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Example 4. Note that the group G,. in Example 3 is closed
under the operation of transposition of matrices. It follows that
this same group must also be the group of matrices which are
perfectly-conditioned with respect to the maximum absolute
column sum norm. (||4||. = ||A%||,, where | ||c and || || denote
the maximum absolute column and row sum norms respectively.)
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AN ITERATION RELATED TO
EISENSTEIN’S CRITERION

Eugene Gath and Thomas J. Laffey

The following question appeared in the 1994 Irish Mathematical
Olympiad, the competition used to select the team to represent
Ireland in the International Olympiad:

Let a, b and ¢ be real numbers satisfying the equations:

b=a(4—a)
c=b(4—-b)
a=c(4—c).

Find all possible values of a + b + c.

A direct approach to this problem is to write ¢ in terms of a,
and then obtain an octic polynomial in a:

fla)=—a(d—-a)(2-0a)?((2-a)? -2)+a=0.
The octic factorizes over the integers in the form
fla) = a{a — 3)(a® — 6a® + 9a — 3)(a® — 7a® + 14a — 7).

Observe that the factors a® — 6a® 4+ 9a — 3 and a® — 7a? + 14a — 7
satisfy Eisenstein’s irreducibility criterion for the primes 3 and 7,
respectively. This, in our experience, was one of the rare occasions
when polynomials satisfying the criterion arose in an uncontrived
way, and we decided to investigate why they occurred here.

Put g(z) = z(4 — z) and let ¢")(z) be the rth iterate
g(g(...g(z)...)). Consider the polynomial h.(z) = z — ¢'")(z).
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The octic f(a) above is just hz(a). Observe that if we put
z = 4sin®@ (where for definiteness we take 0 < 6 < I), then

2
g(r) = 4sin? 20, and thus

hy(z) = 4sin? 270 — 4sin® § = 2(cos 26 — cos2719)
= 4sgin(2" — 1)fsin(2" + 1)8.

So, if (2" £1)8 = Ir for some positive integer {, we get solutions of
the equation h,(x) = 0. The two irreducible cubics dividing f(z)
are the irreducible polynomials satisfied by 4 sin® 5 and 4 sin® £
respectively. The other factors z and z — 3 are factors of h.(z

for all r, corresponding to the choices # = 0 and @ = %, [ =
1(27 — (—1)7), respectively.

In general, for each k > 1, 2¥ + 1 and 2% — 1 are relatively
prime and for each divisor d of (2* — 1)(2F + 1), with 1 < d <
(2 — 1)(2F + 1), 4sin? Z satisfies a monic irreducible polynomial
Ya(z) of degree ¢(d)/2, where p is Euler’s function. Also, ¥a(x)
must divide hx(z) and z = 0 is a solution, corresponding to d = 1.

Thus
z ] wal@) JI wa@
1<d|2¥ -1 1<d|2k+1

divides hi(x). The total degree of these polynomials is

% Z o(d) + Z o(d) | = 2% = degree hi(z).

dl2h—1 d2*+1

To calculate the irreducible polynomial satisfied by 4sin® I n
odd, we use the following identity:

n_L
sinng Zzz (-1)"n(n+2s—1)(n+2s—3) - (n—2s4+1) sin® o,
=0

sing (25 + 1)!

This may be written more compactly as

et §
sinng < n (2L +s .
=3y (-1fF——{ * 4sin® $)°.
sin ¢ g( ) 28+1( 2s )( s g)
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For example, when n = 5,

sin 5¢
sin ¢

and when n =7,

= 5 — 5(4sin® ¢) + (4sin” ¢)?

E’S‘;ﬂ =7 — 14(4sin? ¢) + 7(4sin® ¢)? — (4sin? ¢)°.
Putting z = 4sin® ¢, then if sin¢ # 0 and sinng = 0, we get
a monic polynomial f,(x) with integer coefficients and degree
2=l with fn(z) = 0. The constant term of f.(z) is £n. This
is obtained explicitly from the trigonometric identity above, using
binomial identities, giving

ful) = Lf(—l)*‘n’jz. (” - )w—

=0

Suppose now that n = p*, where p is an odd prime and k& > 1.
The expression for f,(z) above shows that all of the coefficients
are divisible by p except the coefficient of £ and the constant
term is &p*. But the irreducible polynomials satisfied by 4 sin? %,

4 gin? S 45in® Z must all divide fu(z) and the sum of the
degrees of these polynomials is 251, Thus

falz) = ’IPP(:E)’I,[JP2 (:17) t 'wp*‘ ().

We now show by induction on k that ),,» satisfies Eisenstein’s
criterion for the prime p. Since f,(z) = ¥,(x), this is clear when
k = 1. The equation

fo(2) = fpr—r (@)t (z)

yields

r*—1) (k-1
Z

=g = 1)1,[)pk (z) mod p,
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50 all coefficients of . except its leading coefficient are divis-
ible by p. Furthermore, the constant term of f,(z) is £p*, and
that of fye—1(z) is £p*~?, so the constant term of ¥,:(z) is £p.
Hence 1, (z) satisfies Eisenstein’s criterion for p. This explains
our initial observations concerning the polynomials

Yr(x) = —Ta? + 142 - 7
and
Po(z) = 7 — 62% + 97 — 3.

Let w be a primitive p“th root of unity (for definiteness, we
can take w = exp(%’{.—i)) and let K = Q(w) be the corresponding
cyclotomic field. Let L = Q(w+w™!) be the maximal real subfield
of K and let A be the ring of algebraic integers in L. One can
show that Z[4 smz(fp)] has finite index p® in A4 for some integer
¢ > 0. But now the fact that the irreducible polynomial 4, (x)
satisfied by 4si112(f,;) is of Eisenstein type enables us to apply
Lemma 2.3 of [1, p.61] to conclude that ¢ = 0. So

2
A= Z[4sin2(1%)] =72 cos(p—';':)] = Zw +w™Y).
Finally, we briefly consider the orbit length of the iteration

of the map a = a(4 — a), beginning with ¢ = 4sin*(Z), where
n is an odd integer. We obtain successively 4sin®(Z), 4sin®(2T),

4sin?(£x), ... and the period is r, where 7 is the least positive
integer such that
2rtle 2
4+ —
n o .n

is an integral multiple of 27. (For example, when n = 17, r = 4
and when n =19, r = 9.) Note that r is the least positive integer
such that 2" = +£1 mod n. So, if the equation 2! = —1 mod n is
solvable, then r is half the order of 2 mod n while, if it is not
solvable, r is the order of 2 mod n. If n = p*, where p is an odd
prime and k is a positive integer, the equation 2* = —1 mod n is
solvable if and only if the order of 2 mod n is even, so in particular,

[1]

a] Eisenstein’s Criterion 39

ot = —1 mod n is solvable if 2 is not a quadratic residue modulo
p, that is if p= £3 mod 8.
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