the identity element e of G. Hence log := {exp|U)~! is a
biholomorphic mapping of W onto {7. We let

V(1) = {he H; hK(S) c W

Then V(1) is a neighbourhood of the identity element 1 of the
topological group H. Since H is connected, H is generated by
V(1). There is a finite number s of elements fiafa, -, foy and
fs In V(1) such that

f=htfr fs
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in D. Each log f; is a holomorphic mapping of K (&) into the
polydisc U.
There is a holomorphic mapping G; of K'(8) into U such that

G; =log f; in K{(§) N K'(&)
forj=1,2,---,5 Welet
g=expGrexply - exp G,

in K'{§). Then g is a holomorphic mapping of K’ (8) in & such
that g = fin K(6) N K'(6). Since § is arbitrary, we obtain the
Lemma by the identity theorem for holomorphic mappings.

Further details and precise definitions are given in {1], [6] and
[12].

Acknowledgement The author is indebted to Professors S. Din-
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contimiation problem:.
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MUSICAL SCALES

Maria José Garmendia Rodriguez
Juan Antonio Navarro Gonzdilez

Introduction

Our aim is to provide precise definitions of some musical concepts,
mainly tuning system and mode, in order to begin a rigorous search
of the theorems uncovered by the main scales currently used in
Western art music. .

We shall consider musical concepts that only depend on the
tones of sounds, disregarding any other characteristic of sounds
(timbre, volume, duration, ...). We shall ground our study on

the structure of pitches, assuming that each musical pitchy is fully. ..

determined by the frequency of vibration of the sound wave that
produces it. Given a pitch ¢ and a positive real number A, we have
a pitch At whose frequency is the product of A by the frequency of
t and so we obtain & free and transitive action of the group of all
positive real numbers on the pitches. This is the only structure of
sounds that we shall consider and our first goal is to show how the
concepts of musical scale and mode may be reduced to this simple
structure. ’

Given a pitch ¢, the most consonant pitch is ¢ itself, then
2t, 3t ard so on. At the basis of the whole theory is the natural
identification between # and 2¢ that most men make unconsciously.
Hence we consider families of pitches S such that t € § implies:

(i) 2"t belongs to S for any integer n.

(i) only a finite number of elements s € S satisfy ¢ < s < 2¢ (this
number does not depend on ¢ and it is said to be the number of
notes of &).

24
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Two families S, &' are said to be equivalent when &' = AS for
some positive nuinber A and tuning sysiems or sceles are defined
to be equivalence classes.

Any finite family of pitches F, such as a melody or the keys
of a piano, defines a scale F = {2"t:n € &, t € F}. For example,
the classical diatonic scale is defined by any geometric progression
t, 3¢, ..., 3%, and it is a good scale from the melodic point of view.
From the point of view of modulation good scales are tempered
scales (scales- defined by geometric progressions ¢, ri, r2t, ..,
r™ = 2t} and the scale defined by the keys of a piano is the
tempered scale of 12 notes. From the point of view of harmony, one
should like to have 3t and 5t in the scale whenever ¢ is. Therefore

. (neglecting the temperament for the moment) we should look for a

scale S such that 3t,. . ., 3% and 5¢ belong to & whenever ¢t € S; but
any one of these conditions contradicts the finiteness of the number
of notes, so that no scale may fulfil them. However, men cannot
distinguish two pitches when their frequencies are very close, so
that a scale fuifilling these conditions up to a small error would

‘be a perfect one for human hearing. We shall prove that any scale

improving the error of the tempered scale of 12 notes must have
16 or more notes. Even if one disregards modulation, the usual
tempered scale is the best scale (from the point of view of melody
and harmony) with less than 16 notes.

1. Tuilihg Systems

Given a pitch £ and a positive real number A, we shall denote by M
the pitch whose frequency is the product of A by the frequency of
t; so that 1t = £ and A(ut) = (Au)t. Moreover, given two pitches s
and ¢, there exists a unique positive real number X such that ¢ = As
and this number A is sald to be the intervel from s to t. This is
the only structure of sounds that we shall consider, so that our
starting point is the following definition of the structure of tones
of sounds: :

Deﬁnition: Any set P endowed with a free transitive action of
the (multiplicative) group 7 of all positive real mumbers is said to
be a system of pitches. (By a free transitive action, we mean any
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map I x P — P,(At) = M, such that 1t = ¢, A{ut) = (Au)t
and such that, for any pair ¢,5 € P, we have s = At for a unique
A € 7.) The elements of P are said to be pitches and the elements
of 7 are said to be intervals.

We shall always consider the usual order on 7 = R, so that
pitches inherit an order: s < ¢ when ¢ = As, A > 1.

Some important intervals have a proper name: 2 is the ectave
(so that between the pitches ¢ and 2°¢ there are a octaves), 3/2
is the perfect fifth and 5/4 is the major third. The basis of any
tuning system is the identification between sounds forming octaves,
so that we consider the subgroup 22 = {A€Z:A=2"ne Z}.

Definition: The quotient set O = P /2% is said to be the Octave,
so that 7 acts transitively on the Octave and the quotient group
T/2% acts transitively and freely on .

(Geometric representation:

We denote pitches by Latin letters and their projéction on the
Octave by the corresponding capital letter. -

If a pitch ¢ is fixed, then pitches correspond with positive real
numbers, but this representation takes octaves into segments of.
different lengths. To avoid this problem it is convenient to use
an additive notation; hence, we represent the pitch At by the real
number a = log, A, so that the interval from ¢ to ¢ is represented
by a segment of length a. We put ¢ + « instead of At when this
additive notation is used (+e is translation by e octaves). For
example, if [ = log, 3, we have: ' )

& 2t 3t 4t

t
: | — -
—i -1 1-1 o 2-1 1 { 2

When the group 7 is identified with R via log,, the subgroup 2% is
identified with %, so that Z/2% is isomorphic to R/Z. Therefore,
we 'may represent the Octave by the points of a cirtle and it is
quite natural to fix the length of this circle as the unit of length

Musical Scales 27

and to measure angles by octaves (i.e., complete turns, so that the
angle o has 2wa radians): »

T
o = log, A

"This geometric representation of the Octave allows us to define
the distance between two elements of (@ as the distance of their
corresponding points in the circle.

Note that the order of P defines an order on the complement
O =T of any element T' € O, so that any finite subset of the
Octave. inherits a “circular order” (we always represent it in the
ceunter—clockwise sense)

Definition: Two finite subsets S and 5 of the Qctave ¢ are said
to be equivalent if §' = AS for some interval A (if there exists a

- rotation of the Octave transforming S into S"). Equivalence classes

of finite subsets of () are said to be tuning systems or scales. The
number of notes of a scale is the common cardinal number of all
finite subsets of (? representing it.

By definition, a scale 8 may be represented by a finite subset
S of the Octave (whose elements are said to be notes) or by a
family of pitches S with the following property: if t € S , then
2"t € S for all n € Z and there is a finite number of elements of S
between ¢ and 2¢. Two such families § and S’ define the same scale
when &' = AS for some interval A. Moreover, any finite family of
pitches, such as the keys of a piano or a melody, define a scale
when we project it on the Octave, :

“Take a finite subset S of the Octave representing a given scale
S of n notes and let us consider the circular order (I1,...,T,) of its
notes. Then we get an n-cycle (o, ..., a,) of intervals (in fact of
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elements of 7/2%), where Tiy, = T} +a;. This n-cycle (@1, vy o)
only depends on the scale 8§ and it is catled the symbol of S because
it is clear that any scale is determined by its symboal,

The symbol of a scale is not an arbitrary cycle of intervals
because we have o) +. . .+a; < 1 when i < n and aL+.. . ta, =1
(identifying 7/2% with (0, 1)).

Modes: A finite subset A/ of the group Z /2% is said to be a mode
if it contains the neutral element 1.

Each mode M defines, once you fix a pitch ¢, a finite set
Mt = {AT': A € M} in the Octave; hence M defines a scale,
since MAt = A(Mt). Conversely, given a scale represented by a
finite subset S of the Octave, each note T € § defines a mode
M ={X€Z/2% AT € S} but this mode depends on the note T
Each scale of n notes defines, in general, # different modes.

Since 7/2% = R/Z = [0,1}, every mode M is a sequence
O0=mi <mg < ... <m, <1, so that M is determined by the
Sequence ay, ..., &, where a; = m; 1 —-m; and a,, = 1 —my. The
symbol of the scale defined by M is just (o, ..., an). Conversely,
the modes defined by the scale of symbol (a1, ..., a,) are just the
modes corresponding to the n sequences: o

QYo no1,0n
2, Q3, ... Oy, O
(A o5 PN & Fo |

Tempered scales: A scale is said to be tempered if it divides the
Octave in equal parts; that is to say, the symbol of the tempered
scale of n notes is {1/n,...,1/n).

The scale defined by the sounds of a piano is the tempered
scale of 12 notes. The reader may obtain the symbol of the scale of
7 notes defined by the white keys and the corresponding 7 modes.

Scales of fifths: The scale of fifths of n notes is the scale defined
by any geometric progression of ratio 3 and n terms, n > 2. It is
the scale represented by {1,37,...,3""1T}. In this scale every
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note S, except for 3" '7, has its perfect fifth 35, but no one has
its major third 5S. Scales of fifths cannot be tempered because
3" is not a power of 2.

When n = 5, one finds the pentatonic scale, frequently used
in folk music (according to the Britannica, the pentatonic scale is

“used more widely than any other scale and Western art music is

one of the few traditions in which pentatonic scales do not pre-
dominate):
32
34T 32T

3T

32
BT
symbol

When n = 7, one obtains the classical diatonic scale (the
traditional name of each note figures inside the circle):

3
3T symbaql -
Do=C Re =D, M: =E,Fa=F, 80 =G,La=A,5 =B

and each note of this scale defines one of the seven classical modes:
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Major C 1 3% 3* 3-13 33 3o Ionian

D 1 3 33313 3 32 Dorlan

E 1 3°%3%313 3732 Phrygian

F 1 3 3% 368 3 33 35 Lydian

G 1 3 3% 33 3 3?2 Mixolydian
Minor A 1 32 38313 3432 Aeolian

B 1 37°3°%3713°9 3432 Hypophrygian

"The last one is rarely used because it does not contain the.

perfect fifth (= 3). On the other hand, no mode contains the
major third (= 5), but the major mode contains 3* = 81/64 =
1.265625 which is much closer to 5/4 = 1.25 than the interval
373 = 32/27 = 1.185 of the minor mode. -

When n = 12, one obtains the chromatic scale (a sharped
note 5% denotes 375 and a flatted note 5% denotes 3779):

375, ¥
37 375
9-5 37
3-5 3-8
47 3-s
35 7
symbol

In this scale A% is the unique note without perfect fifth in
the scale. In fact, the distance from F to 34# is about 0.02. No
note has its major third in this scale. The distance from 58 to the
closest note in the scale is about 0.018 when S=A,B,C,D,E, F,
G, F# and it is about 0.002 when S=A#, C#, D* and G*. The
temperament of this scale is quite good, since its symbol only has
two different intervals (37 and 3-5) of similar length: the length
of 37 is about 0.095 and the length of 35 is about 0.075.
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The figure above shows that scales of fifths of 5 and 7 notes
also have symbols with only two different intervals, while scales of
fifths of 4, 6, 8, 9, 10 and 11 notes do not have this property. A
scale of fifths is said to be pythagorean when its symbol has only
two different intervals. .

Theorem 1. The numbers of notes of the pythagorean scales form
the following sequence (a;)

2,3,5,7,12,17,29,41,53,94, . . ., 306, 359, 665,971, ..., 15601,...
Nt Mo o N e \_Vm/\._.v._/\—.ﬁzgmd
2 2 3 5 2

where a;y1 = a; + b; and b; is the term preceding the group of
a;. Moreover, the lengths of these groups are the terms (or partial
quotients} of the continued fraction

log(3/2) _ 1+ 1
log,(4/3) 94 1

2+
3+
1+

1

1
5+ —

Furthermore, if 0 > ey are the lengths of the two intervals of the
symbol of the pythagorean scale of a; notes, then the lengths of
the two intervals of the next one (the scale of @iy1 notes) are cep
and oq — as, which is the distance of 3%T to T,

Note 1.1: The first 36 terms of the continued fraction above are:
1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1, 15, 1,9,2,5,7,1,1,
4,8,11,1,20,2,1,10,1,4, ...

It is has been well-known for a long time that coutinued frac-

‘tions are closely related to musical scales (see [1], [2], [6], [7] and

[8]) and the theorem above shows a new relation.
If 11, I are two positive real numbers, then the terms 1, T3,
T3 .- -, of the continued fraction l; /I, have the following geometric
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interpretation: if Iy, I» are two segments of lengths Iy, Iy in a
straight line, then I, fits »; times in [, and there remains a smaller
segment /3, then I3 fits r times in I and there remains a smaller
segment [y, then 74 fits r3 times in I3, and so on.

Since log, (3/2) and log,(4/3) are the lengths of the two inter-
vals of the pythagorean scale of 2 notes, we conclude that

(1.2): The last terms of the groups of the sequence (a;) above are
~ the natural numbers n such that 3T it is closer to T than 3™T for
any number 1 < m < n and they correspond to the pythagorean
scales such that the smaller interval does not it twice in the higger
one,

The symbol of a pythagorean scale only has two different -

intervals a; > @y, but it may be that this scale is highly non-
tempered because a; may be much bigger than . A pythagorean
scale is said to be quasi~tempered when «; is smaller than 2q5 and,
by 1.2, these scales correspond to the last terms of the groups of the
sequence (a;} above. According to the geometric interpretation of
the terms of a continued fraction, in such case the difference of the
two intervals fits r(n) times in @y, where r(n) denotes the length
of the group following n; so that the scale has “better tempera-
ment” when r(n) is bigger. From 1 and 1.1, one directly obtains
the numbers of notes of the first 36 quasi-tempered pythagorean
scales:

{1.3): '

no = 2051241 53 306 665 15601 31867 79335 111202 190537
rn)=223 15 2 23 2 2 1 1 55

We see that the first one improving the temperament of the chro-
matic scale has. 33 notes and that the scale of 665 notes has a
very good temperament. Moreover, (1.1) shows that the scale of
190537 notes has the best temperament among the first 36 terms.
Since the 36th term is easily estimated to be greater than 108
any pythagorean scale improving the temperament of the scale
of 190537 notes must have more than 1018 notes. However, if one
looks for a scale improving the temperament more than it increases
the number of notes, that is to say a number n > 13 such that
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7(12) _ r(n) n
T < n or 4 < T(n)

then (1.1) shows that the first 36 terms of this sequence do not
fulfil this condition. We should wonder at the existence of a
quasi-tempered pythagorean scale of more than 12 notes such that
7(n)/n is bigger than r(12)/12; but, unfortunately, we have no
evidence to conjecture that no pythagorean scale with more than
12 notes improves the temperament more than it increases the
number of notes (remark that r(n) /n is not a decreasing sequence).

Euler’s construction: The divisors of a given natural num-
ber form a mode, hence they define a scale. Euler considered the
scale defined by the divisors of d = 3%5%. It is a scale of (a+1)(b+1)
nctes such- that any note, except 3°5iT, has its perfect fifth and
any note, except 3757, has its major third. These scales cannot
be tempered, but Euler remarked that the scale of 12 notes cor-

- responding to d = 3252 =675 is quite close to the chromatic scale

and to the tempered scale of 12 notes:

Eulerian scale for 675
3°5 | 3% [35%] 5 135 [ 3%5 | 3 5 | 3% [3%5%3 .5
1.055]1.125 [1.17{1.25]1.318 [1.406] 1.5 {1.562 |1.6011.76|1.875
Pythagorean scale of 12 notes
1] 37 [ 37 T3% [a¥ 3T | 3° 3 | 3% [3F[397 §°

=

=

1]1.06811.125 | 1.2 [1.27(1.333 {1.424| 1.5 |1.602 1.697 1.8 {1.898
Tempered scale of 12 notes
1 r ,r2 Td T'4 rﬁ TG ?,,7 T'S 'rg TlG T'II

111.0591.122 11.19]|1.26|1.335 [1.414{1.498]1.588 |1.68|1.7%|1 888

r o= 91712

(Instead of the scales, this table shows one mode of each scale.
For the chromatic scale, it is the mode corresponding to C=Do.)
The symbol of the eulerian scale is
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In this scale, the distance from 3- 3T to the closest note (in fact
5T’) is about 0.018 and the distance from 5-527" to the closest note
(in fact T') is about 0.034.

2. Approximation Indices

We should like to have “ideal scales” containing the diatonie scale
T, 3T, ..., 35T based on any note T of the scale, as well as its
major third 5T. Clearly no scale may satisfy these conditions
(since no power of 2 is a power of 3 or 5); but we may look for
scales fulfilling them approximately.

Definition: Let us consider a scale 8 and let S be a finite subset
of the Octave representing 8, We define 3(8) to be the infimum
of all real numbers a such that the distance of 3T to S is < a for

~any T' € S (hence the perfect fifth of any note in S is in S up to
an error bounded by a3(8)). We define as(8) to be the infimum
of all real numbers o such that the distance of 5 to S is < « for
any T € S. We define the approzimation index of the scale S to
be a(8) = max{6as(S), 5(S)}.

By definition, if T € S, then 37,...,3%T and 5T may be
replaced by notes of § at a distance < a(S). Therefore, if a{8)
were smaller than the human perception of acoustic pitch differ-
ences, then 8 could be considered as a human realization of the
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“impossibie ideal scale”. In fact it seems that most men cannot
differentiate two pitches when the distance is smaller than 0.003
(3 thousandths of the octave).

Let us consider the tempered scale T, of n-notes. This scale
is represented by all rational numbers with denominator n. Hence,
if a/n is the best approximation of log, 3 with denominator n, then

‘we have a3(T,) = |log, 3 — a/n |. Therefore:

n-a3(T,) = {nlog, 3}
n-as(Th) = {n-log, 5}

where {z} denotes the distance of # to the closest integer number.
For the 13 first tempered scales we obtain

n| 2|3 |415] 6 71819 |10[11{12 {13
o3| 85182 |85 (15] 82 [13.5|40 (294 |15 [39.5:1.63 [304
5178 14 | 72 [78|11.4 | 36 |53 |11.4 (22| 42 {114 | 14
a |5101490 |510|190(490 [81.2(240}176 |90 |237[11.4 [182
nog 1701245 [340[751 490 194.5]320] 265 [150] 435 [19.6 | 395

where all the values are given in thousandths of octave, so that
a(T)2) = 0.0114. We may see that the approximation index of T1i2
is much better than the indices of the previous tempered scales.
The first tempered scales improving the index a3 of Ty5 are Tag
and T4, and the first tempered scale improving the index o of
Tiz is T4y, In fact we have:

a3(Ta1) = 0.0004, (Tg) = a5(Ty) = 0.0049

so that a(Ty,) is quite close to the human perception of tonal
differences.

Moreover, the tempered scale of 12 notes has a very good
approximation index even if we consider arbitrary tuning systems.
Any scale improving the index of T, has more than 15 notes:

Theorem 2. If the approximation index of a musical scale S is
smaller than the approximation index of the tempered scale of 12
notes, then the number of notes of 8 is greater than 15.
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Proof of Theorem 1

If z is a real number, we shall denote by [z] the decimal part
of z; that is to say, 0 < [z] < 1 and = = n + [z] for somé integer
7, s0 that [z] may be considered as the image of  in R/Z.

We shall always identify the Octave with the-interval 0, 1],
where the end points 0 and 1 are identified. Hence, the scale of
fifths of n notes is represented by 0 = [04], [I], [21], ..., [(n — 1],
where [ = log, 3. In fact, we shall only use that { is an irrational
number.

Let I be a fixed irrational number and let n be a natural
number, n > 2, _
If we consider the arithmetic progression 0, L., (n—-1)
of n terms and we consider the increasing order of [0f], 1, ...,
[{n — 1)I], we obtain a partition of the interval [0, 1

- | — =
o=@ Bl g 1

with an initial interval of length [p/] and a final interval of length
[—al] = 1—[g!]. This arithmetic progression of n terms is said to be
pythagorean when the distance between two consecutive points of
the partition is [pl] or [~¢l]. A pythagorean arithmetic progression
1s said to be quasi-tempered when the smaller interval is greater
than a half of the bigger one.

Lemma. If the arithmetic progression of n terms is pythagorean,
then the corresponding partition of [0, 1] has q intervals of length
[pl] and p intervals of length [—ql], so that p + g = n. Moreover

1) If the initial interval is smaller than the final one, [pl] < [—ql],

2

then the next pythagorean Dprogression has n + p terms and the
initial and final intervals of the corresponding partition are

L | ] [ E |
| —

0 ] @] [ 1
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2} If the final interval is smaller than the initial one, [—el] < (pl],
then the next pythagorean progression has n + q terms and the
initial and final intervals of the corresponding partition are

H b ]
— T 1 —
1

0 ] [l 2l

Proof: First we prove 1 and 2 assuming that the corresponding
partition has ¢ intervals of length [pl] and p intervals of length
[—ql],m = p+ g; so that the p intervals of length [—¢l] are just the
intervals from {{g + 4)!] to [il],0 < i < p, and the g intervals of
length [pl] are just the intervals from {jI] to [(j + p)l],0 < j < ¢
(remark that the two ends of any interval of length [pl] or [—gl] are
consecutive points of the partition because no integer multiple of
[pl] may coincide with [—¢i] and no integer multiple of [—gl] may
coincide with [pl], since I is assumed to be irrational).

We shall only consider the first case, the other being quite
similar. In this case we have [¢f] + [pl] < 1, so that [nl] = [pl} + [¢i]
lies between [gl] and 1; hence [nl] divides the final interval in two
intervals of lengths [pl] = [nl] - [ql] and [—nl]. For the same reason,
[(n + i}i] divides the interval from [(g + i)I] to [il],0 < i < p— 1,
in two intervals of lengths [pl] and [~nl]. Therefore, the next
pythagorean progression has n + p terms, the length of the initial
interval is again [pl] and the length of the final interval is just
[-nl]. Hence assertion 1 is proved. Moreover, we obtain that the
pythagorean progression of n + p terms has p intervals of length
[-nl] and n intervals of length [pl]. .

We conclude the proof of this lemina by induction on 7, since
it is obvions when n = 2. '

Coerollary. K oy > o, are the lengths of the intervals of the par-
tition of [0,1] defined by a pythagorean progression of n terms,
then we havc_a: C :

1) the lengths of the intervals of the next pythagorean progression
are ag and o — ag;

2) the distance from [nl] to 0= 1 is just oy — ap;
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3) If rag < @y < {r + 1)ay, then the consecutive pythagorean
progressions have

n+p,...,n+rp terms when [pl] < [—ql]
n+gq,...,n+rq terms when [—ql] < [pl].

Corollary. If{—!] < [I] and ro, 11, T3, 73, ...are the partial quo-
tients of the continued fraction of []] /[~1], then the numbers of
terms of the pythagorean arithmetic progressions defined by [ are

2""17-0 + ];rfl =T 12)' L )ar1‘r&1+1: ':‘r'aar1+‘r‘2"5---
i} T1 T2

where a;.q = a; + b; and b; is the term preceding the group of a;.

Proof:  According to ‘the geometric interpretation of the partial
quotients of a continued fraction, this result follows directly from
the corollary above, since the first pythagorean progression has 2
ter(;n[s a]nd the lengths of the corresponding intervals are just {I]
and [-{]. '

Corollary. The last terms of the groups of the sequence above
are the natural numbers n such that [nd] is closer to O than [mi]
for any 1 < m < n and they correspond to the numbers of terms
of the quasi-tempered pythagorean progressions. .

Proof of Theorem 2

Let o = a(Ty,y) =4 log,(%) and 3 = logz(z—gz%) be the
approximation of the major third in Ty5 and the chromatic scale
respectively (the interval 81/80 from 57 to 3*T is usually named
the comma).

(1) The distance between any two notes of the chromatic scale is
larger than 5a + 8 and 6er.
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In fact, the smallest interval between two notes of the chro-
matic scale is 2°/3%. Since it is easy to check that & < 3, we must
show that, 2%/35 is greater than

24/124 5 34 )
( 5 ) 2457,
or, equivalently, 37 < 2. 5' and this inequality may be tested
directly.

Now, let S be a scale such that a(S) < a and let § be a
subset of the Octave representing 8. If 7' € S, then there are
notes 71,..., Ty in S approaching 37,. . ., 35T more than . There
are notes 77,...,T1; in S approaching 3T}, ..., 3%T,; more than
o; hence approaching 37T, ...,3'T more than 2a. Therefore,
the notes in F' = {T=1,,Ty,...,T11} approach the notes of the
chromatic scale {T,37,...,3" T} with an error < 2.

(2) The distance between T; and T; is larger than 20 when i £ .
In particulor F' has 12 different notes.
Otherwise, the distance from 3T to 3/7" would be bounded
by 6ev, contradicting (1). : '
(3) The distance from T; to 5T} is larger than o when jFi+4.
Otherwise, the distance from 37" o 34T would be bounded
by d(3'T,T5) + (T}, 5T;) + d(5T3, 3*T3) + d(3%7T;, 3*3'T) < 20 +
@ + 8+ 2a, contradicting (1).

Finally, we compare the 12 intervals of F with the equal inter-
vals of T12. Let a4,...,a15 be the differences with 1/12 of the
lengths of the 12 consecutive intervals that F defines in the Octave,
so that, ay+... +-ﬂ‘:12 =0.

If aj,a541,8;42,a;13 are the differences corresponding to the
four intervals following a note T; € F, then the end of the fourth
interval is just 714 (the index must be considered modulo 12, see
the symbol of the chromatic scale). Hence:

Ti+4—_—ﬂ + a; +...+aj+3 +4/12
and we obtain that the distance from Tiry to 5T is exactly a +
@ + ...+ a3, because the distance from 57 to T + 4/12 is




(1]

(3]
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a(Tz) =a. Ifa; +...+a;.3 > 0, by (3) we conclude that no
note in F' approaches 57; more than e, so that the note S, eS8
approaching 57; more than o does not belong to . Now, each one
of the following additions (i = 1,2, 3,4)

(*) (ai+. . .+ai+3)+(ai+4+. . .+ai+7}+(ai+g+. . .+ai+11) =0

has at least one non-negative addend. So we obtain four different.

notes T%, T2, 7% T € F such that the notes S° € § approaching
57" more than o do not belong to F. We conclude that S contains
at least 16 different notes 7p,T1,...,711,8%,. .., 5% because we
have S* # S’ when i # j. Otherwise, the distance from 57" to
577 would be smaller than 20, contradicting (2). :

Note: Let S represent a scale S such that a(8) = a{Ty3). The
argument above also shows that F C S has 12 different notes.
Hence, if § only has 12 notes, then F = S and a5(8) > a when
some addend a; + ... +a;.3 is positive. By (*), it follows that
a4 +...+a;43 = 0 for any index j and a5(8) = a = a5 (Tha).
Now, it is easy to prove that the closest note to ;in F =8
is just T;4;, the end of the seventh interval following T5; so that
a3(8) > as{T12)~aj41—aji5—aj16 = @3(T12)+a;47. Therefore,
if &3(8) < a3(Ty2), then a; < 0 and we conclude that a; = 0 for
any index j; that is to say, 8 = Tys. Resuming, the tempered
scale of 12 notes is the best tuning system with no more than 12
notes in a very precise sense: '

Suppose that n < 12. If S is a scale of n notes such that
a(8) < a(T1s), then n = 12, a(S) = a(T1s), as(S) = as(Ty2),
@3(8) > a3(T12) and the last inequality is strict when § £ Tys.
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50ME GALWAY PROFESSORS
OF MATHEMATICS AND
OF NATURAL PHILOSOPHY

Rod Gow

The first professor of mathematics at Queen’s College, Galway was
John Mulcahy, LL.D., (1810?-1853), who held the chair from 1849
until his death. He was a graduate of Trinity College, Dublin,
and received a gold medal as best answerer in science in the B.
A. degree examinations of 1829. According to [5], he was one of
only two Roman Catholics appointed to the Faculty of Arts when
the Galway college opened. He wrote a textbook, entitled Prin-
ciples of Modern Geometry, published in Dublin in 1852. A second
revised edition appeared in 1862. (Principles of modern geometry,
with numerous applications to plane and spherical figures; and an
appendiz, containing questions for ezercise. Intended chiefly for
the use of junior students.) This book was recommended by Boole
for purchase by the library of Queen’s College, Cork in 1852 (see
(7, pp.102-103]).

Mulcahy was succeeded by George Johnston Allman (1824-
1904}, who retained the professorship until 1893, when he retired.
He was the son of William Allman, Professor of Botany at Trinity
College, Dublin. His best known work is the book Greek Geometry
from Thales to Euclid, published in 1889 in the Dublin University
Press Series. This book was highly esteemed by contemporary
historians of mathematics. It is based on a paper written in six
parts in Hermathene between 1877 and 1887. Allman also wrote
articles on Ptolemy, Pythagoras and Thales for the 9th edition of
the Encyclopaedia Britannica. For obituaries of Aliman, see Proc.
Roy. Soc. London 78 A (1907), p. xii, and Nature LXX (1904),
83.
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Allman’s successor was Alfred Cardew Dixon (1865-1936),
who held the chair until 1901, when he was appointed to the chair
of mathematics in Queen’s College, Belfast. In his article, [13],
James Ward has given some biographical details about Dixon.
Dixon wrote one textbook, The Elementary Properties of Elliptic
Funetions, published in 1894 by Macmillan. & Co.

Dixon was succeeded by Thomas John I"Anson Bromwich
(1875-1929) in 1902 and Bromwich held the chair until 1907, when
he took up a permanent lectureship at St John’s College, Cam-
bridge. Bromwich’s best known contribution to mathematics is
the book An Introduction to the Theory of Infinite Series, pub-
lished in 1908 by Macmillan & Co. This was based on lectures
on elementary analysis given at Galway. A revised second edition
was published in 1926 and this has been reprinted several times.
He also published another book, Quadratic Forms and their Clas-
sification by Means of Frveriont Facters, in 1906, This book is an
early example in English of the more abstract methods introduced
into algebra by researchers such as Kronecker and Weierstrass.
It is particularly concerned with the simultaneous reduction of
two quadratic forms, a problem. which, in its modern presenta-
tion, requires almost the full repertoire of the theory of a single
linear transformation. In his obituary of Bromwich, Proc. Roy.
Soc. London, 129 A (1930), i-x, G. H. Hardy expressed the opin-
ion that Bromwich’s best work had been completed by 1908. The
obituary makes interesting reading, as it gives a critical assessment
of Bromwich’s work and is certainly no mere enlogy. Bromwich
seems to have worked both as a pure and applied mathematician,
although not at the highest levels, according to Hardy. A slightly
differenit form of the obitnary was published in the Journal of the
London Math. Soc. 5 (1530}, 209-220. In this obituary, unlike the
first, Hardy points out that Bromwich died by suicide. (See also
Collected Papers of G. H. Hardy, vol. 7, 732-743.)

. The next Professor of Mathematics was William.A. Houston,
who held the chair from 1908 until 1912.

After Houston, the next Professor of Mathematics is Michael
Power who held the chair for over 40 years, from 1912 until his
retirement in 1955. He obtained his B.A. in 1907, M.A. in 1908,
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and M.Sc. in 1909.

There have been several distinguished holders of the chair of
natural philosophy in Galway, some of whom did considerable work
in mathematics, and we would like to discuss the first five of them
briefly.

The first Professor of Natural Philosophy was Morgan Wil-
liam Crofton (1826-1915), who held the chair between 1849 and
1852. Crofton’s career is interesting and we shall give some details
about it, largely based on the obituary in the Proceedings of the
London Math. Soc. (second series) 14 (1915), pp. xxix-xxx, and
on [4].

Morgan Crofton was born in Dublin, and was the eldest son
of Rev. W. Crofton, Rector of Skreen, in Co. Sligo. This is
remarkable, as Crofton senior must have been the successor of
George Gabriel Stokes’s father, who was rector of Skreen until his
death in 1834. Morgan Crofton obtained his degree from Trinity
College, Dublin, topping the list of Senior Moderators in Matherm-
atics ahead of G. J. Stoney (about whom, more below) in 1847.
According to the obituary.in the Proc. LMS, Crofton was denied
the chance to stand for a fellowship at Trinity, as he had become a
Roman Catholic. (This information is somewhat at variance with
that contained in [4, p.96), which states that Crofton resigned the
Galway professorship in 1853, about which time he entered the
Catholic Church. According to [4, p.97], Crofton’s son, Father
William Crofton, S.J., wrote: “my father was not with Newman
in Dublin, but he was instructed and received into the Church by
Newman himself in the early ifties at Birmingham”.) Tn any case,
Crofton received a prize in the Fellowship Examination at Trinity
in 1848.

After leaving Galway, Crofton worked in various Jesuit edu-
cational establishments in France. He seems to have come fo
England and got to know J. J. Sylvester, who was Professor of
Mathematics at the Royal Military Academy in Woolwich. On
Sylvester’s recommendation, Crofton was appointed an instructor
in mathematics at the Academy and he succeeded Sylvester as pro-
fessor in 1870, holding the professorship until 1884. J. D. North's

article on Sylvester in Vol. XIII of the Dictionary of Scientific
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Biography mentions that one of Sylvester’s last published papers,
in the 1890’s, on Buffon’s needle problem, had been motivated
by conversations with Crofton in the 1860’s but that Crofton had
already published identical material in 1868 (On the theory of local
probability). The Royal Society’s Catalogue of Scientific Papers
lists 18 papers by Crofton, almost entirely on pure mathemat-
ics, especially probability theory, geometry and the calculus of
operations. Some of his ideas on probability theory are discussed
by John Venn-in [12]. His teaching at Woolwich was directed
towards mechanics and engineering mathematics, in keeping with
the Army’s needs, and he wrote one texthook for the Academy on
applied mechanics, [2], as well as contributing to another one, [3].

Crofton retired from Woolwich in 1884 and became a member
of the Mathematical Staff of the newly formed University College,
Dublin. He cannot have done much teaching, as he continued to
reside in England, and came over to Dublin mainly as an examiner
in mathematics. He clearly collaborated with John Casey, also a
member of the Mathematical Staff at University College, Dublin,
on geometrical questions, as several of the exercises in Casey’s
books are attributed to Crofton. (There are 13 exercises in 1]
that bear Crofton’s name and Casey ‘acknowledges his debt to
Crofton in the preface to [1].) Crofton retired in 1895 and died
in Brighton in 1915. He was awarded an honorary Doctorate in
Science by Trinity College, Dublin in 1898. '

Crofton wrote a substantial article on Probability for the 9th
edition of the Encyclopaedia Britannica, which is still worth look-
ing at. Interestingly enough, the article on Probability for the
11th edition of the Encyclopaedia Britannica was also written by
a person with Trinity College, Dublin connections, Francis Ysidro
Edgeworth (1845-1926). Edgeworth obtained a scholarship in clas-
sics from Trinity in 1862, but took his degree at Oxford in 1869.
He wrote much initially in moral science and was later a pioneer
worker in mathematical statistics, probability theory and econom-
ies.

Crofton was suceeeded as Professor of Natural Philosophy in
Galway in 1833 by George Johnstone Stoney (1826-1911), whom
we have seen was second behind Crofton in the list of Senior Mod-
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erators at Trinity College in 1847. He was the uncle of the physicist
George Francis Fitzgerald, noted in connection with the Lorentz-
Fitzgerald contraction. Stoney held the professorship until 1857,
when he resigned to become Secretary of the Queen’s University in
Ireland. Although he died in London, Stoney is buried in the grave-
yard.of St Nahi’s Church, Dundrum, Dublin, where his tomb bears
the inscription Feliz gui potuit rerum cognoscere causas. Several
other members of the Stoney family are also buried there.

Stoney wrote numerous scientific papers, and was especially

interested in properties of spectral lines and also the measurement

of fundamental physical units. He is best known for having coined
the name electron, which arose in connection with the unit of elec-
trical charge on an atom. Articles about Stoney may be found
in [9], (10] and Vol. ‘XIII of [6]. [10] in particular gives several
references to Stoney’s life and work.

Stoney’s successor in the professorship was Arthar Hill Curtis,
(18277-18867), who held the position from 1857 until 1879. He was
also Registrar of Queen’s College, Galway from 1877 until 1879.
In 1880, he became Assistant Commissioner of Intermediate Edu-
cation. He may possibly have died in 1886, as there are no further
references to him in Thom’s Directory after this date. There are
some parallels in the early careers of Crofton and Curtis, as Curtis
also topped the list-of Senior Moderators in Mathematics at Trinity
College, Dublin, this time in 1849, and both were Llovd Exhibition-
ers (1846, 1848) and Bishop Law’s Prizemen {1848, 1850) at Trin-
ity. Curtis was also the first recipient of the MacCullagh Prize in

Mathematics in 1855, for an essay on the subject of physical optics. -

The prize had been funded by subscriptions raised in memory of
James MacCullagh, a former Professor of Mathematics and of Nat-
ural Philosophy at Trinity College, who had committed suicide in
1847. (A sum of £977 10s. 4d. was raised to fund the prize.)
MacCullagh’s research work was concerned mainly with mathem-
atical models of the aether and the geometry of surfaces of the
second order. See, for example, [11]. It is interesting to observe
that four of the first scientific papers of Curtis were devoted to the
geometry of surfaces; one in particular relating to MacCullagh’s
work {A geometrical proof of Professor MacCullagh’s theorem on

[1]

2l
(3]
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the polar plane, Quart. J. Math 1 (1857), 134141, this paper
having been written in 1835). It seems likely that MacCullagh’s
work influenced Curtis’s early research. Papers written by Curtis
after 1860 have titles reflecting an interest in physical questions,
in keeping with his position. in Galway. He published a book, A
Muathematical Deduction of the Principal Properties of the Gyro-
scope, in Dublin in 1862.

Curtis was followed in the professorship by Joseph Larmor
{1857-1942), who held the chair from 1880 until 1885. Larmor is
a major figure in late 19th century physics, having contributed
important ideas. in electromagnetic theory and early relativity the-

ory. He was especially interested in the motion of matter through

the aether and wrote a related book, Aether and Matter, in 1900.
He was-an important administrator in scientific bodies and edited
various collected editions of scientific papers (those of Stokes and
Fitzgerald, for example). He succeeded G. G. Stokes as Lucasian
professor of mathematics in 1803 and held this position until his
retirement in 1932. He also served as M.P. for Cambridge Uni-
versity from 1911 until 1922. An article about Larmor, with bib-
lLiography, may be found.in Vol VIII of [6].

. The final Professor of Natural Philosophy in Galway whom
we shall describe is Alexander Anderson (1858-1936), who suc-
ceeded Larmor in 1883 and retired in 1934. He was also President
of Queen’s College, Galway from 1829 until his retirement. He
wrote many papers on a variety of physical topics. The present
writer owns several of Anderson’s books, on such subjects as elec-
tricity, optics, geomagnetism, elasticity and the electron. For fur-
ther information about Anderson, we refer to the article [8].
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GEORGE GABRIEL STOKES 1812-1%03
AN IRISH MATHEMATICAL PHYSICIST

Alastair Wood

The name of Stokes, a contemporary of Kelvin and Maxwell,
has become well known to generations of international scientists,
mathematicians and engineers, through its association with varicus
physical laws and mathematical formulae. In standard textbooks
of mathematics, physics aud engineering we find Stokes’ Law,
Stokes’ Theorem, Stokes’ Phenomenon, Stokes’ conjecture and

the Navier-Stokes equations. George Gabriel Stokes has long been

associated with the University of Cambridge, where he spent all
of his working life, occupying the Lucasian Chair of Mathematics
from 1849 until his death in 1903. This prestigious chair was
once held by Isaac Newton, and is currently occupied by Stephen
Hawking, who has reached a wide andience outside mathematics
with his “Brief History of Time". What is not well known is that
Stokes was born in Skreen, County Sligo, where his father was
Rector of the Church of Ireland, and received his early education
there and in Dublin. Like William Thomson, later Lord Kelvin,
who- is often associated with Scotland (he occupied the chair of
Natural Philosophy in Glasgow University) rather than with Bel-
fast, where he was born, the contribution of Stokes has not been
fully recognized in Ireland. Kelvin at least had a statue outside
Queen’s University, but Stokes lacked any memorial in the land
of his birth. Perhaps this is a commentary on the importance
which Irish society attaches to scientific vis-a-vis literary achieve-
ment. The situation was rectified, however, with the unveiling
by former EU Commissioner for Agriculture, Mr Ray MacSharry,
of a memorial at Stokes’ birthplace in Skreen on Saturday 10th
June 1985 as part of a meeting organized at Sligo RTC by the
Institutes of Physics and of Mathematics and its Applications,
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under the auspices of the Royal Irish Academy, as part of the .ﬁa

Sligo 750 celebrations.

The first of the Stokes family to be recorded in history was
Gabriel Stokes, born in 1682, a mathematical instrument maker
residing in Fssex Street, Dublin, who became Deputy Surveyor
General of Ireland. Among his concerns was the use of “hydro-
static balance” to ensure a piped water supply to Dublin. Iis great -
grandson, George Gabriel, returned to this problem in one of his
earliest papers “The internal friction of fuids in motion” where *
he discussed an application to the design of an aqueduct to supply -
a given quantity of water to a given place. Gabriel’s elder son,

John, was Regius Professor of Greek and his younger son, another
(Gabriel, was Professor of Mathematics, both in Dublin University.

The descendants of this professor of mathematics became an -

important medical family in Ireland and internationally (see the
article by J. B. Lyons). The first of the medical Stokes was Whitley
(1763-1845), a medical Fellow of Trinity College, Dublin, whose
career was temporarily interrupted from 1798 to 1800 when he was

suspended for his association with the United Trishmen. Besides j:'
holding, at various times, medical chairs in Dublin University and -

the College of Surgeons, Whitley was Donegall Professor of Math-
ematics for one year (1795) and published in 1821 “Observations
on the population and resources of Ireland”, charging Malthus
with errors. The name of his son, William Stokes (1804-1878),
is preserved in medicine through Cheyne-Stokes respiration and
the Stokes-Adams syndrome in cardiology. His son, Sir William
Stokes (1839-1900), was: Professor of Surgery at the College of
Surgeons and many of his descendants are working with distinc-
tion in medicine and academia today. It is interesting to note that
George Gabriel, while primarily a mathematical physicist, did, like
his great-uncle Whitley, cross the boundary between mathematics
and medicine by discovering the respiratory function of haemo-
globin.

It is from the first (labriel’s elder son, John Stokes, that
George Gabriel Stokes is descended. Much less is known about
his branch of the family. Almost all of Q. . Stokes’s published
papers appear in the five volume Mathematical and Physical
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Papers (Cambridge, 1880-1905), together with cbituaries, mainly
assessing the value of his contributions to science, by Lord Kelvin
and Lord Rayleigh. The latter contains some personal detail of
Stokes, including a much quoted anecdote, which seems to have
originated with his mathematics teacher in Bristol College, “His
habit, often remarked in later life, of answering with a plain ves
or no, when something more elaborate was expected, is supposed
to date from his transference from an Irish to an English school,
when his brothers chaffed him and warned him that if he gave
long Irish answers he would be laughed at by his school fellows”.
The additional information presented here has been obtained from
manuscripts in the Cambridge University Library. These include
his correspondence with, and a memoir of his life produced by,
the Rev. H. P. Stokes (no relation), Vicar of St Paul’s Church,
Cambridge. Pembroke College, of which George Gabriel was a
Fellow, lies in this Parish, and he was Chirchwarden during the
incurmnbency of H. P. Stokes. Information has also been obtained
from the Notes and Recollections of his daughter, Mrs Laurence
Humphry, which appear in the book edited by Larmor, [2].

In 1798, Gabriel Stokes, son of John Stokes and Rector of
Skreen, married Elizabeth, the daughter of John Haughton, the
Rector of Kilrea. Their first child, Sarah, died in infancy, but they
produced seven further children, of whom George Gabriel was the
youngest. All of his four brothers became clergymen, the oldest,
John Whitley, who was already 20 when George Gabriel was born,
becoming Archdeacon of Armagh. In later life Stokes talked fondly
of the scenery of his boyhood and his rambles within sound of the
Atlantic breakers. Even in his paper “On the theory of oscillatory
waves” he writes, in the midst of mathematical equations, of “the
surf which breaks upon the western coasts as the result of storms
out in the Atlantic”. This paper also records a visit to the Giant’s
Causeway to observe wave phenomena. This very private and
reserved Victorian scientist had the occasional habit of breaking
into poetical descriptions in the middle of mathematical proofs. In
his 1902 paper on asymptotics, he describes what is now known
as Stokes’ phenomenon as “the inferior term enters as it were into
a mist, is hidden for a little from view, and comes out with its
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coeflicient changed”. Perhaps as a boy he had watched the mists
skim the surface of flat-topped Ben Bulben across the bay, an @
ares which was later to influence the poet W. B, Yeats. Thers
can be no doubt that George Gabriel was greatly inspired by his -
upbringing in the West of Ireland, and he returned regularly for”
the summer vacation, a non-trivial éxercise in the pre-railway era, '
while a student in England. Even after the death of his parents
he continued to visit his brother John Whitley, then a clergyman
in Tyrone, and his sister, Elizabeth Mary, to whom he was greatly

attached, in Malahide almost annually until his death.

His first mathematics teacher was the Clerk of Skreen Par- -
ish, who recorded George Gabriel as “working out for himself new
ways of doing sums, better than the book”. He read classics with -
his father, who by this time was getting old; he had been 52 when

George Gabriel was born. In 1832 he sent the young George Gab-
riel to live with his oldest brother John Whitley in Dublin so that

he could attend, as a day boarder, a Dr Wall’s School in Hume j

Street where he attracted attention by his elegant solution of geo-

- metrical problems. Gabriel Stokes died.in 1834, and his widow

and two daughters had to leave Skreen Rectory, but money was

found to send George Gabriel to school in England. His second - °

brother, William Haughton, had been 16th Wrangler in the Cam-

bridge Mathematical Tripos of 1828, and obtained a Fellowship ﬁ_i
at Caius College. It was he who recommended Bristol College, . :

whose Headmaster was Joseph Henry Jerrard, an honorary Fel-
low of Caius. Most of Stokes’ family connections had been with
Trinity College. A link with University College, Dublin, now exis-

ted in the person of his mathematics teacher in Bristol, Francis

Newman, brother of Cardinal Newman. Francis Newman wrote
that Stokes “did many of the propositions of Euclid as problems,

without, looking at the book”. Stokes appears to have had a great’

affection for Newman, whom he records as having “a very pleasing
countenance and kindly manners”.

George Gabriel- Stokes entered Pembroke College, the third
oldest in Cambridge, as an undergraduate in 1837. H. P. Stokes
points out that Queen Victoria, who had been born in the same
vear, 1819, as Stokes, ascended the throne in the same year as he
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entered university, although he outlived her by two years. Dis-
tinguished graduates from Pembroke included the martyr, Bishop
Ridley, the poets Spenser and Gray, and the statesrman William
Pitt. Although a mathematical prodigy at school, Stokes was
beaten into second place in his first year at Pembroke by one John
Sykes. From second year onwards he studied, as was the custom
at that time, for the highly competitive Mathematical Tripos with
a private tutor, William Hopkins. So effective were these studies
that Stokes was Senior Wrangler (that is, placed first in mathemat-
ics in the whole university) in 1841 and elected to a Fellowship at
Pembroke. His early research was in the area of hydrodynamics,
both experimental and theoretical, during which he put forward
the concept of “internal friction” of an incompressible fluid. This
work was independent of the work of Navier, Poisson and Saint-
Venant which was appearing in the French literature at the same
time, but Stokes’ methods could also be applied to other continu-
ous media such as elastic solids. He then turned his attention
to oscillatory waves in water, producing the subsequently verified
conjecture on the wave of greatest height, which now bears his
name. o
 Such was Stokes’ reputation as a promising young man, famil-
iar with the latest Continental literature, that in 1849 he was
appointed to the Lucasian Chair of Mathematics. At the same
time, to augment his income from this poorly endowed chair, he
taught at the School of Mines in London throughout the 1850%.
Although appointed to the Lucasian Chair for his outstanding
research, Stokes showed a concern in advance of his time for the
welfare of his students, stating that he was “prepared privately to
be consulted by and to assist any of the mathematical students of
the university”. It is recorded that Babbage, an earlier incumbent,
never once addressed classes. Stokes immediately advertised that
“the present professor intends to commence a lecture course in
Hydrostatics”, which he was still delivering 53 years later, in the
last year of his life. Stokes’ manuscript notes still exist in the
University Library in Cambridge, although his writing was so bad
that he eventually became one of the first people in Britain to make
regular use of a typewriter.
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The pure mathematical results of Stokes arose mainly from the
needs of the physical problems which he and others studied. He
was a mathematician very much driven by the needs of industria]

applications in his own titne. Besides his links with the School of )

Mines, he acted, over a period of many years, as consultant to the
lensmaker Howard Grubb who ran a successful and internationally-
known optical works in Rathmines. He also acted as advisor on

lighthouse Hluminants to Trinity House. Stokes’ collected works
mclude a paper on a differential equation relating to the break- -

ing of railway bridges and, following the Tay Bridge disaster, he
served on a Board of Trade committee to report on wind pressure

on railway structures. His paper on periodic series concernad con-

ditions for the expansion of a given function in what Wwe now know
as a Fourier series. He is also credited with having had the idea of
uniform convergence of a series. His major work on the asymptotic

expansion of integrals and solutions of differential equations arose - -

from the optical research of G. B. Airy. The well-known theorem
in vector calculus which bears his name is sadly not due to Stokes,

but was communicated to him in-a letter by Lord Kelvin. The con- . .

fusion appears to have arisen because Stokes set the proof of this
theorem as Question 8 in the Smith's Prize Examination Paper for
1854! There is justice in this, however, as Stokes was undoubtedly
generous in sharing his unpublished ideas with others, notably with
Kelvin over spectral analysis. In its leader of 3rd February 1903,

following his death two days earlier, The Times wrote that “Sir’ _
G. Stokes was remarkable ... for his freedom from all personal

ambitions and petty jealousies”.

Stokes continued his researches in the principles of geodesy

{another link with his surveyor great-grandfather) and in the the-
ory of sound, which he treated as a branch of hydrodynamics.
But perhaps his major advance was in the wavée theory of light, by

then well established at Cambridge, examining mathematically the

properties of the ether which he treated as a sensibly incompress-
ible elastic medium.” This enabled him to obtain major results
on the mathematical theory of diffraction, which he confirmed by
experiment, and on fluorescence, which led him into the field of
spectrum analysis. His last major paper on light was his study
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of the dynamical theory of double refraction, presented in 1862.
After this his time was increasingly taken up with scientific and
academic administration. '

A major reason for this change was that in 1851 he had been
elected a Fellow of the Royal Society and shortly afterwards, in
1854, became Secretary of the Society, where he performed an
important role in advising anthors of research papers of possible
improvements and related work. A fellow member of the Council
of the Society wrote “One of the distinguishing characteristic qual-
ities of Sir George was the generous way in which he was always
ready to lay aside at once, for the moment, his own scientific work,
and give his whole attention and full sympathy to any point of sci-
entific theory or experiment about which his correspondent had
sought his counsel”. He acted as a sounding board for many fam-
ous scientists, including Lord Kelvin, with whom he carried on an
sxtensive correspondence, recently edited by David B. Wilson and
published by Cambridge University Press (1990), [7]. He was also
extremely active in the British Association for the Advancement
of Science. Many of his colleagues, including Kelvin, regretted his
taking on these administrative duties and P, G. Tait even went so
far as to write a letter to Nature protesting at “the spectacle of
a genius like that of Stokes’ wasted on drudgery [and] exhausting
labour”. : :

In 1859 Stokes vacated his Fellowship at Pembroke, as he was
compelled to do by the regulations at that time, on his marriage to

. Mary Susannah, daughter of Dr Thomas Romney Robinson, FRS,

Astronomer at Armagh. Following a change in regulations, he was
subsequently able to resume his Fellowship and for the last year of
his life served as Master of Pembroke. After a short stay in a house
adjacent to Addenbrookes Hospital, thé couple moved to Lensfield
Cottage, which lay in a large garden opposite the south side of
Downing College. This was by all accounts a happy and charming

- home, in which Stokes had a “simple study” and conducted exper-

iments “in a narrow passage behind the pantry, with simple and

- homely apparatus”. Do not forget that his great-grandfather had

started out as an instrument maker! Unfortunately, the family life
of George Gabriel and Mary was marked by tragedy: their first
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twe daughters died in infancy, and Stokes himself was seriously ill
with scarlet fever; their second son, William George, survived to
qualify as a medical doctor, but died in 1893 of an accidental over-
dose of morphine while a trainee general practitioner in Durham.

But their elder son, Arthur Romney, a graduate of King’s College, . f};

became a master at Shrewsbury School, and their youngest daugh-

ter, Isabella Lacy, married Dr Lawrence Humphry in 1883, The
couple lived with Stokes at Lensfield Cottage and cared for him E

after the death of his wife in 1899,

Prior to their marriage Stokes, who was a tireless writer of -

letters, had carried on an extensive (one letter ran to 55 pages) and
frank correspondence with his fiancée. In one letter, the theme of
which will be familiar to all spouses of research mathematicians,

he states that he has been up until 3 a.m. wrestling with a math-

ematical problem and fears that she will not permit this after their
marriage! Based on remarks on loneliness; brooding and lack of
domestic affection in other letters in this highly personal corres-

pondence, David Wilson, [6], has suggested that “Stokes himself -

‘may have welcomed what-others regretted - his abandonment of
the lonely rigours of mathematical physics for domestic life and the
collegiality of scientific administration”.

At the General Election of 1887, Stokes offered himseH as
Member of Parliament for Cambridge University. As was the cus-
tom, his nomination was unopposed, but he issued a single election
address, the main plank of which was opposition to the disestab-
lishment and disendowment of the Church of England, a not sur-
prising position for the son of an Anglican clergyman. His election
caused dissension among the Fellows of the Royal Society, of which
he was then President (1885-1890). Some Fellows, to judge from
correspondence in Nature at the time, felt it improper that both
positions should be held simultaneously and saw a possible con-
flict of interest. It was pointed out, however, that his distinguished
predecessor, Isaac Newton, had sticcessfully combined the holding
of these academic and political offices. In Westminster, Stokes sat
with the Conservatives and supported them on the Trish Question
(that is, against Home Rule). He is recorded as having spoken
only three times in Parliament: on 13th August 1888, in favour
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of University representation on the Town Councils of Oxford and
Cambridge; and on 15th August 1889 in support. of two officials
of the British Museum (of which he was a Trustee) who had been
permitted, on behalf of The Times, to do some work for the special
Irish Commission. He assured the House that the work had been
done entirely out of hours! His third contribution, on 1st July
1891, was to support an amendment to the Free Education Act
to enable ten shillings to be paid to every child attending school
during forty weeks of the year. The amendment was defeated, and
Stokes did not speak again. He found the hours of Parliament
most uncongenial and he did not stand.for re-election in 1892,

A deeply religious man, Stokes had always been interested in
the relationship between science and religion. From 1886 to 1903
he was President of the Victoria Institute, whose aims were “To
examine, from the point of view of science, such questions as may
have. arisen from an apparent conflict.between scientific results
and religious truths; to enquire whether the scientific- results are
or are not well founded”. He delivered the Burnett lectures {on
light) in the University of Aberdeen from 1883-85 and the Gifford
lectures (on natural theology) in the University of Edinburgh in
1891 and 1893. Many honours were bestowed on him in later life.
He was made a baronet (Sir George Gabriel Stokes) by Queen
Victoria in 1889, was awarded the Copley Medal of the Royal
Society in 1893, and in 1899 given a Professorial Jubilee {50 years
as Lucasian Professor) by the University of Cambridge. Stokes
died at Lensfield Cottage at 1 a.m. on Sunday, 1st February 1903.
As a mathematician 1 can do no better than quote to you the
leading article of The Times, which appeared two days after his
death:-

“It is sometimes supposed-and instances in point may sometimes
be adduced-that minds conversant with the higher mathematics are
unfit to deal with the ordinary affairs of life. Sir George Stokes
was a living proof that if the mathernatician is only big enough,
his intellect will handle practical questions so-easily and as wel as
mathematical formulas”.
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SIR GEORGE GABRIEL STOKES:
THE MALAHIDE CONNECTION

A, Kinsella,

While the Irish origin and family connections of Sir George Gabriel
Stokes are well documented, 1], (2], the fact that he maintained
continuous contact with his family in Ireland is probably not as
well known. This connection is recorded on a brass tablet which is
mounted on the wall of the east (right) transept of Saint Andrew’s
Church, Malahide. The inscription reads '

To the Glory of God and in memory of

Sir George Gabriel Stokes Bart

Master of Pembroke College - .

and for 53 years Professor of Mathematics

in the University of Cambridge

which he represented in Parliament 1887-92.

President of the British Association 1869,

and of the Royal Society 1885-90. '

He was a Member of the French Academy of Science,

was decorated with the Prussian Order of Merit,

& received many other honours for his discoveries

in previously unexplored regions of Science

Endowed with rare intellectual gifts

yet simple hearted as a child

and seeking truth above all things

He was a devout believer in Him

Whom he often worshipped in this church

and in the Knowledge of Whom is everlasting life

Born in County Sligo, 1819. Died at Cambridge, 1903.
“The Lord is my Light”
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The name of the tablet maker is inscribed on the lower margin,
namely, T. R. Scott & Co., Dublin. This was a firm of wholesale
cabinet makers, shop fitters and straw case makers which supplied
school.and church furnishings from their joinery works at Upper
Abbey Street; [3].

In relation to the plague itself a “form of Certificates of con-

sent to Alterations proposed to be made in a Church vested in the
representative Church Body” is held in the Archives of the Rep-
resentative Body of the Church of Ireland. This dates the certific-
ation of the permission by the Bishop or Ordinary to “introduce”
the brass tablet as 10th July 1903. There is no record of the date
on which the tablet was dedicated but it is reasonable to surmise
that this Church ceremony took place on or near the birth date of
Stokes, 13th August.

A gravestone in the adjacent churchyard provides further evid-
ence of the Malahide connection. The inscription on the stone is

Sacred to the memory of Elizabeth Stokes
relict of the late Revd. Gabriel Stokes
rector of Skreen and Vicar General of the
Diocese of Killala who departed this life
November 30th AD 1866 in the 86th year of
her age. -

Revelation XIV Ch. 13V.

“Her children arise up and call her blessed”
Prov XXXI Ch. 28 V.

Also.of her daughter Elizabeth Mary Stokes
who died June 18 1904 aged 93

Continving instant in prayer

The firstnamed Elizabeth Stokes was the mother of Sir George
Gabriel Stokes. She:was the daughter of John Haughton, rector
of Kilrea, County Derry, while the secondnamed Elizabeth Mary
Stokes was her unmarried danghter and older sister of Sir George
Gabriel. His mother lived at 4 Windsor Terrace, Malahide, during
the last years of her life. An entry in the 1865 edition of Thom’s
Directory, (4], which lists the houscholders of Malahide, shows &
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Mrs Stokes at that address for the first time. The house, a semi-
detached two storey over basement type, still stands as a private
residence to the north of (downhill from) Saint Andrew’s Church
on the opposite side of Church Road. Mrs Stokes continued to be
recorded as the householder in Thom’s Directory until the 1867
edition following which there was a break of two years, the listing
being “Vacant” for that period. In the 1869 edition the entry was
changed to Miss Stokes, which continued unchanged until the 1905
edition. '

There is no documentation relating to the Malahide connec-
tion in the collection of his academic papers and writings which
is held at Pembroke College Library, Cambridge, [5]. However,
the following extract from Alumni Cantabrigienses, [6], provides
evidence of the continued link with his family in Ireland.

In 1837, the year of Queen Victoria's accession, he com-
menced residence at Cambridge, where he was to find his home,
almost without intermission, for sizty-five years. In those days
sport was not the fashion of reading men, but he was a good walker,
and astonished his contemporaries by the strength of his swim-
ming. Euen at a much later date he enjoyed encounters with wind
and waves in his-summer holidays on the north-coest of Ireland.

With the development of the railway system and sea ferries
between Ireland and Great Britain the Victorian traveller had fre-
quent and rapid transport between London and Dublin. At the
end of the 19th century three express trains departed from Euston
Station, London for Westland Row Station, Dublin via Kingstown
{rom Monday to Saturday with one express train on Sundays. The
total rail and sea journey time was 9 hours, the City of Dub-

- lin Steam Packet Company providing the sea ferry service from

1]

(2!

Holyhead to Kingstown. A frequent rail service was provided by
the Great Northern Railway (Ireland) from the Amiens Street ter-
minus to Malahide.
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Book Review

Introduction to MAPLE
Andre Heck
Springer-Verlag 1993, 497 pp
ISBN 0-387-97662-0 {New. York)
ISBN 3-540-97662-0 (Berlin)

Reviewed by Pat O'Leary
This book is the first real introduction to Maple and, as such,

is very welcome. The author is managing director of the CAN
(Computer Algebra in the Netherlands) which stimulates and co-

-ordinates the use of computer algebra in education and research.

The book is an introduction and has to be viewed as such. It
begins by discussing compuier algebra and as well as discussing the
advantages, some limitations of computer algebra are mentioned.
The version of Maple used is release 2 of Maple V, which has been
superseded by the launch of version 3 in April 1994 {a common
problem with books on software) but given the introductory nature
of the book, and the nature of changes in the new release, this does
not cause major problems.

After the introduction, the basic syntax of Maple is introduced
at a very reasonable pace and there are many good exercises at
the end of each chapter. There is a very clear exposition of the
structure of the language and of data types (a subject that often
causes problems for students). The author also illustrates some
difficulties that arise with examples, particularly with plotting.
In the chapter on solving equations there is a nice demonstra-
tion of the use of Grébner basis for solving non-linear differential
equations. The last chapter looks at applications using the Linear
Alpebra package. The book has an extensive list of references on
the material of the book. Given the large number of examples of
code in the book, it would have been greatly enhanced if a diskette
with code had been included with it, or was even available as a
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companion to it. Also there is a very sparse amount of ma,teri:?l-on
procedures in Maple. Overall this book is a very welcome addition

to the literature on Maple.

Pat (F’Leary, ‘
Department of Mathematical Physics,

University College,
Galway.

Book Review

Theory of Singular Boundary Value Problems

D. O’Regan
World Scientific, Singapore, 1994, xi+154pp
ISBN 981-02-1760-9°
Price § 38.00, hardback.

Reviewed by Johnny Henderson

The last decade has given rise to much activity in the area of
boundary value problems (BVP’s) for singular ordinary differen-
tial equations (ODE’s}, with this bock’s author contributing sig-
nificantly to that activity. The book under review presents some
topics of current interest in the theory of regular and singular
BVP’s (singular in both independent and dependent variables),

- with the two objectives to serve as a graduate text on the exist-

ence theory for these problems; as well as acquainting researchers
new to the field with results and methods. The author states that
no attempt has been made to deal in greatest generalities, and vet
while the book is restricted to second order ODE’s, a very general
theory is developed for singular two-point BVP’s in this context.
While the book is self-contained, a reasonable background in real
and functional analysis is assumed on the part of the reader.

There are ten clearly written chapters. While there are no
formally listed exercises, the work involved in verifying results for
cases analogous to those the author presents in detail serves as an
adequate set of exercises. References are included at the end of
each chapter.

Chapter 1 is an introduction, which serves as motivation for
the study of singular two-point BVP’s for second order ODFE’s,
via presentation of problems involving, for example, the study of
steady-state oxygen diffusion in a cell with Michaelis-Menten kin-
etics, the determination of the electrical potential in an atom due
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to Thomas and Fermi, and the study of the Emden-Fowler equa-
tion for the non-linear phenomena in non-Newtonian fluid theory.

Chapter 2 is devoted to Fixed Point Theory which the author

primarily will use in establishing solutions of regular and singu-

lar BVP’s including the problem mentioned in the first chapter.

More precisely, the author develops in detail a non-linear altern-
ative theory known as the Leray-Schauder Alternative, based on
essential mappings and homotopy equivalence within the frame-
work of topological transversality which A. Granas introduced in

1976. Many of the book’s existence results rely on the application’

of the following result.

Theorem {Non-linear Alternative}. Let (' be a convex subset
of a normed linear space E and let U be an open subset of C with
p* € U. Let-F : 7 = C be a compact continuous map. Then at
least one of the following holds:

(i) F has a fixed point.
(ii) There is an ¢ € OU with z = MF(z) + (I — A\)p*, for some A
with 0 < A < 1.

Application of this theorem is first made in Chapter 3 in
obtaining solutions in Section One of the equation

1
5(19?;')' =qf(t,y,py'), 0<t<1, (1)
‘and in Section Two of the equation
1
I—J(py’)’ +ry+spy’ = f(t,y,py"), ae on[0,1], (2)

satisfying boundary conditions of various types:

s [ =ay(0) + Blimg_o+ p(t)y'(E) = eo,
{Sturm-Liouville) { ay(1) + blimt_,tl_(_;;(t)y’(t) Lo, (2)

where @ > 0, 8 > 0 in the first equation and ¢ > 0, b > 0,
a® + b2 > 0 in the second.

. lim, o+ p(2)y'(£) = cos
oxedy { B BV ey s 0030, @
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lim )y () = co
Neumann De0t P ’
( ) { lim, - p(t)y'(t) = 1,

T (0) = (1)1
(PerlOdlC) { Iylmt__)0+yp(t)y’(t) = Iimt—rl' p(t)y’(tL (6)
¥(0) = o,
(Bohr) { Ji s me oY)~y =, D)

where in the case of (1) with (3) and (1) with (4), f:{0,1}xR? —
R is continuous, ¢ € C(0,1), p € C[0,1}NC1){0, 1) and both p > 0
and ¢ > 0 on (0,1), while in the case of (2) with any of (3) to (7),
assumptions include pf : [0,1] x R* - R is L!-Caratheodory,
and px € L'[0,1]. To apply the Non-linear Alternative to obtain
solutions of, say, (1) with (3), a priori bounds, independent of
parameter A, are exhibited on solutions of an associated family of

- problems,

1 ‘
;(py’)'=z\qf(t,y,py’), 0<t<l, 0<A<I, (8

satisfying condition (3). The first existence theorem, Theorem 3.3,
states that if this o priori bound exists on solutions of (8) with
condition (3), for all A, and if certain integrability is assumed,

! -
[0 I% < o0 and /u p(s)q(s)ds < oo,

then (1} with conditien (3) has a solution. The a priori bound
arguments employed by the author involve tremendous amounts
of calculations, often tedious, yet these arguments give an excel-
lent display of the work required to obtain bounds necessary to
apply the Alternative. As such, the arguments are rather eleg-
ant. The statement of the first existence theorem is typical of
most throughout the book and the methods set the tone for the

‘arguments to be employed. For example, in dealing with the sin-

gular problems (2) with conditions (3)-(7), it is also necessary
to assurne that the corresponding homogenecus BVP has only the
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trivial solution, in effect, giving rise to a Green’s function, which is
then used to define a compact mapping F' to which the Non-linear
Alternative is applied.

The purpose of Chapter 4 is to apply operator theory methods
to obtain solutions of regular and singular eigenvalue problems

Ly=)y, 0<t<l, (9)

satisfying any of the homogeneous boundary conditions corres-
ponding to {3)-(7), where

1
Ly = —(py")".
y=2 q( )
In addition to the hypotheses above on p and g in the case of (1)
and condition (3), it is assumed that the domain of L, D(L), is
given by

D(L) = {v € C[0,1] : v, pv’ € AC[0, 1], (p')" € L*[0,1],-
and - av(0) + 8 tl-ilél+ p(t)v'(t)
= ap(l) + bt_l_igl_ p{t)'(2) = 0}

The operator
L7t L2,[0,1) = D(L) € L, [0,1]

is a completely continuous, symrmetric operator (making use of
the Green’s function), by which operator theory results yield an
infinite number of real eigenvalues of L with corresponding eigen-
vectors in D(L), as well as establishing some Rayleigh-Ritz integ-
ral inequalities, such.as the Wirtinger inequality when 8. =5b=10
and p = g = 1. Similar results are obtained for the cases of mixed,
Neumann, periodic and Bohr problems with each involving appro-
priate D(L). Again the mechanics could be described as tedious,
yet they are beautifully done. Within the chapter’s development,
a well-written and detailed exposition is given on the spectrum of
a symmetric, completely continuous operator.
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The first part of Chapter 5 is devoted to upper and lower
solutions methods for obtaining solutions of {1} with condition (3)
{where a > 0 and ¢ is assumed positive on (0,1) such that pg €
L0, 1], with the same hypotheses on p and f as when (1) with
candition (3) was treated in Chapter 3). An upper solution 3 is
defined in the natural way to mean 3 € C[0,1] N C2)(0,1) such
that p3’ € C[0,1} and satisfies :

of . Bpd) > E,}(jwe')', 0<t<1,

a5(0) + B lim p(t)5'(2) < co,
aB(1) + ”Ai‘}i p)3'(t) 2 ¢,

with a lower solution o defined by reversing the inequalities. The

" results are such that, if there exist upper and lower solutions A and

a of (1) with & < 8 on [0,1] in conjunction with a Nagumo type
condition for the singular setting, along with additional technical
hypotheses, then (1), (3) has a solution y € C[0,1] N C®(0,1)
with o < y < 3 and py’ € C[0,1). The chapter is fairly com-
plete, including a discussion of radial solutions of elliptic PDE’s
in spherical domains for which ! ¢ L'[0,1], since p(t) = " 1. Yet

exchanging that integrability condition for

£1$-/08p(m}q(m)dmds<m;

along with some of the technical hypotheses, upper and lower solu-
tions methods are successfully applied. The chapter then returns
to applications of the Non-linear Alternative, when, motivated by
the Thomas-Fermi equation, a priori bounds are established for
solutions of the associated one-parameter family

1
5(1911’)’ =Aqf(ty), 0<A<l, 0<t<b,
satisfying
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y(0) =a, p(b) j£ :p‘_(fZ—)y'(b) —y(b) =0.

Chapter 6 first makes use of Rayleigh-Ritz minimization the-
orems with respect to the Lf,q-norm to establish existence of solu-
tions of (1) with (3}, with ¢g = ¢1 = 0, where f can be decomposed
as

Ft,u,v) = glt, u,v) + h(t, u,v),
with g,k : [0,1] x R?2 — R both continuous,
|h(t,u,0)| < K{lu|"+ 0" +1}, 0<y, 7<1,
andfor C € Rand d <0,

ug(t,u,v) > Clul* + dluy|,
and
l9(t, u,v)| < A(t, w)jv|* + B(t, u),

where A and B are bounded on bounded sets. Also p{t)+/q(t) is
bounded on [0, 1]. Then very nice applications of Hélder’s inequal-
ity and the results of Chapter 4 vield o priori bourids on solutions
of corresponding one-parameter family of problems, so that the
Non-linear Alternative can be applied to vield soluticns of (1) with
(3) (with ¢g = ¢, = 0), provided

C+ - dN()\/E < I

where p is the first eigenvalue of Ly = Ay satistying condition (3)
(with ¢g = ¢; = 0 and L is as in Chapter 4), CT = max{0, —C},
No = supyy 4 p(t)y/q(t). Similar treatment is given to the case
when p,/q is singular at ¢t = 0 and/or ¢ = 1, even including

fl-—fi-s— = +00
o p(s)

The chapter concludes with a discussion of the non-existence and
existence of solutions of (1) satisfying, for example, ¥{(0) = y(1) =
0. With the equations

yu — (yI)Z + 7 and yu — (yr)Z _ 71'2
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as models, the author points out that what is important is not the
growth of solutions, as || — oo, but is rather the zero set of f.
Once again for the case. of existence, a priori bounds on solutions
of an associated one-parameter family are exploited, leading to an
application of the Non-linear Alternative.

In Chapter 7, the author considers singular BVP’s for

%(py’)' + ugy = f(t,y,y') ae on [0,1], (10)

for the non-resonant case A,_1 < g < A, and for the reson-
ant case 4 = Ay, m = 1, 2, ..., where Ay = ~o0 and the )
are assumed to be eigenvalues of the appropriate homogeneous
problem associated with Sturm-Liouville, Neumann or periodic
boundary conditions, and where f decomposes as

f(t,u,“u) =nv-t g(t’u5v)1

with np.€ L!{0,1], pg € L'-Caratheodory, and

l9(t,4,0)] < 1(8) + (Bl + ps(B)o],

pi € L10,1], and
- : 1
su'pf [p()G(t, s)n(s)lds < 1
[0,1] Jo

(G(t,s) is the Green’s function for the respective BVP). In the
case of non-resonance, a priori bounds are established again for
solutions of an associated one-parameter family of BVP’s, so that
the Non-linear Alternative can be applied. For the case of reson-
ance, two types of existence results are presented: the first is for
singular problems on the “left” of the eigenvalue and the second
is for singular problems on the “right” of the eigenvalue. The
arguments give much insight of the work required to obtain the
necessary & priori bounds on solutions, and in these cases exhibit
nice applications of the Holder inequality.




72 IMS Bulletin 35, 1995

The author’s search in Chapter 8 for non-negative solutions
of (1) on (0, o) satisfying (in one case),

lim, 0+ 2(1)y' (t) = 0, (11)
y(£) =0, as t— oo,

is motivated by the classical problem of finding positive solutions

of Poisson’s equation in R™ reduced to finding radial solutions to-

-1
u'-’+n—u'+h(u):D, 0<r < oo,
T

and satisfying «'(0) = 0, and u(r) = 0, as 7 ~» oo. It is assumed

here that f : [0,00) x R? — R is continuous, ¢ € C(0,00), p €
C[0, 00) N €1} (0, 00), both p > 0 and g > 0 on (0, 00), and

ap _ a0 1 )
fo p(z)g{z)dz < oo and j; ;(?)JC plr)g(x)dz ds < oo,

for each ag > 0. In addition, also assumed are f(t,0, 0) <0, for
all ¢ > 0, there exists ro > 0 such that f(t,ry,0) >0, for all ¢ > 0,
and a Nagumo type condition. Consideration of a corresponding
one-parameter family in the spirit of previous arguments leads to,
for each N € N, a non-negative solution yx(t) of (1) on (0, N)
satisfying )

Jim p(t)y’(t) =0,

y(N) =0,

and such that 0 < yn(t) < rg on [0, N]. To discuss the boundary
condition in (11) at infinity (that is, to pass to the Limit with the
sequence {yn(t)}), cases are considered. The first case deals with
p(t) = t7, v > 1. The arguments, while tedious, are provided
in entirety, and an illustrative example is given with the singular
BVP,

v+ %y’ =t -V 0<t < oo,

sati;sfying (11), where n > 0, v > 1.
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Chapter 9 introduces singular BVP’s in which the singularity
occurs in the dependent variable as is the case in pseudoplastic flu-
ids and some boundary layer theory. Positive solutions are sought,
for

¥+ ftLy) =0, 0<t<l, (12)
satisfying
_—Ofy(O) + ﬁy’(o) = 0! a? + .62 > D: (13)
ay(1) + by'(1) = 0,0 + b* > @,

with o, 8, @, b > 0 and a+a > 0, where f : {0, 1]%(0,00) = (0, )
is continuous. For the case when

0 < f(t,y) < Ay + h(y) + By~

on (0,1) x (0,00), 4, B,y>0and & > 0 on (0, 00), and ¥ h(y) <
Cy™ " + D, fory > 0 and some ¢, D > 0,0 < 7 < 1, a priori
bounds are obtained for solutions of an associated one-parameter

. family of equations and satisfying

~ay(0) + By/(0) =

ay(1) + by'(1) =

)

@
n
E, n €N,
n
so that the Non-linear Alternative can be applied to obtain a pos-
itive solution yn(t), for each n € N. It is then assumed that there
exist M > 0 and v € C[0,1] which is positive on (0,1) such that
f(t,z) > 9{t) on (0,1) x (0, M]. An application of Arzela-Ascoli
yields a solution of (13) and (14). This method also extends to
obtain solutions of (13) satisfying many of the other boundary
conditions of the book.

The last chapter, Chapter 10, is devated to the existence of
positive solutions of : .

;];(py')'=sa‘~’qf(t,y,y'),- 0<t<l, (14)
Y0 =a>0, y1)=b>0, (15)
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where p may have singularities at ¢t = 0 and/or 1, and f may be
singular at y = 0, in that

F100,1] x (0,00} x (=00, 00) = (0, 00)

i t
is continuous, lim,_,o+ f(z,y,v) = +o00 uniformly on compac
subsets of [0, 1] x {-o0, 0c), and

Fty,v) < [g(y) + h(y))k(v),

where g is continuous, positive and non-increasing, and h > 0,

i ' t interesting case
% > 0 are both continuous on [0, 00).” The mos estin
for (14), (13) is when b = 0. This is addressed by conmd.eru.lg the
appropriate one-parameter homotopy family for (14) satisfying

y(0) = a >0, y(l) = %, n €N, (16)

making sufficient assumptions so that g_:riarz' b'm?nds are (?btalrlled
for this associated family of BVP’s, again olbtaln.mg pom’swe; 50| ul-
tions y,(t), and then passing to the hmlt? with Arzela- scoli
providing a positive solution of (14), (1_5), with & = 0. o .
This is a very readable and attractive book, contammg muc)
basic information and with a contemporary outl(?ok on singular
BVP’s for second order ODE’s. The refererllces give an adequate
sample of the relevant literature on this topic.

A PROBLEM OF BOURBAKI
ON FIELD THEORY

Rod Gow

The following problem appeared in one of Bourbaki’s early
chapters on algebra, (1, p.146]. Let X be a commutative field
of characteristic different from 2 and let f be a mapping of K into
itself such that

f@+y) = fz) + f(y)

for all z and y in & and

f@)f(z7t) =1

for all non-zero z.. Show that 'f is an isomorphism of K onto a
subfield of K {or alternatively, a monomorphism of K). In other
words, we must show that

f=zy) = f(z) f(y)

for all  and y.

In fact, Bourbaki’s result is not strictly true as it stands. For
it follows from the relation F@)f(z™Y) = 1 that £(1)? = 1 and
thus f(1) = +1. Now if f(1)=~1, fisnot a monomorphism,
but it can be proved that —f defined by (=f)z) = —f(z) is a
monomorphism. We will assume throughout this discussion that
f(1) = 1. We note that Bourbaki’s exercise was stil] being presen-
ted in the incorrect form in later editions such as [2, p.173].

A hint is given in Bourbaki’s exercise: show that f(z?) =
f(z)? for all z (there is a misprint of this in [1]). Tt took us some
time to prove the equality above and, to allow people to try to
prove this for themselves, if they so wish, we will not present our
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proof (which is totally elementary). The proof does not require any
restriction on the characteristic of K. Now, assuming that f(z?) =
f(z)?, we can easily prove Bourbaki’s result by considering the
expansion of f((z +y)?).

We would like toraise two other questions. The first is: is the
same result true when K has characteristic 27 We have checked

that it is true for finite fields of characteristic 2. The other ques-

tion we would like to mentiom is: what can be said if K is not
necessarily commutative (that is, when K is a skew-field)? It is
straightforward to see that the relation f(z?) = f(z)? still holds
in case K is a skew-field but the only general relation connecting
x and y that we have been able to obtain is

flay(@ +y)™) = fF@) fW)(f@) + Fu) ™,

which holds for all non-zero  and y, with  # —y, provided that
z and y commute and f(z) and f(y) commute.

In conclusion, we suspect that it is quite likely that this ques-
tion has already been discussed in the literature, although we have
not seen anything ourselves.
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