MATRICES IN PERFECT CONDITION
David W. Lewis

We write GL(n, R) for the group of all non-singular n x n matrices
with real entries. Let A be an element of GL(n, R) andlet || || be
some norm on the real vector space R". We define the operator
norm of A in the usual way, as the supremum of the bounded set
Sa={||Av]|/||v]|: v € R™ and v # 0}, and we denote it by || A||.
The operator norm depends on the underlying norm on R",
When the norm on R™ is the usual euclidean norm, that is
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where v = (v;), then the corresponding operator norm is the spec-
tral norm, so that || A|| is the square root of the largest eigenvalue
of the matrix A*A. When the norm on R" is the cartesian norm,
that is

[Joll = max i,

then the corresponding operator norm is the maximum absolute
row sum norm, given by

|4l = m?x(z |ai;1)-
j=1

When the norm on R™ is the taricab norm, that is
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then the corresponding operator norm is the maximum absolute
column sum norm, given by

JAll = ma (Z |%-|) -
=1

See [3] for proofs.

Definition. The condition number of the matrix A in GL(n,R)
with respect to the operator norm || || is the positive real number
c(4) = [|AlIATH.

Note that ¢(A) depends on which particular operator norm
is in use and ¢(A) > 1 for all non-singular matrices A. (This
last statement follows from the properties ||AB| < |A|| || B|| and
|I7]| = 1, I denoting the identity matrix.)

We remark that condition numbers are important in perturb-
ation theory and yield bounds for errors in numerical methods for
solving systems of linear equations, inverting matrices, etc. See
[1] and [3].

Definition. The matrix A in GL(n,R) is said to be perfectly-
conditioned if c(A) = 1.

This definition, of course, depends on which norm is being
used.

Most textbooks, including one by the author of this article,
[3], say virtually nothing about perfectly-conditioned matrices
beyond giving the definition and mentioning that orthogonal
matrices are perfectly-conditioned for the spectral norm.

We write G, = { A € GL(n,R) : ¢(4) = 1}, so that G is
the set of all perfectly-conditioned non-singular real n xn matrices.
Here n is a fixed positive integer and our condition numbers are
defined with respect to a fixed operator norm.

Lemma. G, is a group under the operation of matrix multiplic-
ation, so that Gp. is a subgroup of GL(n,R).

Proof: G, is a subset of GL(n, R) which contains I and which is
closed under the operation of taking inverses since c(A4) = c(A™1).
Thus it suffices to show that G, is closed under multiplication.
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It is easy to see, via properties of operator norms, that
c(AB) < c¢(A)e(B) for any non-singular matrices A and B.
Thus ¢(AB) = 1 whenever both ¢(4) = 1 and ¢(B) = 1, since
c¢(AB) > 1 for all A and B. (If our norm is not an operator norm
then G, need not be a group.)

We will determine the group Gy in general and will specific-
ally describe it for each of the examples of the operator norms
given above.

Let || || be a norm on R™ and write

Gnp ={A€GL(n,R): ||Av|| = ||lv|| for all v € R"},

so that G, is the group of all norm-preserving linear operalors
on R™. (It is an easy exercise to see that G, is a subgroup of
GL(n,R).)

We write R, for the multiplicative group of all positive real
numbers and we will regard R, as a subgroup of GL(n,R) by
identifying it with the set of all positive scalar multiples of the

identity matrix.

Proposition. Let || || be a fixed norm on R™, let A be an ele-
ment of GL(n,R), and let ¢(A) be the condition number of A
with respect to this norm. Then ¢(A) = 1 if and only if A Is a
non-zero scalar multiple of a norm-preserving linear operator on
R™. Indeed the group G,. is isomorphic to the direct product
R, x Gpp.

Proof: Consider the set S4 used in the definition of the operator
norm ||A|. Note that S4 is a closed and bounded subset of the
positive real numbers. It is easy to see that S4-1 = {a™! :a €
Sa } because w = Av if and only if v = A~'w. Hence || 4| = ax,
where o; = max S, and ||[A7!|| = ap! with ag = minSa. It
follows that ¢(4) = ay /g, from which we see immediately that
c(A) = 1 if and only if S, is a singleton point set. Thus ¢(4) =1
if and only if there exists a positive real number « such that
|Av]| = allv|| for all v € R™. Writing @ = p? for some positive
real number p, we see that (+p ')A is a norm-preserving linear
operator. It follows easily that G, is the direct product of the
subgroups Ry and G, of GL(n, R).

& Matrices in perfect condition 33

Example 1. Using the euclidean norm on R"™, the group G, is
well-known to be the orthogonal group O(n) = { A € GL(n,R) :
AA* = I}. Hence Gy = R} x O(n) in this case. Thus the
matrices which are perfectly-conditioned with respect to the spec-
tral norm are precisely the positive scalar multiples of the ortho-
gonal matrices.

Example 2. Using the norm on R™ arising from an inner product
given by some positive definite symmetric bilinear form ¢, the
group Gnp equals O(¢), the orthogonal group of ¢, and G, =
R, x O(¢) in this case. Note that if ¢ is represented with respect to
the standard basis by the matrix B then O(¢) = { A € GL(n,R) :
A*BA = B} and also that O(¢) is isomorphic to O(n), because
the form ¢ is isometric to the usual dot product on R”,

Example 3. Using the cartesian norm on R", the group G,
turns out to be isomorphic to the wreath product C3 1 5,,, where
'y is the cyclic group of order 2, and S, is the symmetric group
on n letters. (See [2, p.77] for the definition of wreath product.)
We can see this as follows.

If A € Gnp, then ||Av|| = ||v|| for all v € R™. Hence writ-
ing v = (v;) and using the definition of the cartesian norm, the
equation || Av|| = ||v|| becomes

max(|za1jv,-|,...,|Za,njuj|) = max ([vil,. .., [val)

for all (v1,...,v,) € R™. This equality can hold only if each row
of A contains exactly one non-zero entry, this non-zero entry being
equal to 1, and these non-zero entries are all in different columns.
(Thus A is a so-called signed permutation matrix.) Examining the
multiplicaticn in the group of all such matrices we see that it yields
the wreath product Cs 1 S,, which is the semi-direct product of
Sn and CF, where CF is the direct product of n copies of Cy and
Sy acts in the obvious way on C¥ by permuting factors.

Thus the group of matrices which are perfectly-conditioned
with respect to the maximum absolute row sum norm is iso-
morphic to R} X (C218,). As a set, G, consists of the positive
scalar multiples of the signed permutation matrices.
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Example 4. Note that the group G,. in Example 3 is closed
under the operation of transposition of matrices. It follows that
this same group must also be the group of matrices which are
perfectly-conditioned with respect to the maximum absolute
column sum norm. (||4||. = ||A%||,, where | ||c and || || denote
the maximum absolute column and row sum norms respectively.)
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AN ITERATION RELATED TO
EISENSTEIN’S CRITERION

Eugene Gath and Thomas J. Laffey

The following question appeared in the 1994 Irish Mathematical
Olympiad, the competition used to select the team to represent
Ireland in the International Olympiad:

Let a, b and ¢ be real numbers satisfying the equations:

b=a(4—a)
c=b(4—-b)
a=c(4—c).

Find all possible values of a + b + c.

A direct approach to this problem is to write ¢ in terms of a,
and then obtain an octic polynomial in a:

fla)=—a(d—-a)(2-0a)?((2-a)? -2)+a=0.
The octic factorizes over the integers in the form
fla) = a{a — 3)(a® — 6a® + 9a — 3)(a® — 7a® + 14a — 7).

Observe that the factors a® — 6a® 4+ 9a — 3 and a® — 7a? + 14a — 7
satisfy Eisenstein’s irreducibility criterion for the primes 3 and 7,
respectively. This, in our experience, was one of the rare occasions
when polynomials satisfying the criterion arose in an uncontrived
way, and we decided to investigate why they occurred here.

Put g(z) = z(4 — z) and let ¢")(z) be the rth iterate
g(g(...g(z)...)). Consider the polynomial h.(z) = z — ¢'")(z).
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