PRODUCTS OF GROUP COMMUTATORS
P. Hegarty and D. MacHale

Abstract We show that certain products of group commutators are
commutators and derive a number of applications.

1. Introduction

If @ and b are elements of a group G, we define the commutator of
a and b, written as [a,b], to be the group element a™'b~ Lab. The
following facts are immediate from the definition.
(i) The inverse of a commutator is a commutator

[a,6] " = [b,a]- (1)
(ii) Any conjugate of a commutator is a commutator
gz a,blz = [z taz,z " bz]. (2)

(iii) By direct computation

[a,b] = [pa,a™] (3)
=[bt,ab] (4)
=[b""a,b] (5)
= [a, ab). (6)

However, it is well known that the product of two commutators
need not be a commutator. Guralnick, (5], shows that if the com-
mutator subgroup G’ satisfies either

(a) G' is abelian and |G| < 128 or |G| < 16

or

(b) G is non-abelian and |G| < 96 or |G'| < 24,

14
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then the product of any two commutators is a commutator. He
also gives examples to show that these two bounds are the best
possible. Macdonald, (7], shows that if G has centre Z(G) and
satisfies

IG: Z(G)P? < |G,

then there is a product of commutators in G which is not a com-
mutator in G, and produces infinitely many examples of this phe-
NOMENOIL.

In this note we investigate certain products of group com-
mutators which can be written as single commutators. We also
present analogous results for sums of ring commutators. We then
apply the results for group commutators to give elementary proofs
of two known group-theoretic results.

2. Products of group commutators

The following commutator identity appears, essentially without
motivation, in [9, p.85]:

[zy, 2t] =y~ [z, tlyly, t](yt) [z, 2] (yt)t [y, 2]t (7)
Putting z = ¢,y =a™', 2 =d, t = b~!, we immediately obtain
[a,b][b, ][c, d][d, a] = (ba)~*[ca™t, db](ba). (8)

Thus, the expression on the left-hand side of (8) is a single com-
mutator. As special cases, we have

[a,B][b, c][c, @] = (ba) [eca™', ab™ | (ba) = a '[beaT b, 67 ala  (9)
by putting d = a in (8), and
[a,8][b, ] = (ba) " ca™, b7 (ba) = [a *ba,a" ]  (10)

by putting d = 1 in (8) and applying (3)-(6) several times.

Since (10) is fundamental to this paper, and actually appears
in [8] and as an exercise in [1], we feel it is instructive to derive
(7)-(10) in reverse order, starting from scratch. Firstly, we have

[a,b][b, c] = a b tabb ¢ be = o~ b Lac Yhe
= (a7'b7"a)(c " a)(a " ba)(a " c) = [atba,a ).
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Secondly,

[a, b][b, c][c, a] = [a~*ba,a " ][c, a] by (10)
=[a"ba,a ]l ¢, a] by (5)
=[a"tb"ca"tba, 0~ b a®] by (10)
=a" b ca b, b7 ala by (2),

which is just (9). Thirdly,

[a, b][b, c][c, d][d, a] = [a ba,a 1¢][c " de,c " a] by (10)
= [a"'ba,a" [ e, " da] by (4)
=[a"tbtca " ba,a b Tac™ ' da] by (10)
= (ba) [ca™?, ac™ db!](ba) by (2)
= (ba)"ea~, db~"(ba) by (6),

which is just (8). Equation (7) now follows easily on putting
a=y b=t c=zandd=z
We now ask if either of

[a, 8], ][, d] or [, B](b, ][, d][d, €] e, a]

can always be written as a single commutator. We show that the
answer is no. We need the following results from Liebeck, [6]. Let
G4 = (a1, ay,03,a4) be the free nilpotent group of class 2 on four
generators. Put

cij = [as, a;]
for 1 <4 < j <4, so that [cij,aﬂ:lforl§i<jg4andallk.
An arbitrary commutator in G may be written as

Qg ag o B1 B2 B3 _Pa
[af a5 ag®ay®, oy ay” oy ag I,

which simplifies to

8ig
II <

1<ici<a

=
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where &;; = a;3; — a; ;.
The indices d;; satisfy the relation

012034 — 813024 + 012023 = 0,

and this is a necessary and sufficient condition for

4
H Cij
,5=1
to be a single commutator.
Consider [a1, as][as, as][as, as]. Here,

012034 — 013024 + 014023 =1-1-0-0+0-1=1#0,

so [a1, as][az, as][as, a4] is not a commutator in Gy.

Suppose now that [a,b][b, cl[c, d][d, €][e, a] is always a com-
mutator. Put e = 1 and we get that [a,b][b, c][c,d] is always
a commutator, contradicting the previous result. [t is also
clear that for any n > 3, neither [z1,22]...[Tn—1,7.] nor
[1,22] ... [%n, Zn41][Zns1,%1] can, in general, be written as a
single commutator. '

Finally, in this section, we mention some ring-theoretic ana-
logues of the results we have presented for groups. If R is a ring
and a and b are elements of R, then the ring commutator of @ and
b, written [a,b], is defined to be the ring element ab — ba. It is
well known that the sum of two ring commutators need not be a
ring commutator and examples are very much easier to construct
than the corresponding examples for groups.

The following identities for ring commutators are easily veri-

fied:
la,b] + [b,c] = [a - ¢, b] (11)
la,b] + [¢c,a] = [a,b— (] (12)
la,b] + [b,c] + [c,a] = [a — ¢, b— (]
=[c—ba—1
=[b—a,c—d] (13)
[a,b] + [b,c] + [c,d] + [d,a] = [a — ¢,b — d] (14)

[z, 8] 4+ [y, 8] + [z, 2] + [y, 2] = [z + v, 2 + ¢]. " (15)
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Again, (11) and (14) cannot be extended to four and five variables,
respectively. Examples are easy to construct in the ring of all 3x 3
matrices of the form

a f(xr) hz,y)
0 a g(y) )
0 0 a

where f, ¢ and h are polynomials in the commuting indetermin-
ates = and y over an arbitrary field F, and a € F' (see [2]).

3. Applications

(A) Culler, [3], has shown that [a,b]™ can be written as a product
of [2] + 1 commutators, where [k] denotes the greatest integer
contained in k. Culler’s methods are highly topological, however,
and we now offer a simple proof based on (10).

Firstly, [a, b][c, @] is a single commutator since, by (3) and (4),

[a,B][c, a] = [ba,a][a™", cal,

which is a single commutator by (10). We use the following well-
known identity (which, incidentally, can also be derived using (3)-
{(6) and (10)):

[a,b]? = [b71, a][aba" b a, b] (18)

For simplicity, we henceforth denote aba='b~!a by ¢. Equation
(3) says that [a,b] = [ba,a!]. We may assume that a and b
are generators of a free group G on two generators, since the
commutator identities we are about to obtain for the free group
may then be carried over homomorphically to any other group
generated by two elements. Let a be the automorphism of G
defined by setting acx = ba, ba = a~'. Applying « to both sides
of (16), we get

[a,b]? = [a, ba[ta, a™'] = [a, ba] la,taa™ 1], (17)

where we have used (4) to obtain the last part of the equation.
Thus
[a,0]* = [a, ba][a, taa™ ][, a][t, B], (18)
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whence [a,b]* is a product of three commutators since, by the
opening remark of this proof, the product of the middle two com-
mutators in (18) is a single commutator. Now apply a to both
sides of (18), and post-multiply both sides of the resulting equa-
tion by (16). By the same reasoning as above, we thus have [a, b]®
equal to the product of four commutators. It is mow a simple
induction that [a,b]*" can always be expressed as the product of
n + 1 commutators.
Finally, pre-multiply both sides of (16) by [a, b] to get

(@, 8] = [a,8][b~", a][t, ], (19)

whence [a,b]® is a product of two commutators, by the open-
ing remark. By repeating the construction above of [a,b]*" as
a product of n+4 1 commutators, we quickly see that [a, b]*"*! can
always be expressed as a product of n+ 1 commutators also. This
completes the proof of Culler’s result.

(B) Edmunds, [4], showed that, in any group, any product of
n commutators can always be expressed as the product of some

2n + 1 squares. We offer an elementary proof of this result, again
based on (10).

Firstly, for any #; and =5 in G,
iy = [z77, 23 27 "] (2122)". (20)

It can now easily be shown by induction that for & > 2

k
2. zi (.. .a) 2 = H[zi__ll, £, (21)
1=2

where we have set
Zp = X1 .. Ty

for r > 1. Put k£ = 2n + 1 and use (10) on the right-hand side of
(21) to obtain

n

2 = -1 - _
7. -E§n+1($1 s iliga i) e H[zgi_lzz,-lzz,;l_l, Zzi—lzzl‘:q] (22)

i=1
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which equates a product of n commutators and a product of 2n+2
squares. We now show that every product

[a1,a2] ... [a2n—1,02n]

of n commutators in G can be written in the form of the right-
hand side of (22).

We simply equate corresponding terms, that is, fors =1, ...,
n, we put

1 -1
A2i—1 = 22i—129; 2941 (23)

Qi = 221—122_1-:_1, (24)

where the z, are as above. (23) is an equation for az;—; in terms
of &1, ..., T2; in which the variable z2; appears only once and
(24) is an equation for ag; in terms of zy, ..., 241 In which the
variable ze;y1 appears only once.

What this means is that z; can be fixed arbitrarily and, hav-
ing found 1, ..., x;, we have an equation for z;41 in terms of
%1, ..., Ty, ai, in which the variable z;1; appears only once, so
that the equation has a unique solution. It is easy to verify that
the following recursion formula for the z; is consistent with the
2n equations contained in (23) and (24).

X1 = ay
= g ot B 1<i<n
To; = Zgi_102i71z22—1) =t

-1 -1 :
T2i+1 = Zg; Qg; 22i—1, 1 S 1 S mn

Hence, every product of n commutators can be written as a
product of 2n + 2 squares

—2
[a1,82]. .. [@2n—1,02s] = 37 ... 851 (F1 -+ B2np1) )

where the z; are given by the recursion formulae above. However,
2L - =2 :

from these formulae, we see that zo = 27 “a7 @1 = a7 °, which

implies that z?22 = a? is a square. Thus, every product of n

[4]
[5]
[6]
(7]
(8]

[9]
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commutators can in fact be written as a product of 2n -1 squares.
as required.
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