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§1. Introduction

I shall review both the above books together since they are parts
I and II of a treatment of singularity theory. For brevity I shall
also refer to them as part I and part II respectively.

First a few formal preliminaries about the origin of the books,
their authors and the nature of their expository methods.

The books are translations from Russian and appeared, in
that language, in 1988 and 1989 respectively. They are both edited
by Vladimir Arnold but are multi-authored; however, any given
chapter has, in the main, a single author. The same authors
wrote parts I and II and are: V. I. Arnold, V. V. Goryunov, O.
V. Lyashko and V. A. Vasil’ev. The preface of each book gives
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the precise authorship details of each individual chapter and also
informs us that B. Z. Shapiro wrote a little bit of part II. The
translators are A. Iacob of Mathematical Reviews and J. 5. Joel
respectively. Finally we come to the matter of exposition.

As the phrase Encyclopaedia of Mathematical Sciences above
indicates, they belong to a mathematical encyclopaedia, being
volumes 6 and 39 thereof. This encyclopaedia, which is a trans-
lation from a Russian original, is under the general editorship of
R. V. Gamkrelidze. Tts style therefore is expository and the books
are a survey of their subject matter. This means that theorems
are almost always stated rather than proved; it also means that
the books are about 250 pages long instead of being several times
that length.

The authors are recognized experts in their fields and so are
ideal choices to write such a survey. In addition Arnold, who is
the senior author because of his prominent position in singularity
theory, has already written many books and so has a good writ-
ten style. Vasil’ev (Vassiliev) has recently made a big advance
in applying singularity theory to knot theory, about which more
below. The text of the book is liberally sprinkled with illustrative
examples and so the style is not heavy going or turgid; nor is the
significance, and relative importance, of the various theorems left
totally to the reader to fathom. On the subject of indexes, each
volume has an author and a subject index but in both cases the
latter is far too short, especially so for reference hooks belonging
to an encyclopaedia. The intended audience is a “student reader”
who wishes to learn the subject, be he a mathematician, or a
theoretical or mathematical physicist.

Let us place the present two books on singularity theory in
context by first discussing dynamical systems themselves—that
done we shall move on to singularity theory and the books under
review.

§2. Historical background and origins

The founder of the modern theory of dynamical systems was Poin-
caré, of. “Les méthodes nouvelles de la mécanique céleste”, [1].
Poincaré was interested in answering questions about the qualit-
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ative behaviour of the orbits of celestial bodies: for example one
asks what happens to the planets if their orbits are perturbed
slightly? Can the orbits remain stable, change wildly, fall into the
Sun or rearrange in some new way? The difficulty of solving even
the three body problem analytically meant that methods which
could classify the qualitative behaviour were highly desirable.

What emerges is that, for n bodies, with n > 3, as the ini-
tial conditions vary, the orbits can be cheotic as well as regular:
Chaotic motion can be exhibited by an asteroid close to what is
known as a Kirkwood gap; for this initial data, its eccentricity can
jump in a random manner and, in time, become larger and a fatal
collision with a planet can occur. Regular motion is exhibited by
a planet such as the the Earth; its initial data is such that its
ecliptic plane oscillates a little around a fixed position. For more
details cf. [2-4].

Poincaré’s pioneering work then gave birth to the present
day subject of dynamical systems. In this subject one studies an
immense diversity of sophisticated mathematical problems usually
no longer connected with celestial or Newtonian mechanics.

A very rough idea of what is involved goes as follows: Recall
that the celestial mechanics of n bodies has a motion that is
described by a set of differential equations together with their
initial data. One then varies the initial data and asks how the
motion changes.

§3. Dynamical systems in general

The modern mathematical setting is to view the orbits of the n
bodies as integral curves for their associated differential equations.
Then one regards the gualitative study of the orbits as being a
study of the global geometry of the space of integral curves as
their initial conditions vary smoothly. Integral curves +(t) are
associated with vector fields V' (t) via the differential equation

d) _

L2 = V(1) - ()
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Hence one is now studying the vastly more general subject of
the global geometry of the space of flows of a vector field VV on a
manifold M.

It turns out that two notions play a distinguished part in
the theory of dynamical systems. One fundamental notion that
emerges from the example treated below is the existence of a closed
integral curve. A second notion, also fundamental, is that of a
singular point which will be dealt with in the next section.

It is natural to regard two flows on M as eguivalent if there

. is a homeomorphism of M which takes one flow into the other;

one can also insist that this homeomorphism is smooth, i.e. a dif-
feomorphism. Finally an equivalence class of flows in the homeo-
morphic sense is a topologicel dynamical system, and one in the
diffeomorphic sense is a a smooth, or differentiable, dynamical
system.

A further key concept in dynamical systems is that of struc-
tural stability and to illustrate this we introduce the following
example.

Example The pendulum with friction

Consider a simple pendulum subject to friction, [5]. One has to
solve the second order differential equation

§=—r—u (3.2)

where g > 0 is the coefficient of friction. This is equivalent to
solving the pair of first order equations

&=y, §=—x—py (3.3)

A solution to this pair of equations is a curve in the (z,y)-plane
and so is also a flow line of the vector field V on R? whose com-
ponents are just (£,%). Thus eq. (3.3) is now of the form (3.1)
above with V as just given and M = R2.

Now it is easy to compute that for u strictly positive the solu-
tions are spirals winding round the origin; but when u is zero the
solutions are circles centered at the origin. In other words, a big
qualitative change in the trajectories takes place if the pendulum
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is perturbed, u increasing p from zero to some positive value;
however if p is perturbed but stays positive then no qualitative
change occurs.

One then says that the simple pendulum with g > 0 is struc-
turally stable but the simple pendulum with pu = 0 is structurally
unstable.

Thus structurally stability of a dynamical system corresponds
to its equivalence under a small perturbation of V.

We now turn to the second fundamental notion of dynam-
ical systems, which is also the subject matter of the books under
review, that of singular points.

§4. Singular points and dynamical systems: vector fields

For a vector field V, a singular point is just a point on M where V
vanishes. We note that a closed integral curve cannot have a sin-
gular point. There are also topological restrictions on the nature
and type of singular points of V: Suppose, for simplicity, that M
is closed and compact. Then a celebrated and well known result
is that the index™ (V) of V is equal to the Euler characteristic
x(M) of M.

Singular points of V are also closely tied to structural stabil-
ity, the key point is to study whether they are degenerate or not.
The result (loosely) is that a structurally stable system only pos-
sesses non-degenerate singular points. The underlying intuition is
not too difficult to explain: Consider a vector field V on R?, say
with a non-degenerate zero at zp € R? so that, near 2o, V behaves
like

(z — 20) (4.1)

If we perturb V slightly to a new vector field V., then we can write
Vi Vo=V +€f(2), € small (4.2)

Clearly V. also has a non-degenerate zero at the nearby location
zo—ef(z) (if desired, the implicit function theorem can be used to

* #(V) is the total number of singular points of V, it is an algebraic
sum with signs and degeneracies taken into account and assumes that
the zeroes are isolated.
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create a rigorous version of this argument). Hence non-degenerate
singular points perturb to new ones and do not change their total
number. By contrast if the zero at zp is degenerate then, near zg,
¥V behaves like

(z—z0)™, n>1 (4.3)

So the perturbed vector field V; looks like
(z — z0)™ + €f(2a), near zp (4.4)
But, in general,
(z—20)" +€f(20) =(z — 21)(z — 2z2) -~ - (2 — 2n) (4.5)

Hence, on perturbation, the degenerate zero has bifurcated into
n non-degenerate zeroes. Actually, more generally, degenerate
zeroes, can even disappear altogether on perturbation because the
bifurcation process may produce only complex zeroes which may
not belong to the particular M under consideration.

In sum the perturbation of a system with one or more degen-
erate singular points is structurally unstable, and so we recover the
fact that all the singular points of a structurally stable dynamical
system are non-degenerate.

§5. Singular functions: the real case

As well as singular points of vector fields the study of dynam-
ical systems requires us to consider singular points of functions.
By a singular point of a function f we mean a critical point, or
extremum, of f.
For example let M be a manifold and f a smooth real valued*
function on M
f:M—R (5.1)

* As we shall see below both f and M can be generalized consider-
ably: For f we can generalize to complex valued functions f : M — C
and even maps of the form f: M — N, where N is another manifold.
For M we should start with an A which is closed and then generalize
to the case where M has a boundary; in fact cases where M is infinite
dimensionel arise naturally and are important, one of these latter is the
original problem of Morse cf. § 8.
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then, if p is a point in M with local coordinates (z!,x2,...,2"),
D is a critical point of f if
(5}
gil _ g_i - 8___{ 0 (5.2)
e T lp 7 g

or, in a more concise notation,
df =0 atp (5.3)

Example Gradient dynamical systems

Using such a function f : M -+ R we obtain an important class
of dynamical systems known as gradient dynamical systems: We
require M to have a (Riemannian) metric so that the grad oper-
ator is defined and then the flow equation is that of gradient flow

% = grad f(y(t)) (5.4)

so that V' = grad f and f is like a potential function. We see that
the flow begins and ends at singular points of f-

We shall now discuss some of the theory of singularities of
functions such as f from a qualitative topological viewpoint; for
real valued functions this is known as Morse theory. The aim in
Morse theory is to study the relation between critical points and
topology. More specifically one extracts topological information
from a study of the critical points of a smooth real valued function

f:M—R, (5.5)

where M is an n-dimensional compact manifold, without bound-
ary. For a suitably behaved class of functions £, there exists quite
a tight relationship between the number and type of critical points
of f and topological invariants of M such as the Fuler-Poincaré
characteristic, the Betti numbers and other cohomological data.
This relationship can then be used in two ways: one can take cer-
tain special functions whose critical points are easy to find and

o
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use this information to derive results about the topology of M;
on the other hand, if the topology of M is well understood, one
can use this topology to infer the existence of critical points of f
in cases where f is too complicated, or too abstractly defined, to
allow a direct calculation.

We begin with the smooth function f : A — R and assume”
that all the critical points p of f are distinct and non-degenerate;
the non-degeneracy means that the Hessian matrix H f of second
derivatives is invertible at p, or

det Hf(p) #0 where Hf(p) = [aﬂf/amiazﬂp]ﬂm (5.6)
Each critical point p has an index A, which is defined to be the
number of negative eigenvalues of H f(p). In a neighbourhood of
a non-degenerate critical point p of index A, we can represent f
as

Ap terms
”~ e ~ 2 2
fo)=flo)—of —af —o—a} 42} ¥ tal  (5.T)
———
n—2Ap terms
for suitable coordinates (z1,...,%x.).

We next associate to the function f and its critical points p
the Morse series M,(f) defined by

My(f) =) th =D mit'. (5.8)

all P i

The sum will always converge since it only contains a finite number
of terms; this is because the non-degeneracy makes the -critical
points all discrete and the compactness of M permits only a ﬁnii.;e
number of such discrete points. The topology of M now enters via

* Such functions are called Morse functions and it should be clear
from what we have said earlier that when f is not a Morse function one
can always perturb it slightly to obtain one.
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Pi(M): the Poincaré series of M. This is the following polynomial
constructed out of the Betti numbers of Af ; we have

P(M) =" dim H'(M; R)¢ = > bt (5.9)
i=0 =0

_The fundamental result of Morse theory, known as the Morse
inequalities, is the statement that

My(f) - P,(M) >0 (5.10)
This can be refined further to say that
M(f) = P(M) = (1 + t)R(2), (5.11)
where R(t) is a polynomial with only non-negative coefficients.
We note in passing two facts that can be read off immediately

from this pair of statements. If we set ¢ — 1 in the first one, we see
that any (Morse) function f has at least >oio by critical points.

If we set t = —1 in the second one then we see that
M_1(f) = Poy(M) = (=1)%; = x(M), (5.12)
=0

where x(M) is the Euler characteristic of M. Note that the first
of these facts describes a property of f, while the second is com-
pletely independent of f and is only a property of M.

A proof of the Morse inequalities usually uses the level sets of
the function f: these are the sets ffllo={reM: fa) = c}.
We shall briefly sketch the part that they play in determining the

topology of M. In Morse theory one constructs a half space M,
out of level sets where

M.={zeM: f(z)<c} (5.13)

The f?opology of M begins to emerge when we consider M, as a
function of ¢. What happens is that, as ¢ varies, the topology of
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M. is unchanged until ¢ passes through a critical point, when it
either acquires or sheds a cell of dimension A, where ) is the index
of the critical point. More precisely we have

Theorem (Bott-Morse-Smale) M, is diffeomorphic to M, if
there is no critical point in the interval [a,b]. Alternatively, if
(a,b) contains just one critical point of index X then My ~ M,Ue,.

The notation M, U e, means that a cell of dimension A has been
attached to M,; also My ~ M, U e, means that the two spaces
have the same homotopy type. Thus, as far as the homotopy type
of M is concerned (and this will be sufficient, for example, for
computing the cohomology of M) one can think of M as being
‘decomposed’ into a set of cells

M:Ue’“ (5.14)
5 :

the number of these cells being equal to the number of critical
points and the dimension of the cells being given by the index of
the critical points. This decomposition is known as a stratification
of M.

§6. Singular functions: the complex case

Now suppose that f is complex valued instead of real valued i.e.
we have

fM—C (6.1)

A corresponding complex analogue of Morse theory exists, known
as Picard-Lefschetz theory. The content of the theory is quite
different: Clearly the complex values of f render it impossible to
define the index of a critical point any more; not surprisingly, in
view of this, the critical points cease to provide a stratification M
using the level sets f~1(c). In fact the level sets no longer undergo
a topological change as ¢ passes through a critical point—they are
actually all homeomorphic to one another.

In the complex case what one does instead of passing through
a critical point is to deform one’s path to go round it; the obvious
topology relevant in this setting resides in the winding number
of a closed path, or cycle, round the singularity or critical point.
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This results in integrals round closed cycles which in turn are
continuous functions on the parameter space; the analysis of such
an object is known as the monodromy of the singularity More
technically, the level sets over a small circle surrounding a singular
point form a fibre bundle (since they are all topologically identical)
over S!, and the monodromy is then the holonomy of the fibre
corresponding to going round this circle once.

§7. Singular maps

Next, suppose that we replace C by a manifold N (both M and
N are, for the moment, assumed to be real manifolds) giving the
map

f:M—N, dmM=n,dmN=m (7.1)

Let us use local coordinates (f?, f3,..., f™) to represent f(z) on
N, and (z',22%,...,2™) to represent z on M. A singularity of f is
now defined using its Jacobian matrix

7= (5]

mXTn
rather than the operator d: a singularity of f is a point on M
where J has less than its mazimal rank. In this setting, the
topology of the theory involves the Stiefel-Whitney character-
istic classes w;(M) € H(M;Z,) of M and the pullback, via f*,
of those of N. Universal polynomials known as Thom polyno-
mials provide calculational formulae for these pullbacks. If we
generalize to the case where M and N are complex manifolds

then the Stiefel-Whitney classes are replaced by the Chern classes
ci(M) € H*(M;Z) of M and those of N.

§8. Singular points in infinite dimensjons

f& brief mention now, as promised, of some examples where M is
infinite dimensional. The original problem of Morse, [6], was to
study the critical points of the energy functional E defined by

(7.2)

2

E(+) =J[o dzlit) dt = [01 Gij d’yc;(t) dy—;t(?-)-dt (8.1)

T
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where () is a parametrized path on M with end points p and ¢
labelled by 0 and 1, and g;; is the Riemannian metric on M. E is
a function or functional of +(¢). Hence E is a positive real valued
function on the space PM (p, q) of paths on M from p to . More
formally we can represent E as

E:PM(p,g) — R

(8.2)
¥ — E(v)

The space PM (p, q) is of course infinite dimensional. The critical
points of E are easily seen to be the geodesics joining p to ¢ with
the usual equation

d?y . dyd dvk
A VAL o (8.3)
di? I dt di

where ij are the components of the Christoffel symbol for the
metric g;;. To consider closed geodesics we simply require v to be
a loop, on M; this means that we take elements of Map(S*, M)
instead®™ of PM(p,q). Now we regard £ as a functional of the
form

E: Map(S',M) — R (8.4)

Now, for the case where M is the sphere S*, Morse tackled
the infinite dimensionality of Map(S!, M) by approximating the
loops by geodesic polygons with n vertices p;, ..., p,. This
makes E(y) a function of the n variables py, ..., p, instead of
v, i.e. E = E(p1,...,pn). If we denote the space of these {p;}
by Map, (5!, S*), then Map,_(S?,S*) is to be viewed as a finite
dimensional subset of the infinite dimensional Map(S!, S*). The
idea then is to compute the topology of Map, (S!,S5*) and to
understand its dependence on n. This allows the passage to the
limit n — oo where one eventually deduces results such as the
existence of an infinite number of closed geodesics on S* and that
E is a perfect Morse function; this latter property means that the

* Map(S', M) is the space of loops on M, i.e. it is the space of
continuous maps from S' to Af.
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Morse inequalities have become equalities. For more details cf.
Klingenberg, [7].

Much later, the construction of a general Morse theory in
infinite dimensions was achieved by Palais, Smale and many oth-
ers cf. Palais, [8, 9, 10]; still more recently Floer, [11, 12], and
Taubes, [13] have successfully tackled infinite dimensiona] prob-
lems which are outside the scope of the Palais-Smale framework.
These are problems in Yang-Mills gauge theories but have con-
sequences far outside theoretical physics: for example in Floer’s
case his work constructs a new class of highly interesting homology
for 3-manifolds; for more information cf. Nash, [14].

§9. Classification of singular points of functions and Lie
algebras

We come now to a most interesting topic: namely the classification
of singular points of functions. There is a remarkable correspond-
ence between the classification of singularities of functions and
that of simple Lie algebras. There is no space to do justice to it
here but some salient features can be mentioned.

Let f be a function with possibly degenerate critical points,
with the multiplicity of a critical point being labelled by u. Now
f belongs to the infinite dimensional space J of functions F =
Map(M,R), say, and, from the abstract viewpoint, the classifica-
tion of the singular points corresponds to the finding of the orbits
of the action of the group Diff (M ) of diffeomorphisms of M on
F.

In practice what happens is that one learns that functions
may be transformed, by elements of Dif f (M), into certain poly-
nomials known as normal forms. '

The basic idea is to build up a picture of the functions as a
subset of F. So first one considers 1 parameter families of func-
tions in F and analyses their possible singular points, then one
considers 2 parameter families and so on.

For example, if dim M = n, then near a singular point all
1 parameter families of functions are equivalent under Dif f (M)
(ie. after a suitable change of variables) to the normal form

f(®) = zp, + Xzn + g(z) (e
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where A is the parameter and g(z) is a non-degenerate quadratic
form in the remaining variables given by

g 8 2
q(a:)z—-a:f—m%—---—:Ej+a:j+1+--'+$n_1-

In 1 dimension this becomes simply
flx) =23 + Az, (9.2)

where such a result is not so hard to prove. If we have 2 parameters
A1 and Az then the normal form is

f(@) = a5 + Mzl + Agzn + g(z) (9.3)
and more generally for & parameters the normal form is
Fl@) =2t + e + ezl 4 Deca T+ Ak +a(z) (9:4)
The polynomial
AR D Dl S VT L SN EPPPRD PPV ¥ (9.5)

that emerges here is recognizable to Lie group experts as being
isomorphic to the orbit space of the reflection group known as the
Weyl group A, for the simple Lie algebra su(k + 1).

There are also normal forms corresponding to the Weyl
groups Dj, ~ so(2k) and the exceptional set Eg, E; and Ey for
the exceptional algebras. Thus we have the whole of the so called
A, D, E series, [15].

Example Manifolds with boundary

If M is a manifold with a non-empty boundary 8M then F =
Map(M,R) now can contain functions whose singular or critical
points are on OM itself. These functions turn out, [16], to have
normal forms which correspond to the Weyl groups By, Cr, and
Fy ie. to the remaining simple Lie algebras so(2k + 1), sp(k)
and Fj respectively. Notice, however, that there is precisely one
simple Lie algebra missing from the classification above—it is the
last exceptional algebra G2—it too can play a role cf. [17].
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The indices on the various series A, D, E etc. label the mul-
tiplicity of the degenerate singularities of the family, for example
all the most degenerate singularities with normal form Ay clearly
have the same multiplicity k. Hence the index labels the p =
constant strata inside F, and, since the value of p gives the num-
ber of parameters of the family, this value of u also is equal to the
codimension of this stratum inside F.

All the classifications above describe singularities which are
called simple: small perturbations bifurcate them into only finite
numbers of new singularities. There are also those which associate
a continuum to the singularity: one then says that the singularity
has moduli. These are the complement to the discrete series just
discussed, i.e. all simple singularities occur in the lists given above.

§11. Applications of dynamical systems

We now give an idea of how diverse the subject is by mentioning
some of the problems where ideas from dynamical systems can be
applied.

Morse theory provides us with many examples and they are
impressive and widespread; a few notable examples are the proof
by Morse, [6], that there exist infinitely many geodesics joining
a pair of points on a sphere S™ endowed with any Riemannian
metric, Bott’s proof of his celebrated periodicity theorems on the
homotopy of Lie groups, [18], Milnor’s construction, [19], of the
first exotic spheres, and the proof by Smale of the Poincaré con-
jecture for dim M > 5, [20].

Morse theory has also found a variety of applications in phys-
ics; this is not too surprising in view of the central position occu-
pied by the variational principle in both classical and quantum
physics. Some of these are described in Nash and Sen, [21].

Gradient dynamical systems were used by Thom, [21, 22, 23],
in his work on what is now called Catastrophe Theory. Thom took
the system
d;_it) = grad V{t8)) (10.1)
where V is a potential function. Next, for families of such V
containing up to four parameters, Thom classified the possible
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critical points into seven types known as the seven elementary
catastrophes; he then proposed to use these dynamical systems
as models for the behaviour of a large class of physical, chemical
and biological systems. In many of these cases the models are not
at all adequate; nevertheless, there are some successes. On the
mathematical side the classification into seven categories misses
some singularities when one has three and four parameter families,
cf. part Il of the books under review; the seminal nature of Thom's
work is clear though, as it is the beginning of the classification
theory for singularities.

A vast body of the theory of dynamical systems concerns
Hamiltonian systems. These of course have their origin in ordinary
dynamics but exist now in a much wider context. To have a
Hamiltonian system one needs to satisfy some requirements: M
must must be even dimensional and must possess a closed non-
degenerate 2-form w known as a symplectic form; a Hamiltonian
function

H:M —R (10.2)

then provides a vector field V on M via the equation
1(Vw=dH (10.3)

where (V') denotes contraction, or interior product, with the vec-
tor V. It is easy to check that H is conserved along the orbits of
V and this corresponds to the conservation of energy in the phys-
ical cases. The perturbation theory of these systems underwent an
enormous development with the work particularly of Kolmogorov,
Arnold and Moser resulting in what is now called KAM theory.
The blossoming of ergodic theory also owes some debts here.
Ergodic theory originates largely in nineteenth century studies in
the kinetic theory of gases. However it has now been axiomatized,
expanded, refined and reformulated so that it has links with many
parts of mathematics as well as retaining some with physics. Some
dynamical systems exhibit ergodic behaviour, a notable class of
examples being provided by geodesic flow on surfaces of constant
negative curvature. This involves too the study of the flows by a
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discrete encoding known as symbolic dynamics, use of one dimen-
sional interval maps, the zeta functions of Ruelle, the Patterson
measure and so on, cf. [25]. Classical and quantum chaos, and
the distinction between the two, are also studied in this context.

The last application that we shall mention is that of Vasil’ev
to knot theory, [26, 27]. Vasil’ev’s work constitutes a big step
forward in knot theory but should also be regarded as a big step
forward in the tackling of global problems in singularity theory as
his methods are not limited just to knot theory.

Vasil’ev constructs a huge new class of knot invariants and
we shall now give a sketch of what is involved.

A knot is a smooth embedding of a circle into R3. Thus a
knot gives a map

f:8" — RS, (10.4)

so that f belongs to the space F where F = Map(S', R%). Not all
elements of F give knots, since a knot map f is not allowed to self-
intersect or be singular. Let T be the subspace of F which contains
either self-intersecting or singular maps. Then the subspace of
knots is the complement

F-% (10.5)

Now any element of £ can be made smooth by a simple one para-
meter deformation, hence T is a hypersurface in F and is known
as the discriminant. As the discriminant £ wanders through F it
skirts along the edge of the complement F — ¥ and divides it into
many different connected components. Clearly knots in the same
connected component can be deformed into each other and so are
equivalent (or isotopic). '

Now any knot invariant is, by the previous sentence, a func-
tion which is constant on each connected component of F — T
Hence the task of constructing all (numerical) knot invariants is
the same as finding all functions on F — ¥ which are constant on
each connected component. But topology tells us at once that
this is just the 0-cohomology of F — Z. In other words,

HP(F — T) = the space of knot invariants. (10.6)
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Vasil'ev, [27], provides a method for computing most, and possibly
all, of HO(F — ).

Because of the immense importance of this breakthrough
we give a brief summary of the steps involved in the construc-
tion of [27]. Vasil'ev deals with the infinite dimensionality of F
by approximating its elements by trigonometric polynomials of
degree n giving a finite dimensional space 7" of dimension 3n.
But F™ is clearly contractible, so Alexander duality gives us

H{(F" - %) = Hyp_i 1 (F* N I). (10.7)

Hence the cohomology of the knot space F* — I is computable
from the homology of the subsets £, of the discriminant & given
by

Y.=F"Nnk (10.8)

The singularities present in I, give a stratification” of ¥ allowing
the computation of its homology. This stratification of X provides
a filtration from which a standard spectral sequence then flows.
The spectral sequence is roughly an algebro-topological analogue
of a Taylor series and, as for a Taylor series, one must demonstrate
convergence and absence of remainder in the limit n — oo.

The construction then provides us with a hierarchy of knot
invariants V,,—the Vasil’ev invariants—which looks like

VocWic---VoC--CHYF-5) (10.9)

where each V, is finite dimensional and already completely con-
structed for 0 < n < 8.

The convergence of the spectral sequence has been conjec-
tured by Vasil’ev and, if proved, would mean that the Vasil'ev
invariants distinguish any two inequivalent knots. It is already
known, Birman [28], that they distinguish more knots than the
other well known knot polynomials, namely the Alexander, Jones,

* This is the great advantage of working with T, instead of with
Fr - ¥; this latter space contains only smooth maps and provides us
with no natural way of constructing a stratification.
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Homfly and Kaufmann polynomials. Kontsevich, [29], has given
a ‘universal integral’ which associates to each knot an element
of an algebra of ‘Feynman diagrams’ (cf. also Bar-Natan, [30]),
from which one calculates the Vasil’ev invariants for the knot; this

work uses results of Knizhnik and Zamolodchikov, [31], from the
physics literature.

£11. Conclusion

We now wind things up with a return to the books under review.
These two volumes certainly cover a wide range of material on
singularity theory and, although, they belong to a section of the
encyclopaedia on dynamical systems there is much material here
for anyone with an interest in singularity theory, not just those
who work on dynamical systems.

Part I begins with basic notions concerning singular smooth
maps and introduces normal forms. It then moves on to complex
functions and Picard-Lefschetz theory to which it devotes a con-
siderable amount of space—about a hundred pages. Next comes a
chapter on singularities of smooth maps in general; and the final
chapter is on the global singularity theory relevant for maps and
deals with the subject of Thom polynomials and related matters.

Part II is a mixture of applications and material on classific-
ation of singularities. However part II is largely intended to be
independent of part I. The first chapter deals with the singular-
ities and normal forms for functions on a manifold with bound-
ary. This is followed by a chapter on applications including a
section on catastrophe theory. Then one moves on to singularit-
ies on the boundaries of function spaces. Chapter four is about
monodromy and Picard-Lefschetz theory and contains a remark-
able early monodromy result of Newton from his Principia: For
an ellipse, with origin at a focus, this is that the area swept out
in time ¢ by the radius vector r is a transcendental function of the
tangent of the angle between r and the z-axis. The book then fin-
ishes with a chapter on deformation of real singularities and their
lacunae, including a discussion of the use of computer algorithms
to obtain some of the results.

The style of both volumes is definitely mathematical rather

(1

3]
[4]

[5]
(6]

(7l
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than physical and so some physicists will find the text heavy
going. Cross referencing within the text is done fairly well; and
this encyclopaedia does not indulge in the annoying practice of
referring one to equations present in other volumes as if one had
the desk space, or the money, to have them all at hand; readers
of Dieudonné’s admirable six volume Treatise on Anelysis may
remember that it continually suffers from that drawback. The
bibliography is very good and extremely large in both cases. It
is interesting to note, however, that Vasil'ev’s paper [27] is in.the
bibliography but is, unfortunately, not discussed; a comparison
of the dates of the Russian original and the English translation
is consistent with the fact that the reference entered only at the
translation stage.

The price of both books is DM 141 which is about 58 punts
and is a little on the expensive side for books of 250 odd pages,
though they are produced up to the usual high standards of
Springer. Price notwithstanding, I do recommend them both
particularly as library purchases, and because they can be read
independently of the other volumes of the encyclopaedia.
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