NON-MEASURABLE SETS
AND TRANSLATION INVARIANCE
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In this brief note, we prove a simple but quite general fact about
translation invariant measures: if u is a finite non-trivial measure
on a group G, then G has non-measurable subsets. An immediate
very well-known corollary is the existence of a set of reals which
is not Lebesgue measurable. The most popular proofs of this
latter result leave one with the impression that non-measurable
sets of reals are connected with the density of the rationals, [R],
the relatively small number of closed sets of reals, [M], or the
identification of the reals with infinite binary sequences, [B].
We begin by fixing the familiar terminology.

Definition Suppose that S is a set and F is a o-algebra of subsets
of S. A measure over F is a function p from F' into [0, o] such
that

(1) p@®) =0

and

(2) if { X, € F:n € N} isafamily of pairwise disjoint sets, then

(U ) =T uec

neN nelN

The subsets in F' are said to be the measurable subsets of 5. We
say that u is a totel measure if

(3) F = P(8), i.e. every subset of S is measurable.

A measure p is non-trivial if u({z}) = 0 for every z € S, and
finite if u(S) is a positive real number. We say loosely that y is a
measure on S when we mean that the domain of p is a g-algebra
of subsets of S.
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Some well-known examples of non-trivial measures are
Lebesgue measure on R™ and the Haar measure on a locally
compact group. These measures are also translation invariant, in
accordance with the following definition.

Definition Suppose that G = (G, %) is a group. We say that a
measure g on & is (left-) translation invariant if u(g* X) = u(X)
for every g in G and every X in the domain of , where g X =
{g*z:z€ X}

Our first observation is a group-theoretic one.

Proposition 1. Suppose that G is a group, A is a subgroup of G
and X is a non-empty subset of G with Ax X C X. Then there
exists a subset E of X such that the following hold:

(i) X = Uzcalax EY;

(ii) if @ and b are distinct elements of A, then ax ENb+ E = .
Proof: Define an equivalence relation R on X as follows: xRy if
and only if z xy~! € A. Since A is a subgroup of G, it follows
easily that R is an equivalence relation on X. So R partitions
X into equivalence classes. Using the Axiom of Choice, choose
a representative from each distinct class and let E be the set of
these representatives. It is now straightforward to check that F
satisfies (i) and (i1).

Corollary If A is a subgroup of G, then there exists a subset F
of G such that the following hold:

(i) G = Usea(a * B);

(ii) if @ and b are distinct elements of A, then a* ENb* E = §.

In fact, E is just a set of right coset representatives of A in G.
We now derive the main result from Proposition 1.

Theorem 2. Suppose that p is a finite non-trivial (left-) trans-
lation invariant measure on the group G. Then G has non-
measurable subsets (so u is not total).

Proof: Since p is finite, non-trivial and countably additive, it fol-
lows that G is an uncountable set. Let A be any countably infinite
subgroup of G (just take the subgroup generated by some count-
ably infinite subset of ; model theorists will apply the Downward
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Loewenheim Skolem theorem). By the corollary, there is a subset
E of G satisfying (i) and (ii). We claim that E is non-measurable.
Well, suppose otherwise; then

wG) =u(|JaxE)=> waxE)=> wE),

aEA eEA : aeEA

where we have used (i), (ii), countable additivity and translation
invariance. This is impossible since g is finite and A is infinite.
Hence E is non-measurable.

Corollary 3. There exists a set of reals which is not Lebesgue
measurable.

Proof: Let G be the group (0,1] under addition modulo 1.
Lebesgue measure restricted to G satisfies the hypotheses of
Theorem 2.

Of course, everything goes through for (right-) translation
invariant measures if one formulates an appropriate version of
Proposition 1.

The use of the Axiom of Choice (AC) in Corollary 3 promp-
ted mathematicians to study whether and how much choice was
necessary. In 1970, Solovay, [S], published the following famous
theorem:

Theorem. Suppose that there exists an inaccessible cardinal.
Then there is a model of ZE+DC+ “Every set of reals is Lebesgue
measurable”.

The Axiom of Dependent Choice (DC) above is equivalent
to the Baire Category Theorem, and is strictly weaker than AC.
Matters rested here for a while, as logicians worried about the
inaceessible cardinal. Then their cares were lifted when Shelah,
[Sh], proved (among other things) that if all £ sets of reals are
Lebesgue measurable, then the first uncountable cardinal is inac-
cessible in L, the universe of constructible sets. This, taken in
conjunction with Solovay’s theorem, established the equivalence
of assertions about the consistency of the Lebesgue measurability
of classes of reals and the consistency of large cardinal axioms, and
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inspired a stream of equiconsistency results. It surprised the wider
public to learn that holding unrestrained views about Lebesgue
integrability of certain real functions was no different (in terms
of consistency) from endorsing set-theoretic universes containing
large cardinals.

The complexity of non-measurable sets of reals and their pos-
sible whereabouts in the analytic hierarchy of the subsets of R con-
tinue to form the focus of intensive research. The lecture notes,
[B], of Bekkali present some of the developments in this area.
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