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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
21st December 1994

The Irish Mathematical Society held an ordinary meeting at
12.15pm on Wednesday 21st December 1994 in the Dublin Insti-
tute for Advanced Studies, 10 Burlington Road. 20 members were
present. The president, B. Goldsmith, was in the chair. Apologies
were received from D. Hurley and M. O Searcéid.

1. The minutes of the 31st March 1994 meeting were approved
and signed.

2. Matters arising

It was reported that the subcommittee had made a submission
to the Science, Technology and Innovation Advisory Council on
behalf of the society, as requested. A copy of the submission and
a brief report on a follow-up seminar organized by the Council
appear in this issue of the bulletin.

3. Bulletin

The production of the bulletin is currently on schedule. The
editor, R. Gow, asked members to submit articles to the bulletin
and also to encourage others to do so.

4. Treasurer’s business

The treasurer circulated an interim report on the state of the
society’s finances. It was clear that it is necessary to keep tight
control of the finances.

3. Membership fees

The president informed the society of the committee’s intention
to bring before the Easter Meeting a proposal to review the mem-
bership fee structure, with a view to implementing fee changes
from 1st January 1996.
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A brief discussion was held. Most members appeared to agree
that a full proposal should be taken to the Easter Meeting.

6. September Meeting

The 1995 September Meeting will take place on 7th and &th
September.

7. EMS/Ziirich Meeting

During a brief discussion on collection of EMS fees, it was sug-
gested that the system of “local representatives” of the society be
re-instated. It was also suggested that perhaps standing orders
for payment of membership fees could be adjusted to include both
IMS and EMS membership fees.

5. Dineen gave a brief report on the EMS Ziirich Meeting.
The EMS are reported to be considering either supporting public-
ations of national mathematical societies or producing their own
journal. They appear to favour publication of their own journal.

The EMS are considering supporting mathematical summer
schools.

The EMS are now trying to coordinate efforts to prepare for
the year 2000, which is to be the Year of Mathematics.

8. Elections

The following were elected, unopposed, to the committee (x
denotes re-election to the committee):

Committee Member

D. Hurley * President
C. Nash * Vice-President
J. Pulé * Treasurer j

B. Goldsmith *
G. Lessells *
M. Tuite

K. Hutchinson

T As M. Vandyck may be leaving the country, he decided to stand
down from the position of treasurer. The committee decided that

8] Minutes of IMS meeting 3

the position of treasurer should also be filled by election at this
meeting.
The following have one more year of office:

E. Gath

R. Gow

P. Mellon Secretary
R. Timoney

The committee is to co-opt an additional member.
The meeting closed at 1.15pm.

Pauline Mellon
University College Dublin.



Conference Announcement

STOKES COMMEMORATION

SLIGO RTC, SLIGO, IRELAND
9TH-10TH JUNE, 1995

A conference to commemorate the life and work of G. G. Stokes
has been organized by the Irish Branches of the Institute of Math-
ematics and the Institute of Physics, under the auspices of the
Royal Irish Academy, as part of the Sligo 750 celebrations.

While the mathematical physicist George Gabriel Stokes (1819-
1903) has long been sssociated with the University of Cambridge,
where he held the Lucasian Professorship of Mathematics (a chair
Isaac Newton) from 1849 until his death, it is
less generally realized that he was born in Skreen, County Sligo,
where his father was rector, and received his early education in

Dublin. The aims of this meeting are threefold:

once occupied by

1. To highlight Stokes’ contributions to mathematics and phys-
ics and explore some of their current ramifications.

ships with his family in Ire-

9. To understand Stokes’ relation
h the Royal

land, with the University of Cambridge and wit
Society.

3. To create awareness of Stokes’ life and works in Sligo through
the unveiling of a plaque at his birthplace.

The programme will commence at 11.30am on Friday 9th June

1995 in Sligo Regional Technical College. The first day will be
nd shorter contributions on math-

devoted to plenary lectures a
ematics and physics. There will be a Civic Reception in the Town

Hall at 7pm, followed by the Conference Dinner in the Silver Swan
Hotel at 8pm. On Saturday 10th June, general and historical lec-
tures will take place in Sligo RTC from 10am to noom. After
lunch, the conference will move to the townland of Skreen, where

4

=
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a plaque will be unveiled at Stokes’ birth
; place, followed b -
noon tea in the Rectory grounds (Parochial Hall if wet). P

3(31;;5;110;1&]25 l;a;l.re agreed to speak: Prof. Michael Berry, Uni
of Bristol; Prof. Anne Crookshank ’ ¢
Stokes), Trinity Colle i ich e
\ ge Dublin; Prof. Michael H iversi
College Dublin; Dr Norman McMi e i e
: cMillan, Carlow RTC; P
Olver, University of Maryland; Dr Ri ity o
, yland; Dr Richard Paris, Universit
Abertay Dundee; Prof. Denis Weaire, Trinity Collége D:rjarlsﬁly o

1(jlﬁ-‘ers of_ contributed talks should be made, with an abstract, to
Scflel 0001:111; 1\(;If Elllle Orgaariizing Committee, Prof. Alastair Wojocl
athematical Sciences, Dublin City Uni i :

lin 9 [wooda@dcu.ie] or to th : G ESEn B it
2 e Secretary, Dr Eamonn Cunning-

ham, School of Physical Sciences [cunninghame@dcu.ie]ul;il;1 T}%e

same address. T i i ]
= he deadline for contributed talks is 30th April

i{degistr_a,t'ion forms for the conference should be returned to:
t?@. lAlsl.mg Walsh, Stokes Commemoration, School of Maighem—
atical Sciences, Dublin City University, Dublin 9.

Fax: 01 7045786 (International +353 1 7045786)

Telephone: 01 7045293 (International +353 1 7045293)
email: walshais@dcu.ie

Registration forms must be returned by 30th April 1995, accom:

panied by a cheque for the a i i
ppropriate fee i
made out to Dublin City University. P 0 JRHA o Mg

The registration fee is £40 (in
cludes 2 buffet
and return transport Sligo-Skreen). uffet lunches, coffees, teas

Student registration fee i i
is £10 (includes th
from Professor/Supervisor is needed). © sbove, but 2 letter

Accompanying ;
persons fee is £10 (covers b
and return transport Slige- Skreen)( uffet lunch Saturday
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The Conference Dinner costs £20 (Civic Reception is free of
charge).

Accommodation is not included. A block of 20 rooms is being
held for the night of 9th June for participants at the Southern
Hotel, Sligo, telephone 071 62101, international +353 71 62101,
at a cost of £30 per person B&B. These are on a first-come first-
served basis and immediate booking is advised direct to the .hotelzl.
The following bed and breakfast houses have accommodation in

the range £16-20:

Ben Wisken Lodge, Donegal Road 071 41088

Treetops, Cleveragh Road 071 60160

Teach Famonn, Hazelwood 071 43393

Mrs Mugan, Lisnaluag 071 43584.

Student dormitory accommodation is available for £6 at Eden Hill
Hostel.

Conference Announcement

IRISH MATHEMATICAL SOCIETY

EIGHTH SEPTEMBER MEETING

UNIVERSITY OF LIMERICK
7TH-8TH SEPTEMBER, 1995

PRELIMINARY ANNOUNCEMENT

The eighth September meeting of the Irish Mathematical Society
will take place in University of Limerick on Thursday and Friday,

the 7th and 8th of September 1995. Among the principal speakers
will be:

Prof. Andrew Fowler, Oxford University,

Prof. Chris Budd, University of Bath,

Prof. John O’Donoghue, University of Limerick,
Prof. Tom Laffey, University College Dublin,

and others to be arranged. There will also be some short 20-
minute talks and potential contributors are urged to contact the
organizers as soon as possible.

Bed and breakfast accommodation will be available at the

Kilmurry student village on campus. There will be a confer-
ence dinner on 7th September.

For further information contact Dr Eugene Gath, Department of

Mathematics and Statistics, University of Limerick, Limerick, Ire-
land.

FAX: X-353-61-334927
e-mail: gathe@ul.ie



SCIENCE, TECHNOLOGY AND INNOVATION
Pauline Mellon

In the spring of 1994 the government established t;tle SZJ}E?IC:A
Technology and Innovation Advisorg.r Counc%l (heread :r ;:1 e
to as the Council) to undertake a review of science and tec! g
in Treland. The remit of the Council is tor
o determine whether the current policies, objectives, structure:
and components of the science a,nd‘ technology sys’;irrn arh
the right ones for achieving economic development throug
research, technology and innovation; .
e determine what mechanisms should be employed to achieve
the desired S & T goals in the light of the above;

e provide areport on the findings, with recommend'amons afbcz}niz
changes to improve the effectivene'ss and eﬂ'imency o ©
national S & T system in contributing to national e;:o%(;ﬁ.l;
development. This report will be in the for.m of a dra 1& W ;ei
Paper on Science, Technology and Innovation for the Minis

Government to consider. o .
Interaelslsed parties were invited to mal::e subrmssmps to thﬁ Cmglé;;ll
for consideration. At the Easter meeting of the Irlfsh Ma}t1 ema,brllef
Society (hereafter called the Society) it Wa.s_demded bt hatﬁaof et
submission should be made by the subcommittee on be i' the
society. A submission was duly sent. In a foll(_)w—upEac 10-r:nce”
Council held a seminar “Learning from Internatlonal. xpent' 1
in Dublin Castle on 19th September 1994, where mternjL 102?_
perspectives on science and technology were pre_sented.. s rsT <
retary of the Society, I was invited to attend this seminar. e
submission made by the Society to the Council and a summary

the seminar follows.

s Science, Technology and Innovation 9

Irish Mathematical Society
Submission to the
Science, Technology and Innovation Council

The sophisticated technological society that we aspire to relies on
an up-to-the-minute knowledge of new scientific, technological and
economic developments around the world. As new developments
arise at an increasingly rapid rate, not only must these areas of
our economy have a highly educated work force but the numer-
acy requirements and mathematical skills of graduates working in
these areas are generally seen to be playing an ever more import-
ant role.

Research in these areas relies heavily on mathematical tech-
niques and the pervasive role of scientific computing has meant
that mathematical analysis, modelling and interpretation of data
is now an everyday requirement. It is interesting to note that, des-
pite recent layoffs in their hardware division in Galway, DEC have
actually been recruiting software people including some mathem-
aticians. To continue attracting companies like AST, DELL and
INTEL to Ireland we must provide a technologically advanced
work force.

Not only are research mathematical scientists needed to keep
abreast of current scientific developments, but foresight by active
researchers today, can pave the way, and introduce the changes
into the teaching of mathematics, which will allow us to produce
the numerate graduates we need tomorrow.

e A strong research community in the mathematical
sciences is essential to keep our science and techno-
logy abreast of new developments and to continue
supplying graduates with up-to-date qualifications.

In the past, the mathematical sciences have been seen as an
essentially “non-experimental” subject with little or no equip-
ment needs. This is no longer appropriate. As with most other

scientific disciplines, high-level computing equipment is now an
essential requirement.

¢ Funding patterns should reflect the “new” equipment
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needs of research in the mathematical sciences.

A steady supply of Ph.D’s is necessary to ensure tomorrol\iv 8 emcz:)t;ll:
ematical community. To (i{ate, Iﬁla%yKof 01.115 Egsee?;é:}&err} h:\; » o
ir graduate work in the or : )

Eﬁgif—gﬁgglf of graduate fellowships in ‘th_e UK and thffc}:;s;g;:
tions being raised in the USA about funding so mangecome Sl
Ph.D’s spell imminent danger that these rputes may i
available. Tt is therefore critical to put o place a prog
support for Ph.D and post-doctoral students.

e A program of support at the Ph.D and post-doctoral
level is required.

The research environment in our third-level institutions hasf deg(?n—
orated. Increased student numbers anq general‘underd ugml'];g_
means that academics have ever expanding te'a.chmg an fta,n ];Ot
istrative burdens. Satisfactory computing gq:ingmelg 5112 :e nS ol

i i ing denuded by p .

ailable and our libraries are being - '

aAVS guch. the time and facilities to do research is constantly being
eroded. :

e It is important to acknowledge the .difﬁculties fa(;‘mg
research in the present economic climate and to. ace
these challenges in any new framework for science

and technology support.
To implement the above recommendations it is imperative that

o the mathematical sciences community 15; represented
i ouncl
at every level of the new science c .
® a separ}a:te mathematical sciences budget is msta%led
e a single person on the new science co.uncﬂ be given
responsibility for the mathematical sciences.

s
oA
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“Learning from International Experience”.
Dublin Castle 19th September 1994.

The seminar was introduced by Mr D. P. Tierney, Chairman of
the Science Technology and Innovation Advisory Council. He
described the Council’s task as the most fundamental and wide
ranging review of science and technology ever to be undertaken
by the government and reported that the Council had received
submissions from 150 interested parties. He called upon the
“players in the field of science and technology” first to come to
some agreement among themselves as to the important aspects
of desired policy before there could be hope of convincing Gov-
ernment, policy makers and the public as to the value of our
efforts.

An address by the then Minister for Commerce and Techno-
logy, Mr Seamus Brennan, followed. Minister Brennan reiterated
the view that there is no consensus as to how spending on science,
research, technical development and innovation can best contrib-
ute to national development in its broadest sense. He admit-
ted, however, that not enough money was being spent
on science and technology. The issue, as he stated it, “is
not whether we can afford to increase such spending but,
rather, whether we can afford not to do so”. He also said
that it should not be a choice between basic or applied research,
as he recognized that both are essential and interlinked. The Min-

ister also announced the setting up of a Single Research Support
Fund to include

e the funding for basic research and strategic research;

e support for Ph.D’s and M.S¢’s and

o the third level / industry cooperative research.
This fund is intended to be administered in full consultation with
third level and industry interests.

The minister also expressed his high hopes for Irish particip-
ation in the EU Fourth Framework Programme.

The international contribution began with Dr Joseph Clarke,
Senior Science Advisor, United States Department of Commerce,
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and Chairman of the OECD Innovation Committee.

Dr Clarke began by suggesting that low-unemployment is correl-
ated to higher R & D investment (as a percentage of GDP). Dr
Clarke outlined the aims and priorities of the OECD and its Work-
ing Group on Innovation and Technology Policy. He claimed that
the global economy is increasingly knowledge-based and that the
information and communication technologies, in particular, are
having a pervasive impact on this economy. He also claimed that
specialized skills are being increasingly demanded by new jobs.
His conclusion was that government S & T policies can
help in the creation and use of new technologies, as a base
for high-productivity, high-wage employment.

The second speaker from abroad was Dr Harry Beckers,
Group Research Coordinator for Royal Dutch/Shell and former
chairman of EU Industry Research and Development Advisory
Committee.

Dr Beckers spent some time outlining the different natures of
industrial and academic research. While industrial research grew
out of its academic forefathers, its priorities and therefore its needs
are different and this has become increasingly apparent over the
last few decades. He claimed that it is therefore not appropriate
to evaluate industrial research from an academic viewpoint. He
outlined levels of R & D that are appropriate for various indus-
trial sectors and warned that companies should stay close to the
average R & D expenditure for their industrial sector. He agreed
that the presence of a good scientific infrastructure and
the availability of trained and educated employees within
a stable environment is of the greatest importance to the
multinationals in seeking attractive locations.

Perhaps the most relevant international speaker from the
Irish perspective was Professor Paolo Fasella, as his comments and
observations were mostly about the Irish situation. He referred to
the comparative shortage of scientists in Ireland, which is espe-
cially worrying as the average age of the Irish scientist is one of
the highest in Europe. He made a direct call on the Irish
government to improve their funding for science and tech-

s Science, Technology and Innovation 13

nology, saying that it is not adequate or appropriate to
rely so heavily on European funding but that this should
be strongly supplemented by funds from the Irish gov-
ernment.

He said that a “neutral” education is necessary to allow long
term research benefits and that for a policy to be effective in the
long term it must support a wide range of basic research activities

Professor Paolo Fasella is the Director General of the Scienca;
and Technology Directorate of the European Commission.

The final speaker of the session was Mr David Wilkinson
Head of Science and Engineering Base Group of the UK Office 0%
Science and Technology.

Mr Wilkinson informed us of the science policy of the UK
government and described the divisions of research funding. The
recent White Paper “Realising Our Potential: A Strategy for Sci-
ence, Ingineering and Technology” produced in the UK in Ma
1993 had as an important tenet the fact that the UK “govern)-(
men.t accepts its role as the main funder of basic research
It wishes to sustain within the United Kingdom expertise':
across the core disciplines of biology, chemistry, mathem-
atlf:s and physics and to provide the climate where centres
of international excellence can develop and flourish”.

The presentations were followed by an open forum. It was
clear from the questions asked and views offered that many people
present agreed with Professor Fasella’s viewpoint that the Irish
government was sadly lacking in its support for research, and par-
ticularly basic research. The open forum was cut short liue to an
overrun in the time allotted for the presentations. This was rather
unfortunate, as there were surely many people present who had
strong and relevant points to contribute.

Pauline Mellon,

Department of Mathematics,
University College,

Belfield,

Dublin 4.



PRODUCTS OF GROUP COMMUTATORS
P. Hegarty and D. MacHale

Abstract We show that certain products of group commutators are
commutators and derive a number of applications.

1. Introduction

If @ and b are elements of a group G, we define the commutator of
a and b, written as [a,b], to be the group element a™'b~ Lab. The
following facts are immediate from the definition.
(i) The inverse of a commutator is a commutator

[a,6] " = [b,a]- (1)
(ii) Any conjugate of a commutator is a commutator
gz a,blz = [z taz,z " bz]. (2)

(iii) By direct computation

[a,b] = [pa,a™] (3)
=[bt,ab] (4)
=[b""a,b] (5)
= [a, ab). (6)

However, it is well known that the product of two commutators
need not be a commutator. Guralnick, (5], shows that if the com-
mutator subgroup G’ satisfies either

(a) G' is abelian and |G| < 128 or |G| < 16

or

(b) G is non-abelian and |G| < 96 or |G'| < 24,

14
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then the product of any two commutators is a commutator. He
also gives examples to show that these two bounds are the best
possible. Macdonald, (7], shows that if G has centre Z(G) and
satisfies

IG: Z(G)P? < |G,

then there is a product of commutators in G which is not a com-
mutator in G, and produces infinitely many examples of this phe-
NOMENOIL.

In this note we investigate certain products of group com-
mutators which can be written as single commutators. We also
present analogous results for sums of ring commutators. We then
apply the results for group commutators to give elementary proofs
of two known group-theoretic results.

2. Products of group commutators

The following commutator identity appears, essentially without
motivation, in [9, p.85]:

[zy, 2t] =y~ [z, tlyly, t](yt) [z, 2] (yt)t [y, 2]t (7)
Putting z = ¢,y =a™', 2 =d, t = b~!, we immediately obtain
[a,b][b, ][c, d][d, a] = (ba)~*[ca™t, db](ba). (8)

Thus, the expression on the left-hand side of (8) is a single com-
mutator. As special cases, we have

[a,B][b, c][c, @] = (ba) [eca™', ab™ | (ba) = a '[beaT b, 67 ala  (9)
by putting d = a in (8), and
[a,8][b, ] = (ba) " ca™, b7 (ba) = [a *ba,a" ]  (10)

by putting d = 1 in (8) and applying (3)-(6) several times.

Since (10) is fundamental to this paper, and actually appears
in [8] and as an exercise in [1], we feel it is instructive to derive
(7)-(10) in reverse order, starting from scratch. Firstly, we have

[a,b][b, c] = a b tabb ¢ be = o~ b Lac Yhe
= (a7'b7"a)(c " a)(a " ba)(a " c) = [atba,a ).
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Secondly,

[a, b][b, c][c, a] = [a~*ba,a " ][c, a] by (10)
=[a"ba,a ]l ¢, a] by (5)
=[a"tb"ca"tba, 0~ b a®] by (10)
=a" b ca b, b7 ala by (2),

which is just (9). Thirdly,

[a, b][b, c][c, d][d, a] = [a ba,a 1¢][c " de,c " a] by (10)
= [a"'ba,a" [ e, " da] by (4)
=[a"tbtca " ba,a b Tac™ ' da] by (10)
= (ba) [ca™?, ac™ db!](ba) by (2)
= (ba)"ea~, db~"(ba) by (6),

which is just (8). Equation (7) now follows easily on putting
a=y b=t c=zandd=z
We now ask if either of

[a, 8], ][, d] or [, B](b, ][, d][d, €] e, a]

can always be written as a single commutator. We show that the
answer is no. We need the following results from Liebeck, [6]. Let
G4 = (a1, ay,03,a4) be the free nilpotent group of class 2 on four
generators. Put

cij = [as, a;]
for 1 <4 < j <4, so that [cij,aﬂ:lforl§i<jg4andallk.
An arbitrary commutator in G may be written as

Qg ag o B1 B2 B3 _Pa
[af a5 ag®ay®, oy ay” oy ag I,

which simplifies to

8ig
II <

1<ici<a

=

s Products of Group Commutators 17

where &;; = a;3; — a; ;.
The indices d;; satisfy the relation

012034 — 813024 + 012023 = 0,

and this is a necessary and sufficient condition for

4
H Cij
,5=1
to be a single commutator.
Consider [a1, as][as, as][as, as]. Here,

012034 — 013024 + 014023 =1-1-0-0+0-1=1#0,

so [a1, as][az, as][as, a4] is not a commutator in Gy.

Suppose now that [a,b][b, cl[c, d][d, €][e, a] is always a com-
mutator. Put e = 1 and we get that [a,b][b, c][c,d] is always
a commutator, contradicting the previous result. [t is also
clear that for any n > 3, neither [z1,22]...[Tn—1,7.] nor
[1,22] ... [%n, Zn41][Zns1,%1] can, in general, be written as a
single commutator. '

Finally, in this section, we mention some ring-theoretic ana-
logues of the results we have presented for groups. If R is a ring
and a and b are elements of R, then the ring commutator of @ and
b, written [a,b], is defined to be the ring element ab — ba. It is
well known that the sum of two ring commutators need not be a
ring commutator and examples are very much easier to construct
than the corresponding examples for groups.

The following identities for ring commutators are easily veri-

fied:
la,b] + [b,c] = [a - ¢, b] (11)
la,b] + [¢c,a] = [a,b— (] (12)
la,b] + [b,c] + [c,a] = [a — ¢, b— (]
=[c—ba—1
=[b—a,c—d] (13)
[a,b] + [b,c] + [c,d] + [d,a] = [a — ¢,b — d] (14)

[z, 8] 4+ [y, 8] + [z, 2] + [y, 2] = [z + v, 2 + ¢]. " (15)
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Again, (11) and (14) cannot be extended to four and five variables,
respectively. Examples are easy to construct in the ring of all 3x 3
matrices of the form

a f(xr) hz,y)
0 a g(y) )
0 0 a

where f, ¢ and h are polynomials in the commuting indetermin-
ates = and y over an arbitrary field F, and a € F' (see [2]).

3. Applications

(A) Culler, [3], has shown that [a,b]™ can be written as a product
of [2] + 1 commutators, where [k] denotes the greatest integer
contained in k. Culler’s methods are highly topological, however,
and we now offer a simple proof based on (10).

Firstly, [a, b][c, @] is a single commutator since, by (3) and (4),

[a,B][c, a] = [ba,a][a™", cal,

which is a single commutator by (10). We use the following well-
known identity (which, incidentally, can also be derived using (3)-
{(6) and (10)):

[a,b]? = [b71, a][aba" b a, b] (18)

For simplicity, we henceforth denote aba='b~!a by ¢. Equation
(3) says that [a,b] = [ba,a!]. We may assume that a and b
are generators of a free group G on two generators, since the
commutator identities we are about to obtain for the free group
may then be carried over homomorphically to any other group
generated by two elements. Let a be the automorphism of G
defined by setting acx = ba, ba = a~'. Applying « to both sides
of (16), we get

[a,b]? = [a, ba[ta, a™'] = [a, ba] la,taa™ 1], (17)

where we have used (4) to obtain the last part of the equation.
Thus
[a,0]* = [a, ba][a, taa™ ][, a][t, B], (18)
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whence [a,b]* is a product of three commutators since, by the
opening remark of this proof, the product of the middle two com-
mutators in (18) is a single commutator. Now apply a to both
sides of (18), and post-multiply both sides of the resulting equa-
tion by (16). By the same reasoning as above, we thus have [a, b]®
equal to the product of four commutators. It is mow a simple
induction that [a,b]*" can always be expressed as the product of
n + 1 commutators.
Finally, pre-multiply both sides of (16) by [a, b] to get

(@, 8] = [a,8][b~", a][t, ], (19)

whence [a,b]® is a product of two commutators, by the open-
ing remark. By repeating the construction above of [a,b]*" as
a product of n+4 1 commutators, we quickly see that [a, b]*"*! can
always be expressed as a product of n+ 1 commutators also. This
completes the proof of Culler’s result.

(B) Edmunds, [4], showed that, in any group, any product of
n commutators can always be expressed as the product of some

2n + 1 squares. We offer an elementary proof of this result, again
based on (10).

Firstly, for any #; and =5 in G,
iy = [z77, 23 27 "] (2122)". (20)

It can now easily be shown by induction that for & > 2

k
2. zi (.. .a) 2 = H[zi__ll, £, (21)
1=2

where we have set
Zp = X1 .. Ty

for r > 1. Put k£ = 2n + 1 and use (10) on the right-hand side of
(21) to obtain

n

2 = -1 - _
7. -E§n+1($1 s iliga i) e H[zgi_lzz,-lzz,;l_l, Zzi—lzzl‘:q] (22)

i=1
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which equates a product of n commutators and a product of 2n+2
squares. We now show that every product

[a1,a2] ... [a2n—1,02n]

of n commutators in G can be written in the form of the right-
hand side of (22).

We simply equate corresponding terms, that is, fors =1, ...,
n, we put

1 -1
A2i—1 = 22i—129; 2941 (23)

Qi = 221—122_1-:_1, (24)

where the z, are as above. (23) is an equation for az;—; in terms
of &1, ..., T2; in which the variable z2; appears only once and
(24) is an equation for ag; in terms of zy, ..., 241 In which the
variable ze;y1 appears only once.

What this means is that z; can be fixed arbitrarily and, hav-
ing found 1, ..., x;, we have an equation for z;41 in terms of
%1, ..., Ty, ai, in which the variable z;1; appears only once, so
that the equation has a unique solution. It is easy to verify that
the following recursion formula for the z; is consistent with the
2n equations contained in (23) and (24).

X1 = ay
= g ot B 1<i<n
To; = Zgi_102i71z22—1) =t

-1 -1 :
T2i+1 = Zg; Qg; 22i—1, 1 S 1 S mn

Hence, every product of n commutators can be written as a
product of 2n + 2 squares

—2
[a1,82]. .. [@2n—1,02s] = 37 ... 851 (F1 -+ B2np1) )

where the z; are given by the recursion formulae above. However,
2L - =2 :

from these formulae, we see that zo = 27 “a7 @1 = a7 °, which

implies that z?22 = a? is a square. Thus, every product of n

[4]
[5]
[6]
(7]
(8]

[9]
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commutators can in fact be written as a product of 2n -1 squares.
as required.
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NON-MEASURABLE SETS
AND TRANSLATION INVARIANCE

Eoin Coleman

In this brief note, we prove a simple but quite general fact about
translation invariant measures: if u is a finite non-trivial measure
on a group G, then G has non-measurable subsets. An immediate
very well-known corollary is the existence of a set of reals which
is not Lebesgue measurable. The most popular proofs of this
latter result leave one with the impression that non-measurable
sets of reals are connected with the density of the rationals, [R],
the relatively small number of closed sets of reals, [M], or the
identification of the reals with infinite binary sequences, [B].
We begin by fixing the familiar terminology.

Definition Suppose that S is a set and F is a o-algebra of subsets
of S. A measure over F is a function p from F' into [0, o] such
that

(1) p@®) =0

and

(2) if { X, € F:n € N} isafamily of pairwise disjoint sets, then

(U ) =T uec

neN nelN

The subsets in F' are said to be the measurable subsets of 5. We
say that u is a totel measure if

(3) F = P(8), i.e. every subset of S is measurable.

A measure p is non-trivial if u({z}) = 0 for every z € S, and
finite if u(S) is a positive real number. We say loosely that y is a
measure on S when we mean that the domain of p is a g-algebra
of subsets of S.

22
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Some well-known examples of non-trivial measures are
Lebesgue measure on R™ and the Haar measure on a locally
compact group. These measures are also translation invariant, in
accordance with the following definition.

Definition Suppose that G = (G, %) is a group. We say that a
measure g on & is (left-) translation invariant if u(g* X) = u(X)
for every g in G and every X in the domain of , where g X =
{g*z:z€ X}

Our first observation is a group-theoretic one.

Proposition 1. Suppose that G is a group, A is a subgroup of G
and X is a non-empty subset of G with Ax X C X. Then there
exists a subset E of X such that the following hold:

(i) X = Uzcalax EY;

(ii) if @ and b are distinct elements of A, then ax ENb+ E = .
Proof: Define an equivalence relation R on X as follows: xRy if
and only if z xy~! € A. Since A is a subgroup of G, it follows
easily that R is an equivalence relation on X. So R partitions
X into equivalence classes. Using the Axiom of Choice, choose
a representative from each distinct class and let E be the set of
these representatives. It is now straightforward to check that F
satisfies (i) and (i1).

Corollary If A is a subgroup of G, then there exists a subset F
of G such that the following hold:

(i) G = Usea(a * B);

(ii) if @ and b are distinct elements of A, then a* ENb* E = §.

In fact, E is just a set of right coset representatives of A in G.
We now derive the main result from Proposition 1.

Theorem 2. Suppose that p is a finite non-trivial (left-) trans-
lation invariant measure on the group G. Then G has non-
measurable subsets (so u is not total).

Proof: Since p is finite, non-trivial and countably additive, it fol-
lows that G is an uncountable set. Let A be any countably infinite
subgroup of G (just take the subgroup generated by some count-
ably infinite subset of ; model theorists will apply the Downward
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Loewenheim Skolem theorem). By the corollary, there is a subset
E of G satisfying (i) and (ii). We claim that E is non-measurable.
Well, suppose otherwise; then

wG) =u(|JaxE)=> waxE)=> wE),

aEA eEA : aeEA

where we have used (i), (ii), countable additivity and translation
invariance. This is impossible since g is finite and A is infinite.
Hence E is non-measurable.

Corollary 3. There exists a set of reals which is not Lebesgue
measurable.

Proof: Let G be the group (0,1] under addition modulo 1.
Lebesgue measure restricted to G satisfies the hypotheses of
Theorem 2.

Of course, everything goes through for (right-) translation
invariant measures if one formulates an appropriate version of
Proposition 1.

The use of the Axiom of Choice (AC) in Corollary 3 promp-
ted mathematicians to study whether and how much choice was
necessary. In 1970, Solovay, [S], published the following famous
theorem:

Theorem. Suppose that there exists an inaccessible cardinal.
Then there is a model of ZE+DC+ “Every set of reals is Lebesgue
measurable”.

The Axiom of Dependent Choice (DC) above is equivalent
to the Baire Category Theorem, and is strictly weaker than AC.
Matters rested here for a while, as logicians worried about the
inaceessible cardinal. Then their cares were lifted when Shelah,
[Sh], proved (among other things) that if all £ sets of reals are
Lebesgue measurable, then the first uncountable cardinal is inac-
cessible in L, the universe of constructible sets. This, taken in
conjunction with Solovay’s theorem, established the equivalence
of assertions about the consistency of the Lebesgue measurability
of classes of reals and the consistency of large cardinal axioms, and

(B]

(M]
[R]
(Sh]
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inspired a stream of equiconsistency results. It surprised the wider
public to learn that holding unrestrained views about Lebesgue
integrability of certain real functions was no different (in terms
of consistency) from endorsing set-theoretic universes containing
large cardinals.

The complexity of non-measurable sets of reals and their pos-
sible whereabouts in the analytic hierarchy of the subsets of R con-
tinue to form the focus of intensive research. The lecture notes,
[B], of Bekkali present some of the developments in this area.
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A NOTE ON MINIMAL INFINITE
SUBSPACES OF A PRODUCT SPACE

D. J. Marron* and T. B. M. McMaster

Abstract Ginsburg and Sands, [1], have identified the five topological
spaces which are ‘minimal infinite’ in the semnse that each is homeo-
morphic to all of its own infinite subspaces. Given a finite family of
spaces, and knowledge of which of the five may be embedded in each
of them, we show how to obtain the same information concerning their
product.

On the set N of positive integers, let 71, 70, 7cf, 7(1) and 7(})
denote respectively the discrete, trivial and cofinite topologies,
the topology of final segments and that of initial segments. If 7
is any one of these five and Y is an infinite subset of N, then
clearly the subspace (Y, 7y) is homeomorphic to the whole space
(N, 7). More significantly, Ginsburg and Sands [1] have demon-
strated using Ramsey’s theorem that every infinite space contains
a homeomorphically embedded copy of at least one of these five,
so that they are necessarily the only spaces (up to homeomorph-
ism) enjoying this kind of minimality, and they may be perceived
from a certain viewpoint as the ‘atoms’ of infinite topology. There
have been a number of recent applications of this idea: we refer,
for example, to Matier and McMaster’s uses of it in exploring total
negations of properties enjoyed by all finite spaces but not by all
countable ones, [3], [4].

For brevity, let us take the phrases ‘atom of a space X’ to
mean a minimal infinite space capable of being embedded into
X, and ‘atomic structure of X’ to mean the list of the atoms of

* The first named author gratefully acknowledges the financial
support of Belfast E.C.
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X. Once we know the atomic structure of finitely many spaces
X1, Xa, ..., X,, then that of their disjoint union is immediately
obtainable just by conflation. It might be expected that the same
observation would apply to their product, but the truth is rather
more interesting. Certainly, each atom of one of the X; must be
an atom of the product space, but the following example shows
the converse to fail:

Example The diagonal line { (2, ) : € N } in the product space
(N, 7(J)) x (N, 7(1)) is discrete: asit alsoisin (N, 7(]))x (N, 7z).
So (N, 71) is a ‘surprise atom’, occurring in the atomic structures
of these two products but absent from the factor spaces. We shall
see that there is a uniqueness about these two examples: surprise
atoms in finite products are always attributable to one or other
of them.

Lemma 1. Let A be any infinite subset of N x N. There is an
infinite subset B of A which satifies one of the following conditions
(a) all elements of B have the same first coordinate

(b) all elements of B have the same second coordinate

(¢) no two elements of B have the same first coordinate and the
second coordinate Is a strictly increasing function of the first.

Proof: This is simple enough to demonstrate directly, but easier
still as an application of Ramsey’s theorem, [2, p.19]. Classify each
two-element subset { (z1,41), (z2,y2) } of A as red, green, blue or
yellow according as z1 = z2, y1 = y2, (21 — 22)(y1 — y2) > 0 or
(#1 — 2z2)(y1 — y2) < 0. Then there is an infinite subset B of A
which is monochromatic (that is, every two-element subset of B
has the same colour). The red, green and blue cases give (a), (b)
and (c) respectively, while yellow leads to a contradiction since
each positive integer has only finitely many predecessors.

Lemma 2. Let 7, 7' be among the five ‘minimal’ topologies on
N and satisfy 7 > 7', and let C be an infinite subset of N. Then
every Increasing injective map f from the subspace (C,7c) to
(N, ') is continuous.

Proof: 1t suffices to check the case 7 = 7'. When 7 =7 =7 or
7o the conclusion is trivial, in the 7. case continuity follows from
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injectivity, in the remaining two cases the increasing nature of f
is what is needed.

Proposition 1. Let (N, 7) and (N,7') be two (not necessarily
distinct) of the minimal infinite spaces and suppose that T > 7'.
Then there are no ‘surprise atoms’ in (N,7) x (N, 7).

Proof: Suppose that the subset A of N x N is homeomorphic to
an atom. Choose B as in Lemma 1; in cases (a) and (b), B will
be a homeomorph of an infinite subspace of (N, 7') or (N, 7), and
therefore via minimality, 4 itself must be a copy of one of these
two. In case (c), B is the graph of an increasing injective function

f:(C,m¢) = (N,7)

whose domain is an infinite subspace of (IN,7) and whose con-
tinuity Lemma 2 establishes. It follows that C' and B are homeo-
morphic, and a further appeal to minimality shows A to be a copy
of (N, 7).

Next we show how the atomic structure of the product of
two arbitrary spaces X and Y is determined by those of X and ¥
separately.

Proposition 2. Let M be an atom of X x Y but neither of X
nor of Y. Then

(i} M is discrete, and

(ii) one of X and Y has (N,7(])) as an atom, the other one has
either (N, 7(1)) or (N, 7.s) as an atom.

Proof: Take a subspace M' of X x Y which is a homeomorph
of M. Arguing as in the proofs of Lemma 1 and Proposition 1,
we find an infinite subset B of M' no two of whose points have
either the same first or the same second coordinate. The first
projection 71 (B) contains a copy E of an atom of X. The second
projection m(m; ! (E) N B) of the points of B lying ‘vertically
above’ E remains infinite, and contains a copy F' of an atom of
Y. So now E x F is a product of copies of atoms and encloses
an infinite subspace of minimal M'. If the topologies of E and
F' are comparable, Proposition 1 yields a contradiction. If not,
we are dealing with the product of (N, 7(])) by either (N, 7(1})

[1]
(2]
[3]
(4]

e
8

(]
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or (N, 7.5); that (N, 1) is a surprise atom here has already been
noted in the example, and another argument like that in the proof
of Proposition 1 readily confirms that it is the only one.

Using induction, it is now routine to extend this proposition
to apply to any finite numbe of factor spaces. We conclude:

Theorem. The atomic structure of the product of a finite num-
ber of spaces is merely the conflation of their individual atomic
structures unless:

(N, 7(l)) is an atom of one factor space,

(N, (1)) or (N, 7.s) is an atom of another, and

no factor space has (N, 1) as an atom.

In the exceptional case, (N, 1) is to be appended to the conflation
of the lists.
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MATRICES IN PERFECT CONDITION
David W. Lewis

We write GL(n, R) for the group of all non-singular n x n matrices
with real entries. Let A be an element of GL(n, R) andlet || || be
some norm on the real vector space R". We define the operator
norm of A in the usual way, as the supremum of the bounded set
Sa={||Av]|/||v]|: v € R™ and v # 0}, and we denote it by || A||.
The operator norm depends on the underlying norm on R",
When the norm on R™ is the usual euclidean norm, that is

n 1/2
ol = (Zuf) ,

i=1

where v = (v;), then the corresponding operator norm is the spec-
tral norm, so that || A|| is the square root of the largest eigenvalue
of the matrix A*A. When the norm on R" is the cartesian norm,
that is

[Joll = max i,

then the corresponding operator norm is the maximum absolute
row sum norm, given by

|4l = m?x(z |ai;1)-
j=1

When the norm on R™ is the taricab norm, that is

n

llvll = Zl”il'

=1
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then the corresponding operator norm is the maximum absolute
column sum norm, given by

JAll = ma (Z |%-|) -
=1

See [3] for proofs.

Definition. The condition number of the matrix A in GL(n,R)
with respect to the operator norm || || is the positive real number
c(4) = [|AlIATH.

Note that ¢(A) depends on which particular operator norm
is in use and ¢(A) > 1 for all non-singular matrices A. (This
last statement follows from the properties ||AB| < |A|| || B|| and
|I7]| = 1, I denoting the identity matrix.)

We remark that condition numbers are important in perturb-
ation theory and yield bounds for errors in numerical methods for
solving systems of linear equations, inverting matrices, etc. See
[1] and [3].

Definition. The matrix A in GL(n,R) is said to be perfectly-
conditioned if c(A) = 1.

This definition, of course, depends on which norm is being
used.

Most textbooks, including one by the author of this article,
[3], say virtually nothing about perfectly-conditioned matrices
beyond giving the definition and mentioning that orthogonal
matrices are perfectly-conditioned for the spectral norm.

We write G, = { A € GL(n,R) : ¢(4) = 1}, so that G is
the set of all perfectly-conditioned non-singular real n xn matrices.
Here n is a fixed positive integer and our condition numbers are
defined with respect to a fixed operator norm.

Lemma. G, is a group under the operation of matrix multiplic-
ation, so that Gp. is a subgroup of GL(n,R).

Proof: G, is a subset of GL(n, R) which contains I and which is
closed under the operation of taking inverses since c(A4) = c(A™1).
Thus it suffices to show that G, is closed under multiplication.
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It is easy to see, via properties of operator norms, that
c(AB) < c¢(A)e(B) for any non-singular matrices A and B.
Thus ¢(AB) = 1 whenever both ¢(4) = 1 and ¢(B) = 1, since
c¢(AB) > 1 for all A and B. (If our norm is not an operator norm
then G, need not be a group.)

We will determine the group Gy in general and will specific-
ally describe it for each of the examples of the operator norms
given above.

Let || || be a norm on R™ and write

Gnp ={A€GL(n,R): ||Av|| = ||lv|| for all v € R"},

so that G, is the group of all norm-preserving linear operalors
on R™. (It is an easy exercise to see that G, is a subgroup of
GL(n,R).)

We write R, for the multiplicative group of all positive real
numbers and we will regard R, as a subgroup of GL(n,R) by
identifying it with the set of all positive scalar multiples of the

identity matrix.

Proposition. Let || || be a fixed norm on R™, let A be an ele-
ment of GL(n,R), and let ¢(A) be the condition number of A
with respect to this norm. Then ¢(A) = 1 if and only if A Is a
non-zero scalar multiple of a norm-preserving linear operator on
R™. Indeed the group G,. is isomorphic to the direct product
R, x Gpp.

Proof: Consider the set S4 used in the definition of the operator
norm ||A|. Note that S4 is a closed and bounded subset of the
positive real numbers. It is easy to see that S4-1 = {a™! :a €
Sa } because w = Av if and only if v = A~'w. Hence || 4| = ax,
where o; = max S, and ||[A7!|| = ap! with ag = minSa. It
follows that ¢(4) = ay /g, from which we see immediately that
c(A) = 1 if and only if S, is a singleton point set. Thus ¢(4) =1
if and only if there exists a positive real number « such that
|Av]| = allv|| for all v € R™. Writing @ = p? for some positive
real number p, we see that (+p ')A is a norm-preserving linear
operator. It follows easily that G, is the direct product of the
subgroups Ry and G, of GL(n, R).
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Example 1. Using the euclidean norm on R"™, the group G, is
well-known to be the orthogonal group O(n) = { A € GL(n,R) :
AA* = I}. Hence Gy = R} x O(n) in this case. Thus the
matrices which are perfectly-conditioned with respect to the spec-
tral norm are precisely the positive scalar multiples of the ortho-
gonal matrices.

Example 2. Using the norm on R™ arising from an inner product
given by some positive definite symmetric bilinear form ¢, the
group Gnp equals O(¢), the orthogonal group of ¢, and G, =
R, x O(¢) in this case. Note that if ¢ is represented with respect to
the standard basis by the matrix B then O(¢) = { A € GL(n,R) :
A*BA = B} and also that O(¢) is isomorphic to O(n), because
the form ¢ is isometric to the usual dot product on R”,

Example 3. Using the cartesian norm on R", the group G,
turns out to be isomorphic to the wreath product C3 1 5,,, where
'y is the cyclic group of order 2, and S, is the symmetric group
on n letters. (See [2, p.77] for the definition of wreath product.)
We can see this as follows.

If A € Gnp, then ||Av|| = ||v|| for all v € R™. Hence writ-
ing v = (v;) and using the definition of the cartesian norm, the
equation || Av|| = ||v|| becomes

max(|za1jv,-|,...,|Za,njuj|) = max ([vil,. .., [val)

for all (v1,...,v,) € R™. This equality can hold only if each row
of A contains exactly one non-zero entry, this non-zero entry being
equal to 1, and these non-zero entries are all in different columns.
(Thus A is a so-called signed permutation matrix.) Examining the
multiplicaticn in the group of all such matrices we see that it yields
the wreath product Cs 1 S,, which is the semi-direct product of
Sn and CF, where CF is the direct product of n copies of Cy and
Sy acts in the obvious way on C¥ by permuting factors.

Thus the group of matrices which are perfectly-conditioned
with respect to the maximum absolute row sum norm is iso-
morphic to R} X (C218,). As a set, G, consists of the positive
scalar multiples of the signed permutation matrices.
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Example 4. Note that the group G,. in Example 3 is closed
under the operation of transposition of matrices. It follows that
this same group must also be the group of matrices which are
perfectly-conditioned with respect to the maximum absolute
column sum norm. (||4||. = ||A%||,, where | ||c and || || denote
the maximum absolute column and row sum norms respectively.)
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AN ITERATION RELATED TO
EISENSTEIN’S CRITERION

Eugene Gath and Thomas J. Laffey

The following question appeared in the 1994 Irish Mathematical
Olympiad, the competition used to select the team to represent
Ireland in the International Olympiad:

Let a, b and ¢ be real numbers satisfying the equations:

b=a(4—a)
c=b(4—-b)
a=c(4—c).

Find all possible values of a + b + c.

A direct approach to this problem is to write ¢ in terms of a,
and then obtain an octic polynomial in a:

fla)=—a(d—-a)(2-0a)?((2-a)? -2)+a=0.
The octic factorizes over the integers in the form
fla) = a{a — 3)(a® — 6a® + 9a — 3)(a® — 7a® + 14a — 7).

Observe that the factors a® — 6a® 4+ 9a — 3 and a® — 7a? + 14a — 7
satisfy Eisenstein’s irreducibility criterion for the primes 3 and 7,
respectively. This, in our experience, was one of the rare occasions
when polynomials satisfying the criterion arose in an uncontrived
way, and we decided to investigate why they occurred here.

Put g(z) = z(4 — z) and let ¢")(z) be the rth iterate
g(g(...g(z)...)). Consider the polynomial h.(z) = z — ¢'")(z).

35
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The octic f(a) above is just hz(a). Observe that if we put
z = 4sin®@ (where for definiteness we take 0 < 6 < I), then

2
g(r) = 4sin? 20, and thus

hy(z) = 4sin? 270 — 4sin® § = 2(cos 26 — cos2719)
= 4sgin(2" — 1)fsin(2" + 1)8.

So, if (2" £1)8 = Ir for some positive integer {, we get solutions of
the equation h,(x) = 0. The two irreducible cubics dividing f(z)
are the irreducible polynomials satisfied by 4 sin® 5 and 4 sin® £
respectively. The other factors z and z — 3 are factors of h.(z

for all r, corresponding to the choices # = 0 and @ = %, [ =
1(27 — (—1)7), respectively.

In general, for each k > 1, 2¥ + 1 and 2% — 1 are relatively
prime and for each divisor d of (2* — 1)(2F + 1), with 1 < d <
(2 — 1)(2F + 1), 4sin? Z satisfies a monic irreducible polynomial
Ya(z) of degree ¢(d)/2, where p is Euler’s function. Also, ¥a(x)
must divide hx(z) and z = 0 is a solution, corresponding to d = 1.

Thus
z ] wal@) JI wa@
1<d|2¥ -1 1<d|2k+1

divides hi(x). The total degree of these polynomials is

% Z o(d) + Z o(d) | = 2% = degree hi(z).

dl2h—1 d2*+1

To calculate the irreducible polynomial satisfied by 4sin® I n
odd, we use the following identity:

n_L
sinng Zzz (-1)"n(n+2s—1)(n+2s—3) - (n—2s4+1) sin® o,
=0

sing (25 + 1)!

This may be written more compactly as

et §
sinng < n (2L +s .
=3y (-1fF——{ * 4sin® $)°.
sin ¢ g( ) 28+1( 2s )( s g)

= Eisenstein’s Criterion 37
For example, when n = 5,

sin 5¢
sin ¢

and when n =7,

= 5 — 5(4sin® ¢) + (4sin” ¢)?

E’S‘;ﬂ =7 — 14(4sin? ¢) + 7(4sin® ¢)? — (4sin? ¢)°.
Putting z = 4sin® ¢, then if sin¢ # 0 and sinng = 0, we get
a monic polynomial f,(x) with integer coefficients and degree
2=l with fn(z) = 0. The constant term of f.(z) is £n. This
is obtained explicitly from the trigonometric identity above, using
binomial identities, giving

ful) = Lf(—l)*‘n’jz. (” - )w—

=0

Suppose now that n = p*, where p is an odd prime and k& > 1.
The expression for f,(z) above shows that all of the coefficients
are divisible by p except the coefficient of £ and the constant
term is &p*. But the irreducible polynomials satisfied by 4 sin? %,

4 gin? S 45in® Z must all divide fu(z) and the sum of the
degrees of these polynomials is 251, Thus

falz) = ’IPP(:E)’I,[JP2 (:17) t 'wp*‘ ().

We now show by induction on k that ),,» satisfies Eisenstein’s
criterion for the prime p. Since f,(z) = ¥,(x), this is clear when
k = 1. The equation

fo(2) = fpr—r (@)t (z)

yields

r*—1) (k-1
Z

=g = 1)1,[)pk (z) mod p,
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50 all coefficients of . except its leading coefficient are divis-
ible by p. Furthermore, the constant term of f,(z) is £p*, and
that of fye—1(z) is £p*~?, so the constant term of ¥,:(z) is £p.
Hence 1, (z) satisfies Eisenstein’s criterion for p. This explains
our initial observations concerning the polynomials

Yr(x) = —Ta? + 142 - 7
and
Po(z) = 7 — 62% + 97 — 3.

Let w be a primitive p“th root of unity (for definiteness, we
can take w = exp(%’{.—i)) and let K = Q(w) be the corresponding
cyclotomic field. Let L = Q(w+w™!) be the maximal real subfield
of K and let A be the ring of algebraic integers in L. One can
show that Z[4 smz(fp)] has finite index p® in A4 for some integer
¢ > 0. But now the fact that the irreducible polynomial 4, (x)
satisfied by 4si112(f,;) is of Eisenstein type enables us to apply
Lemma 2.3 of [1, p.61] to conclude that ¢ = 0. So

2
A= Z[4sin2(1%)] =72 cos(p—';':)] = Zw +w™Y).
Finally, we briefly consider the orbit length of the iteration

of the map a = a(4 — a), beginning with ¢ = 4sin*(Z), where
n is an odd integer. We obtain successively 4sin®(Z), 4sin®(2T),

4sin?(£x), ... and the period is r, where 7 is the least positive
integer such that
2rtle 2
4+ —
n o .n

is an integral multiple of 27. (For example, when n = 17, r = 4
and when n =19, r = 9.) Note that r is the least positive integer
such that 2" = +£1 mod n. So, if the equation 2! = —1 mod n is
solvable, then r is half the order of 2 mod n while, if it is not
solvable, r is the order of 2 mod n. If n = p*, where p is an odd
prime and k is a positive integer, the equation 2* = —1 mod n is
solvable if and only if the order of 2 mod n is even, so in particular,

[1]

a] Eisenstein’s Criterion 39

ot = —1 mod n is solvable if 2 is not a quadratic residue modulo
p, that is if p= £3 mod 8.
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JOSEPH WOLSTENHOLME, LESLIE STEPHEN
AND ‘TO THE LIGHTHOUSE’

Rod Gow

Readers of the Bulletin may perhaps recall an earlier article of this
author, on the subject of collecting mathematical books, [5]. In
that article, we mentioned having acquired copies of Mathemat-
ical Problems by Joseph Wolstenholme and we described how we
had used the Dictionary of National Biography (DNB) to find out
about Wolstenholme’s life and work. Since writing the article, we
have discovered how Wolstenholme has acquired a certain literary
fame, through the novel To the Lighthouse by Virginia Woolf.
We thought it may be of interest for mathematicians to read
about how Wolstenholme came to be connected with this novel
and so we present here what we have read concerning Wolsten-
holme and Virginia Woolf’s father, Leslie Stephen. The inform-
ation about Wolstenholme that we have used is all taken from
published sources, but it may not be well known to the mathem-
atical community.

We begin by quoting from the DNB article on Wolsten-
holme. Wolstenholme was born on 30 September 1829 in Eccles,
Manchester. He entered St John's College, Cambridge in 1846
and graduated as Third Wrangler in 1850. He was elected a
fellow of his college in 1852 but then took up a fellowship at
Christ’s College, Cambridge in the same year. He vacated his
fellowship upon his marriage in 1869 to a Swiss woman, Thérése
Kraus. Previous to his marriage, he had served four times as an
examiner for the mathematical tripos. In 1871, he was appointed
professor of mathematics at the Royal Indian Engineering College
at Cooper’s Hill, near London, retiring in 1889. He died on 18
November 1891, leaving a widow and four sons.

40
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The Royal Society Catalogue of Scientific Papers lists 23
papers by Wolstenholme, these being mainly on geometric sub-
jects. His name is attached to an elementary result in number
theory, known as Wolstenholme’s Theorem, which is described in
[6, pp.88-90], and may be stated thus. Let p > 3 be a prime. Then
p? divides the numerator of the fraction

1 1 1 n 1
+ 2 + 3 + -
However, in a note in [6, p.93)], it is observed that a result of this
kind already existed in Edward Waring’s Meditationes Algebraicae
of 1782.

The DNB article includes an appraisal of Wolstenholme's
work by Andrew Forsyth, Sadlerian Professor of Pure Mathemat-
ics at Cambridge University. He writes as follows:

... his fame rests chiefly on the wonderful series of original math-
ematical problems which he constructed upon practically all the sub-
jects that entered into the course of training students twenty-five or
thirty years ago. They are a product characteristic of Cambridge, and
particularly of Cambridge examinations; he was their most conspicu-
ous producer at a time when their vogue was greatest. When gathered
together from many examination papers so as to form a volume, which
was considerably amplified in its later edition, they exercised a very real
influence upon successive generations of undergraduates; and “Wolsten-
holme’s Problems” have proved a help and a stimulus to many students.
A collection of some three thousand problems naturally varies widely
in value, but many of them contain important results, which in other
places or at other times would not infrequently have been embodied in
original papers. As they stand, they form a curious and almost unique
monument of ability and industry, active within a restricted range of
investigation.

It should be noted that Forsyth campaigned to reform the
Cambridge mathematical syllabus, which he saw as outdated and
out of touch with the developments in mathematics that had
occurred on the continent in the course of the 19th century, and
entirely subservient to the competitional aspects of the mathem-
atical tripos examination. Wolstenholme's books may well have
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typified for him the moribund Cambridge mathematical tradition
with its emphasis on the solving of ingenious problems, instead of
developing proper structures and theories.

The first edition, [8], of Mathematical Problems was published
in 1867 and contained 1,628 problems, mainly geometrical. The
second edition, [9], appeared in 1878, the book being in a larger
format, and it contained 2,815 problems. A third edition of 1891
was largely a reprint with corrections of the second edition. As we
stated in our previous article, the problems do not translate well
into the modern syllabus and have too great a bias to geometry
and sometimes a rather imprecise formulation.

We turn now to the second person mentioned in our title.
Leslie Stephen may perhaps be best known nowadays as the father
of Virginia Woolf and as the first editor of the DNB. In his own
day, he was a major figure in literary circles in London, knowing
many of the leading American and British writers and thinkers
of the second half of the 19th century. We will briefly provide
some details on his life. Leslie Stephen was born on 28 Novem-
ber 1832 and was the son of Sir James Stephen, a politician and
Professor of Modern History at Cambridge University (1849-59).
His mother was the daughter of the Reverend John Venn and
the aunt of John Venn, the logician, whose name is associated
with the set-theoretic diagrams. Thus Stephen and Venn were
cousins. He entered Trinity Hall, Cambridge in 1850 and stud-
ied mathematics. To do well in the mathematical tripos, most
students had to undertake intensive coaching to prepare for the
rigours of the examination, which required them to repeat numer-
ous sections of bookwork quickly and accurately, before engaging
in tricky problems in the later stages of the papers. Stephen’s
coach was Isaac Todhunter, a famous figure in British mathem-
atics of the 19th century. Todhunter wrote numerous textbooks
for schools and universities, which must have sold well, as most
went through several editions.- His name is associated with four
major histories of mathematical subjects, including a history of
the theory of probability and a history of the theory of Newtonian
gravitational attraction. An enormous amount of effort went into
the production of these scholarly works, which tried to describe
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virtually every relevant contribution to the subjects up to the
time of Laplace. It is interesting to see what Stephen thought
of Todhunter, who was clearly something of a character in Cam-
bridge mathematical circles and about whom several anecdotes
have survived (see, for example, [3] and [7, pp.87-88]). Stephen
wrote as follows about Todhunter, [1, p.27]:

He lived in a perfect atmosphere of mathematics; his books, all
ranged in the neatest order, and covered with uniform brown paper,
were mathematical; his talk, to us at any rate, was one round of math-
ematics; even his chairs and tables strictly limited to the requirements
of pupils, and the pattern on his carpet, seemed to breathe mathem-
atics. By what mysterious process it was that he accumulated stores
of miscellaneous information and knew all about the events of the time
(for such I afterwards discovered to be the fact) I have never been able
to guess. Probably he imbibed it through the pores of his skin. Still
less can I imagine how it came to pass that he published a whole series
of excellent educational works. He probably wrote them in moment-
ary interstices of time between one pupil’s entering his sanctum and
another leaving it.

Stephen performed reasonably well in the tripos examination
of January 1854, achieving the position of Twentieth Wrangler
and obtaining a first class degree. The tripos list was of a high
quality that year, as the Senior Wrangler was E. J. Routh, later to
be author of several mechanics textbooks and the most successful
mathematical coach of all time in Cambridge, and the Second
Wrangler was J. C. Maxwell. Stephen obtained a fellowship at
Trinity Hall in 1854, on the strength of his tripos results, and
he remained at Cambridge until 1864. He got to know Joseph
Wolstenholme during this time. Annan writes of Stephen in [1,
p.54]:

So far we have seen him as a man with many younger cromnies but
few intimate friends; deeply attached only to Fawcett or to some odd
Cambridge fish such as Joseph Wolstenholme, a mathematician and
walker who had the gift of being able to spout thousands of lines of
poetry by heart, as the evening fell and the pair of them pounded the
last ten miles of the grind back to Cambridge.

In 1864, Stephen left Cambridge to embark on a literary
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career in London. He wrote articles for reviews and literary
magazines and eventually became the editor of the Cornhill
Magazine in 1871. He published works of literary criticism and
wrote on the history of philosophy. A list of his publications may
be found in [4]. He was appointed editor of the projected Dic-
tionary of National Biography in 1882 and retained the editorship
until 1889. The first volume of the DNB appeared in 1885. He
died on 22 February 1904.

When Stephen’s second wife, Julia, died in 1895, he wrote a
long autobiographical letter to his wife’s children (three children
by her first marriage and four by Stephen). This letter was known
by the children as the Mausoleum Book. It was published in 1977,
[2]. In the Mausoleum Book, (2, p.79], he writes:

I think especially of poor old Wolstenholme, called ‘the woolly’ by
you irreverent children, a man whom I had first known as a brilliant
mathematician at Cambridge, whose Bohemian tastes and heterodox
opinions had made a Cambridge career unadvisable, who had tried to
become a hermit at Wastdale. He had emerged, married an uncongenial
and rather vulgar Swiss girl, and obtained a professorship at Cooper’s
Hill. His four sons were badly brought up; he was despondent and
dissatisfied and consoled himself with mathematics and opium. T liked
him or rather was very fond of him, partly from old association and
partly because feeble and faulty as he was, he was thoroughly amiable
and clung to my friendship pathetically. His friends were few and his
home life wretched. Julia could not help smiling at him; but she took
him under protection, encouraged him and petted him, and had him
stay every summer with us in the country. There at least he could be
without his wife.

Thus a rather different picture of Wolstenholme emerges
from Stephen's own pen, compared with that given in the
DNB, Stephen’s former undertaking (the article on Wolsten-
holme was written after Stephen’s resignation from the DNB
and is unsigned). With regard to the statement above about

having Wolstenholme to stay every summer in the country,
Stephen had a house in St Ives in Cornwall where his family
and guests, sometimes distinguished, would assemble for the hol-
idays. Wolstenholme must have made some sort of impression on

|

(1]
2]

(4]
[5]
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Virginia Stephen (later Woolf), who was born in 1882 and thus
quite young when Wolstenholme used to visit, as it seems to be
agreed that the character of Mr Augustus Carmichael in To the
Lighthouse, published in 1927, was based on Wolstenholme. See,
for example, the introduction to [10], page x.

Annan wrote of Wolstenholme in [1, p.294]:

Tn old age he became something of a bore and Stephen irritated his
family by asking the lonely old bachelor (sic) to stay in Cornwall with
them for the holidays and then, finding his company tedious, leaving
wife and daughters to entertain him. Wolstenholme was present on the
summer holiday in Cornwall (see To the Lighthouse Part III), of which
Stephen wrote to C. E. Norton, 21 Sept., 1899, ‘I have lost the power
of holiday making’.

Of course, the statement that Wolstenholme was a bachelor
is incorrect, as we have seen.

The novel draws on Virginia Stephen’s experiences of family
holidays in St Ives and the tension generated by her father’s diffi-
cult temperament and moods, and his wife’s attempts to placate
him. Carmichael (who is not portrayed in any respect as a math-
ematician) is interested in Persian poetry and has a not insignific-
ant role in the novel. To the Lighthouse is one of Virginia Woolf’s
most highly regarded works and analyses of it certainly mention
Carmichael’s significance in the story. We feel that it is amusing
to see how a mathematician, albeit not of the greatest importance,
has achieved some fame as a footnote to an important novel.
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Research Announcement

A UNIFORMLY CONVERGENT METHOD
FOR A SINGULARLY PERTURBED
SEMILINEAR REACTION-DIFFUSION PROBLEM
WITH NONUNIQUE SOLUTIONS

Guangfu Sun and Martin Stynes

We analyse a simple central difference scheme for a singularly per-
turbed semilinear reaction-diffusion problem that may have non-
unique solutions. Asymptotic properties of solutions to this prob-
lem are examined. To compute accurate approximations to these
golutions, we consider a piecewise equidistant mesh of Shishkin
type, which contains O(N) points. On such a mesh, we prove
existence of a solution to the discretization and show that it
is accurate of order N~21n% N, in the discrete maximum norm,
where the constant factor in this error estimate is independent of
¢ and N. Numerical results are presented which verify this rate
of convergence. Full details appear in [1].
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Research Announcement

AN ALMOST FOURTH ORDER
UNIFORMLY CONVERGENT DIFFERENCE SCHEME
FOR A SEMILINEAR SINGULARLY PERTURBED
REACTION-DIFFUSION PROBLEM

Guangfu Sun and Martin Stynes

We analyse a high-order convergent discretization for the semilin-
ear reaction—diffusion problem: —&?u" +b(zx,u) =0, forz € (0,1),
subject to u(0) = u(1) = 0, where £ € (0,1). We assume that
bu(z,u) > b5 > 0 on [0,1] x R!, which guarantees uniqueness of a
solution to the problem. Asymptotic properties of this solution are

~ discussed. We consider a polynomial-based three—point difference

scheme on a simple piecewise equidistant mesh of Shishkin type.
Existence and local uniqueness of a solution to the scheme are
analysed. The scheme is shown to be almost fourth order accur-
ate in the discrete maximum norm, uniformly in the perturbation
parameter . Numerical results are presented in support of this
result. Full details appear in [1].
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Research Announcement

FINITE VOLUME METHODS
FOR CONVECTION-DIFFUSION PROBLEMS

Martin Stynes

An overview is given of the nature of convection—diﬁgsion pI:Ob—
lems, and of the use of finite volume methods in their solution.

Full details appear in [1)].
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Book Review-Survey

Dynamical Systems VI
Singularity Theory I
Encyclopaedia of Mathematical Sciences Vol. 6

edited by V. I. Arnold
Springer-Verlag 1993, 245 pp.
ISBN 0-387-50583-0
Price DM 141.00.

Dynamical Systems VIII
Singularity Theory II: Classification and Applications
Encyclopaedia of Mathematical Sciences Vol. 39

edited by V. I. Arnold
Springer-Verlag 1993, 235 pp.
ISBN 0-387-53776-1
Price DM 141.00.

Reviewed by Charles Nash

§1. Introduction

I shall review both the above books together since they are parts
I and II of a treatment of singularity theory. For brevity I shall
also refer to them as part I and part II respectively.

First a few formal preliminaries about the origin of the books,
their authors and the nature of their expository methods.

The books are translations from Russian and appeared, in
that language, in 1988 and 1989 respectively. They are both edited
by Vladimir Arnold but are multi-authored; however, any given
chapter has, in the main, a single author. The same authors
wrote parts I and II and are: V. I. Arnold, V. V. Goryunov, O.
V. Lyashko and V. A. Vasil’ev. The preface of each book gives
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the precise authorship details of each individual chapter and also
informs us that B. Z. Shapiro wrote a little bit of part II. The
translators are A. Iacob of Mathematical Reviews and J. 5. Joel
respectively. Finally we come to the matter of exposition.

As the phrase Encyclopaedia of Mathematical Sciences above
indicates, they belong to a mathematical encyclopaedia, being
volumes 6 and 39 thereof. This encyclopaedia, which is a trans-
lation from a Russian original, is under the general editorship of
R. V. Gamkrelidze. Tts style therefore is expository and the books
are a survey of their subject matter. This means that theorems
are almost always stated rather than proved; it also means that
the books are about 250 pages long instead of being several times
that length.

The authors are recognized experts in their fields and so are
ideal choices to write such a survey. In addition Arnold, who is
the senior author because of his prominent position in singularity
theory, has already written many books and so has a good writ-
ten style. Vasil’ev (Vassiliev) has recently made a big advance
in applying singularity theory to knot theory, about which more
below. The text of the book is liberally sprinkled with illustrative
examples and so the style is not heavy going or turgid; nor is the
significance, and relative importance, of the various theorems left
totally to the reader to fathom. On the subject of indexes, each
volume has an author and a subject index but in both cases the
latter is far too short, especially so for reference hooks belonging
to an encyclopaedia. The intended audience is a “student reader”
who wishes to learn the subject, be he a mathematician, or a
theoretical or mathematical physicist.

Let us place the present two books on singularity theory in
context by first discussing dynamical systems themselves—that
done we shall move on to singularity theory and the books under
review.

§2. Historical background and origins

The founder of the modern theory of dynamical systems was Poin-
caré, of. “Les méthodes nouvelles de la mécanique céleste”, [1].
Poincaré was interested in answering questions about the qualit-
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ative behaviour of the orbits of celestial bodies: for example one
asks what happens to the planets if their orbits are perturbed
slightly? Can the orbits remain stable, change wildly, fall into the
Sun or rearrange in some new way? The difficulty of solving even
the three body problem analytically meant that methods which
could classify the qualitative behaviour were highly desirable.

What emerges is that, for n bodies, with n > 3, as the ini-
tial conditions vary, the orbits can be cheotic as well as regular:
Chaotic motion can be exhibited by an asteroid close to what is
known as a Kirkwood gap; for this initial data, its eccentricity can
jump in a random manner and, in time, become larger and a fatal
collision with a planet can occur. Regular motion is exhibited by
a planet such as the the Earth; its initial data is such that its
ecliptic plane oscillates a little around a fixed position. For more
details cf. [2-4].

Poincaré’s pioneering work then gave birth to the present
day subject of dynamical systems. In this subject one studies an
immense diversity of sophisticated mathematical problems usually
no longer connected with celestial or Newtonian mechanics.

A very rough idea of what is involved goes as follows: Recall
that the celestial mechanics of n bodies has a motion that is
described by a set of differential equations together with their
initial data. One then varies the initial data and asks how the
motion changes.

§3. Dynamical systems in general

The modern mathematical setting is to view the orbits of the n
bodies as integral curves for their associated differential equations.
Then one regards the gualitative study of the orbits as being a
study of the global geometry of the space of integral curves as
their initial conditions vary smoothly. Integral curves +(t) are
associated with vector fields V' (t) via the differential equation

d) _

L2 = V(1) - ()
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Hence one is now studying the vastly more general subject of
the global geometry of the space of flows of a vector field VV on a
manifold M.

It turns out that two notions play a distinguished part in
the theory of dynamical systems. One fundamental notion that
emerges from the example treated below is the existence of a closed
integral curve. A second notion, also fundamental, is that of a
singular point which will be dealt with in the next section.

It is natural to regard two flows on M as eguivalent if there

. is a homeomorphism of M which takes one flow into the other;

one can also insist that this homeomorphism is smooth, i.e. a dif-
feomorphism. Finally an equivalence class of flows in the homeo-
morphic sense is a topologicel dynamical system, and one in the
diffeomorphic sense is a a smooth, or differentiable, dynamical
system.

A further key concept in dynamical systems is that of struc-
tural stability and to illustrate this we introduce the following
example.

Example The pendulum with friction

Consider a simple pendulum subject to friction, [5]. One has to
solve the second order differential equation

§=—r—u (3.2)

where g > 0 is the coefficient of friction. This is equivalent to
solving the pair of first order equations

&=y, §=—x—py (3.3)

A solution to this pair of equations is a curve in the (z,y)-plane
and so is also a flow line of the vector field V on R? whose com-
ponents are just (£,%). Thus eq. (3.3) is now of the form (3.1)
above with V as just given and M = R2.

Now it is easy to compute that for u strictly positive the solu-
tions are spirals winding round the origin; but when u is zero the
solutions are circles centered at the origin. In other words, a big
qualitative change in the trajectories takes place if the pendulum
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is perturbed, u increasing p from zero to some positive value;
however if p is perturbed but stays positive then no qualitative
change occurs.

One then says that the simple pendulum with g > 0 is struc-
turally stable but the simple pendulum with pu = 0 is structurally
unstable.

Thus structurally stability of a dynamical system corresponds
to its equivalence under a small perturbation of V.

We now turn to the second fundamental notion of dynam-
ical systems, which is also the subject matter of the books under
review, that of singular points.

§4. Singular points and dynamical systems: vector fields

For a vector field V, a singular point is just a point on M where V
vanishes. We note that a closed integral curve cannot have a sin-
gular point. There are also topological restrictions on the nature
and type of singular points of V: Suppose, for simplicity, that M
is closed and compact. Then a celebrated and well known result
is that the index™ (V) of V is equal to the Euler characteristic
x(M) of M.

Singular points of V are also closely tied to structural stabil-
ity, the key point is to study whether they are degenerate or not.
The result (loosely) is that a structurally stable system only pos-
sesses non-degenerate singular points. The underlying intuition is
not too difficult to explain: Consider a vector field V on R?, say
with a non-degenerate zero at zp € R? so that, near 2o, V behaves
like

(z — 20) (4.1)

If we perturb V slightly to a new vector field V., then we can write
Vi Vo=V +€f(2), € small (4.2)

Clearly V. also has a non-degenerate zero at the nearby location
zo—ef(z) (if desired, the implicit function theorem can be used to

* #(V) is the total number of singular points of V, it is an algebraic
sum with signs and degeneracies taken into account and assumes that
the zeroes are isolated.

g Book Reviews 55

create a rigorous version of this argument). Hence non-degenerate
singular points perturb to new ones and do not change their total
number. By contrast if the zero at zp is degenerate then, near zg,
¥V behaves like

(z—z0)™, n>1 (4.3)

So the perturbed vector field V; looks like
(z — z0)™ + €f(2a), near zp (4.4)
But, in general,
(z—20)" +€f(20) =(z — 21)(z — 2z2) -~ - (2 — 2n) (4.5)

Hence, on perturbation, the degenerate zero has bifurcated into
n non-degenerate zeroes. Actually, more generally, degenerate
zeroes, can even disappear altogether on perturbation because the
bifurcation process may produce only complex zeroes which may
not belong to the particular M under consideration.

In sum the perturbation of a system with one or more degen-
erate singular points is structurally unstable, and so we recover the
fact that all the singular points of a structurally stable dynamical
system are non-degenerate.

§5. Singular functions: the real case

As well as singular points of vector fields the study of dynam-
ical systems requires us to consider singular points of functions.
By a singular point of a function f we mean a critical point, or
extremum, of f.
For example let M be a manifold and f a smooth real valued*
function on M
f:M—R (5.1)

* As we shall see below both f and M can be generalized consider-
ably: For f we can generalize to complex valued functions f : M — C
and even maps of the form f: M — N, where N is another manifold.
For M we should start with an A which is closed and then generalize
to the case where M has a boundary; in fact cases where M is infinite
dimensionel arise naturally and are important, one of these latter is the
original problem of Morse cf. § 8.




56 IMS Bulletin 34, 1995 s

then, if p is a point in M with local coordinates (z!,x2,...,2"),
D is a critical point of f if
(5}
gil _ g_i - 8___{ 0 (5.2)
e T lp 7 g

or, in a more concise notation,
df =0 atp (5.3)

Example Gradient dynamical systems

Using such a function f : M -+ R we obtain an important class
of dynamical systems known as gradient dynamical systems: We
require M to have a (Riemannian) metric so that the grad oper-
ator is defined and then the flow equation is that of gradient flow

% = grad f(y(t)) (5.4)

so that V' = grad f and f is like a potential function. We see that
the flow begins and ends at singular points of f-

We shall now discuss some of the theory of singularities of
functions such as f from a qualitative topological viewpoint; for
real valued functions this is known as Morse theory. The aim in
Morse theory is to study the relation between critical points and
topology. More specifically one extracts topological information
from a study of the critical points of a smooth real valued function

f:M—R, (5.5)

where M is an n-dimensional compact manifold, without bound-
ary. For a suitably behaved class of functions £, there exists quite
a tight relationship between the number and type of critical points
of f and topological invariants of M such as the Fuler-Poincaré
characteristic, the Betti numbers and other cohomological data.
This relationship can then be used in two ways: one can take cer-
tain special functions whose critical points are easy to find and

o
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use this information to derive results about the topology of M;
on the other hand, if the topology of M is well understood, one
can use this topology to infer the existence of critical points of f
in cases where f is too complicated, or too abstractly defined, to
allow a direct calculation.

We begin with the smooth function f : A — R and assume”
that all the critical points p of f are distinct and non-degenerate;
the non-degeneracy means that the Hessian matrix H f of second
derivatives is invertible at p, or

det Hf(p) #0 where Hf(p) = [aﬂf/amiazﬂp]ﬂm (5.6)
Each critical point p has an index A, which is defined to be the
number of negative eigenvalues of H f(p). In a neighbourhood of
a non-degenerate critical point p of index A, we can represent f
as

Ap terms
”~ e ~ 2 2
fo)=flo)—of —af —o—a} 42} ¥ tal  (5.T)
———
n—2Ap terms
for suitable coordinates (z1,...,%x.).

We next associate to the function f and its critical points p
the Morse series M,(f) defined by

My(f) =) th =D mit'. (5.8)

all P i

The sum will always converge since it only contains a finite number
of terms; this is because the non-degeneracy makes the -critical
points all discrete and the compactness of M permits only a ﬁnii.;e
number of such discrete points. The topology of M now enters via

* Such functions are called Morse functions and it should be clear
from what we have said earlier that when f is not a Morse function one
can always perturb it slightly to obtain one.
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Pi(M): the Poincaré series of M. This is the following polynomial
constructed out of the Betti numbers of Af ; we have

P(M) =" dim H'(M; R)¢ = > bt (5.9)
i=0 =0

_The fundamental result of Morse theory, known as the Morse
inequalities, is the statement that

My(f) - P,(M) >0 (5.10)
This can be refined further to say that
M(f) = P(M) = (1 + t)R(2), (5.11)
where R(t) is a polynomial with only non-negative coefficients.
We note in passing two facts that can be read off immediately

from this pair of statements. If we set ¢ — 1 in the first one, we see
that any (Morse) function f has at least >oio by critical points.

If we set t = —1 in the second one then we see that
M_1(f) = Poy(M) = (=1)%; = x(M), (5.12)
=0

where x(M) is the Euler characteristic of M. Note that the first
of these facts describes a property of f, while the second is com-
pletely independent of f and is only a property of M.

A proof of the Morse inequalities usually uses the level sets of
the function f: these are the sets ffllo={reM: fa) = c}.
We shall briefly sketch the part that they play in determining the

topology of M. In Morse theory one constructs a half space M,
out of level sets where

M.={zeM: f(z)<c} (5.13)

The f?opology of M begins to emerge when we consider M, as a
function of ¢. What happens is that, as ¢ varies, the topology of
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M. is unchanged until ¢ passes through a critical point, when it
either acquires or sheds a cell of dimension A, where ) is the index
of the critical point. More precisely we have

Theorem (Bott-Morse-Smale) M, is diffeomorphic to M, if
there is no critical point in the interval [a,b]. Alternatively, if
(a,b) contains just one critical point of index X then My ~ M,Ue,.

The notation M, U e, means that a cell of dimension A has been
attached to M,; also My ~ M, U e, means that the two spaces
have the same homotopy type. Thus, as far as the homotopy type
of M is concerned (and this will be sufficient, for example, for
computing the cohomology of M) one can think of M as being
‘decomposed’ into a set of cells

M:Ue’“ (5.14)
5 :

the number of these cells being equal to the number of critical
points and the dimension of the cells being given by the index of
the critical points. This decomposition is known as a stratification
of M.

§6. Singular functions: the complex case

Now suppose that f is complex valued instead of real valued i.e.
we have

fM—C (6.1)

A corresponding complex analogue of Morse theory exists, known
as Picard-Lefschetz theory. The content of the theory is quite
different: Clearly the complex values of f render it impossible to
define the index of a critical point any more; not surprisingly, in
view of this, the critical points cease to provide a stratification M
using the level sets f~1(c). In fact the level sets no longer undergo
a topological change as ¢ passes through a critical point—they are
actually all homeomorphic to one another.

In the complex case what one does instead of passing through
a critical point is to deform one’s path to go round it; the obvious
topology relevant in this setting resides in the winding number
of a closed path, or cycle, round the singularity or critical point.




60 IMS Bulletin 34, 1995 =

This results in integrals round closed cycles which in turn are
continuous functions on the parameter space; the analysis of such
an object is known as the monodromy of the singularity More
technically, the level sets over a small circle surrounding a singular
point form a fibre bundle (since they are all topologically identical)
over S!, and the monodromy is then the holonomy of the fibre
corresponding to going round this circle once.

§7. Singular maps

Next, suppose that we replace C by a manifold N (both M and
N are, for the moment, assumed to be real manifolds) giving the
map

f:M—N, dmM=n,dmN=m (7.1)

Let us use local coordinates (f?, f3,..., f™) to represent f(z) on
N, and (z',22%,...,2™) to represent z on M. A singularity of f is
now defined using its Jacobian matrix

7= (5]

mXTn
rather than the operator d: a singularity of f is a point on M
where J has less than its mazimal rank. In this setting, the
topology of the theory involves the Stiefel-Whitney character-
istic classes w;(M) € H(M;Z,) of M and the pullback, via f*,
of those of N. Universal polynomials known as Thom polyno-
mials provide calculational formulae for these pullbacks. If we
generalize to the case where M and N are complex manifolds

then the Stiefel-Whitney classes are replaced by the Chern classes
ci(M) € H*(M;Z) of M and those of N.

§8. Singular points in infinite dimensjons

f& brief mention now, as promised, of some examples where M is
infinite dimensional. The original problem of Morse, [6], was to
study the critical points of the energy functional E defined by

(7.2)

2

E(+) =J[o dzlit) dt = [01 Gij d’yc;(t) dy—;t(?-)-dt (8.1)

T
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where () is a parametrized path on M with end points p and ¢
labelled by 0 and 1, and g;; is the Riemannian metric on M. E is
a function or functional of +(¢). Hence E is a positive real valued
function on the space PM (p, q) of paths on M from p to . More
formally we can represent E as

E:PM(p,g) — R

(8.2)
¥ — E(v)

The space PM (p, q) is of course infinite dimensional. The critical
points of E are easily seen to be the geodesics joining p to ¢ with
the usual equation

d?y . dyd dvk
A VAL o (8.3)
di? I dt di

where ij are the components of the Christoffel symbol for the
metric g;;. To consider closed geodesics we simply require v to be
a loop, on M; this means that we take elements of Map(S*, M)
instead®™ of PM(p,q). Now we regard £ as a functional of the
form

E: Map(S',M) — R (8.4)

Now, for the case where M is the sphere S*, Morse tackled
the infinite dimensionality of Map(S!, M) by approximating the
loops by geodesic polygons with n vertices p;, ..., p,. This
makes E(y) a function of the n variables py, ..., p, instead of
v, i.e. E = E(p1,...,pn). If we denote the space of these {p;}
by Map, (5!, S*), then Map,_(S?,S*) is to be viewed as a finite
dimensional subset of the infinite dimensional Map(S!, S*). The
idea then is to compute the topology of Map, (S!,S5*) and to
understand its dependence on n. This allows the passage to the
limit n — oo where one eventually deduces results such as the
existence of an infinite number of closed geodesics on S* and that
E is a perfect Morse function; this latter property means that the

* Map(S', M) is the space of loops on M, i.e. it is the space of
continuous maps from S' to Af.
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Morse inequalities have become equalities. For more details cf.
Klingenberg, [7].

Much later, the construction of a general Morse theory in
infinite dimensions was achieved by Palais, Smale and many oth-
ers cf. Palais, [8, 9, 10]; still more recently Floer, [11, 12], and
Taubes, [13] have successfully tackled infinite dimensiona] prob-
lems which are outside the scope of the Palais-Smale framework.
These are problems in Yang-Mills gauge theories but have con-
sequences far outside theoretical physics: for example in Floer’s
case his work constructs a new class of highly interesting homology
for 3-manifolds; for more information cf. Nash, [14].

§9. Classification of singular points of functions and Lie
algebras

We come now to a most interesting topic: namely the classification
of singular points of functions. There is a remarkable correspond-
ence between the classification of singularities of functions and
that of simple Lie algebras. There is no space to do justice to it
here but some salient features can be mentioned.

Let f be a function with possibly degenerate critical points,
with the multiplicity of a critical point being labelled by u. Now
f belongs to the infinite dimensional space J of functions F =
Map(M,R), say, and, from the abstract viewpoint, the classifica-
tion of the singular points corresponds to the finding of the orbits
of the action of the group Diff (M ) of diffeomorphisms of M on
F.

In practice what happens is that one learns that functions
may be transformed, by elements of Dif f (M), into certain poly-
nomials known as normal forms. '

The basic idea is to build up a picture of the functions as a
subset of F. So first one considers 1 parameter families of func-
tions in F and analyses their possible singular points, then one
considers 2 parameter families and so on.

For example, if dim M = n, then near a singular point all
1 parameter families of functions are equivalent under Dif f (M)
(ie. after a suitable change of variables) to the normal form

f(®) = zp, + Xzn + g(z) (e
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where A is the parameter and g(z) is a non-degenerate quadratic
form in the remaining variables given by

g 8 2
q(a:)z—-a:f—m%—---—:Ej+a:j+1+--'+$n_1-

In 1 dimension this becomes simply
flx) =23 + Az, (9.2)

where such a result is not so hard to prove. If we have 2 parameters
A1 and Az then the normal form is

f(@) = a5 + Mzl + Agzn + g(z) (9.3)
and more generally for & parameters the normal form is
Fl@) =2t + e + ezl 4 Deca T+ Ak +a(z) (9:4)
The polynomial
AR D Dl S VT L SN EPPPRD PPV ¥ (9.5)

that emerges here is recognizable to Lie group experts as being
isomorphic to the orbit space of the reflection group known as the
Weyl group A, for the simple Lie algebra su(k + 1).

There are also normal forms corresponding to the Weyl
groups Dj, ~ so(2k) and the exceptional set Eg, E; and Ey for
the exceptional algebras. Thus we have the whole of the so called
A, D, E series, [15].

Example Manifolds with boundary

If M is a manifold with a non-empty boundary 8M then F =
Map(M,R) now can contain functions whose singular or critical
points are on OM itself. These functions turn out, [16], to have
normal forms which correspond to the Weyl groups By, Cr, and
Fy ie. to the remaining simple Lie algebras so(2k + 1), sp(k)
and Fj respectively. Notice, however, that there is precisely one
simple Lie algebra missing from the classification above—it is the
last exceptional algebra G2—it too can play a role cf. [17].




=
A-.A

64 IMS Bulletin 34, 1995

The indices on the various series A, D, E etc. label the mul-
tiplicity of the degenerate singularities of the family, for example
all the most degenerate singularities with normal form Ay clearly
have the same multiplicity k. Hence the index labels the p =
constant strata inside F, and, since the value of p gives the num-
ber of parameters of the family, this value of u also is equal to the
codimension of this stratum inside F.

All the classifications above describe singularities which are
called simple: small perturbations bifurcate them into only finite
numbers of new singularities. There are also those which associate
a continuum to the singularity: one then says that the singularity
has moduli. These are the complement to the discrete series just
discussed, i.e. all simple singularities occur in the lists given above.

§11. Applications of dynamical systems

We now give an idea of how diverse the subject is by mentioning
some of the problems where ideas from dynamical systems can be
applied.

Morse theory provides us with many examples and they are
impressive and widespread; a few notable examples are the proof
by Morse, [6], that there exist infinitely many geodesics joining
a pair of points on a sphere S™ endowed with any Riemannian
metric, Bott’s proof of his celebrated periodicity theorems on the
homotopy of Lie groups, [18], Milnor’s construction, [19], of the
first exotic spheres, and the proof by Smale of the Poincaré con-
jecture for dim M > 5, [20].

Morse theory has also found a variety of applications in phys-
ics; this is not too surprising in view of the central position occu-
pied by the variational principle in both classical and quantum
physics. Some of these are described in Nash and Sen, [21].

Gradient dynamical systems were used by Thom, [21, 22, 23],
in his work on what is now called Catastrophe Theory. Thom took
the system
d;_it) = grad V{t8)) (10.1)
where V is a potential function. Next, for families of such V
containing up to four parameters, Thom classified the possible

s Book Reviews 65

critical points into seven types known as the seven elementary
catastrophes; he then proposed to use these dynamical systems
as models for the behaviour of a large class of physical, chemical
and biological systems. In many of these cases the models are not
at all adequate; nevertheless, there are some successes. On the
mathematical side the classification into seven categories misses
some singularities when one has three and four parameter families,
cf. part Il of the books under review; the seminal nature of Thom's
work is clear though, as it is the beginning of the classification
theory for singularities.

A vast body of the theory of dynamical systems concerns
Hamiltonian systems. These of course have their origin in ordinary
dynamics but exist now in a much wider context. To have a
Hamiltonian system one needs to satisfy some requirements: M
must must be even dimensional and must possess a closed non-
degenerate 2-form w known as a symplectic form; a Hamiltonian
function

H:M —R (10.2)

then provides a vector field V on M via the equation
1(Vw=dH (10.3)

where (V') denotes contraction, or interior product, with the vec-
tor V. It is easy to check that H is conserved along the orbits of
V and this corresponds to the conservation of energy in the phys-
ical cases. The perturbation theory of these systems underwent an
enormous development with the work particularly of Kolmogorov,
Arnold and Moser resulting in what is now called KAM theory.
The blossoming of ergodic theory also owes some debts here.
Ergodic theory originates largely in nineteenth century studies in
the kinetic theory of gases. However it has now been axiomatized,
expanded, refined and reformulated so that it has links with many
parts of mathematics as well as retaining some with physics. Some
dynamical systems exhibit ergodic behaviour, a notable class of
examples being provided by geodesic flow on surfaces of constant
negative curvature. This involves too the study of the flows by a
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discrete encoding known as symbolic dynamics, use of one dimen-
sional interval maps, the zeta functions of Ruelle, the Patterson
measure and so on, cf. [25]. Classical and quantum chaos, and
the distinction between the two, are also studied in this context.

The last application that we shall mention is that of Vasil’ev
to knot theory, [26, 27]. Vasil’ev’s work constitutes a big step
forward in knot theory but should also be regarded as a big step
forward in the tackling of global problems in singularity theory as
his methods are not limited just to knot theory.

Vasil’ev constructs a huge new class of knot invariants and
we shall now give a sketch of what is involved.

A knot is a smooth embedding of a circle into R3. Thus a
knot gives a map

f:8" — RS, (10.4)

so that f belongs to the space F where F = Map(S', R%). Not all
elements of F give knots, since a knot map f is not allowed to self-
intersect or be singular. Let T be the subspace of F which contains
either self-intersecting or singular maps. Then the subspace of
knots is the complement

F-% (10.5)

Now any element of £ can be made smooth by a simple one para-
meter deformation, hence T is a hypersurface in F and is known
as the discriminant. As the discriminant £ wanders through F it
skirts along the edge of the complement F — ¥ and divides it into
many different connected components. Clearly knots in the same
connected component can be deformed into each other and so are
equivalent (or isotopic). '

Now any knot invariant is, by the previous sentence, a func-
tion which is constant on each connected component of F — T
Hence the task of constructing all (numerical) knot invariants is
the same as finding all functions on F — ¥ which are constant on
each connected component. But topology tells us at once that
this is just the 0-cohomology of F — Z. In other words,

HP(F — T) = the space of knot invariants. (10.6)
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Vasil'ev, [27], provides a method for computing most, and possibly
all, of HO(F — ).

Because of the immense importance of this breakthrough
we give a brief summary of the steps involved in the construc-
tion of [27]. Vasil'ev deals with the infinite dimensionality of F
by approximating its elements by trigonometric polynomials of
degree n giving a finite dimensional space 7" of dimension 3n.
But F™ is clearly contractible, so Alexander duality gives us

H{(F" - %) = Hyp_i 1 (F* N I). (10.7)

Hence the cohomology of the knot space F* — I is computable
from the homology of the subsets £, of the discriminant & given
by

Y.=F"Nnk (10.8)

The singularities present in I, give a stratification” of ¥ allowing
the computation of its homology. This stratification of X provides
a filtration from which a standard spectral sequence then flows.
The spectral sequence is roughly an algebro-topological analogue
of a Taylor series and, as for a Taylor series, one must demonstrate
convergence and absence of remainder in the limit n — oo.

The construction then provides us with a hierarchy of knot
invariants V,,—the Vasil’ev invariants—which looks like

VocWic---VoC--CHYF-5) (10.9)

where each V, is finite dimensional and already completely con-
structed for 0 < n < 8.

The convergence of the spectral sequence has been conjec-
tured by Vasil’ev and, if proved, would mean that the Vasil'ev
invariants distinguish any two inequivalent knots. It is already
known, Birman [28], that they distinguish more knots than the
other well known knot polynomials, namely the Alexander, Jones,

* This is the great advantage of working with T, instead of with
Fr - ¥; this latter space contains only smooth maps and provides us
with no natural way of constructing a stratification.
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Homfly and Kaufmann polynomials. Kontsevich, [29], has given
a ‘universal integral’ which associates to each knot an element
of an algebra of ‘Feynman diagrams’ (cf. also Bar-Natan, [30]),
from which one calculates the Vasil’ev invariants for the knot; this

work uses results of Knizhnik and Zamolodchikov, [31], from the
physics literature.

£11. Conclusion

We now wind things up with a return to the books under review.
These two volumes certainly cover a wide range of material on
singularity theory and, although, they belong to a section of the
encyclopaedia on dynamical systems there is much material here
for anyone with an interest in singularity theory, not just those
who work on dynamical systems.

Part I begins with basic notions concerning singular smooth
maps and introduces normal forms. It then moves on to complex
functions and Picard-Lefschetz theory to which it devotes a con-
siderable amount of space—about a hundred pages. Next comes a
chapter on singularities of smooth maps in general; and the final
chapter is on the global singularity theory relevant for maps and
deals with the subject of Thom polynomials and related matters.

Part II is a mixture of applications and material on classific-
ation of singularities. However part II is largely intended to be
independent of part I. The first chapter deals with the singular-
ities and normal forms for functions on a manifold with bound-
ary. This is followed by a chapter on applications including a
section on catastrophe theory. Then one moves on to singularit-
ies on the boundaries of function spaces. Chapter four is about
monodromy and Picard-Lefschetz theory and contains a remark-
able early monodromy result of Newton from his Principia: For
an ellipse, with origin at a focus, this is that the area swept out
in time ¢ by the radius vector r is a transcendental function of the
tangent of the angle between r and the z-axis. The book then fin-
ishes with a chapter on deformation of real singularities and their
lacunae, including a discussion of the use of computer algorithms
to obtain some of the results.

The style of both volumes is definitely mathematical rather

(1

3]
[4]

[5]
(6]

(7l
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than physical and so some physicists will find the text heavy
going. Cross referencing within the text is done fairly well; and
this encyclopaedia does not indulge in the annoying practice of
referring one to equations present in other volumes as if one had
the desk space, or the money, to have them all at hand; readers
of Dieudonné’s admirable six volume Treatise on Anelysis may
remember that it continually suffers from that drawback. The
bibliography is very good and extremely large in both cases. It
is interesting to note, however, that Vasil'ev’s paper [27] is in.the
bibliography but is, unfortunately, not discussed; a comparison
of the dates of the Russian original and the English translation
is consistent with the fact that the reference entered only at the
translation stage.

The price of both books is DM 141 which is about 58 punts
and is a little on the expensive side for books of 250 odd pages,
though they are produced up to the usual high standards of
Springer. Price notwithstanding, I do recommend them both
particularly as library purchases, and because they can be read
independently of the other volumes of the encyclopaedia.
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Book Review

p-adic Numbers. An Introduction

Universitext Series

Fernando Q. Gouvéa
Springer-Verlag 1993, 284 pp.
ISBN 3-540-56844-1
Price DM 58.00.

Reviewed by Brendan Goldsmith

The role of p-adic numbers and p-adic analysis has become central
in many areas of mathematics in the century or so since their
introduction by Hensel. Despite this, they are still not part of
the ‘toolkit’ of many mathematicians and are often not talked

- about (or perhaps just given as a somewhat bizarre example) at
undergraduate level. One of the objectives of this book is to make
the subject more accessible to an undergraduate audience, ‘taking
its readers for a short promenade along the p-adic path’. In this it
succeeds admirably. I have used parts of the book as background
material at a beginning graduate seminar and found that students
had little difficulty with it.

There are several standard approaches to p-adic theory with
the most popular being either via valuation theory or via ahso-
lute values (the two are, of course, intimately related). Here the
author has chosen the latter and proceeds to completions and
Hensel’s Lemma. (Incidentally, there is a nice application of this
lemma to the determination of p-adic roots of unity). The ini-
tial ‘algebraic’ approach finishes with some interesting aspects of
‘local-global’ arguments and applications of the Hasse-Minkowski
Theorem, although, not surprisingly, no proof of the theorem is
given.

After the introductory appetizer, we are treated to some ele-
mentary p-adic analysis focusing on sequences and series. There
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is no attempt to develop a p-adic theory of integration but suit-
able references are given for such a development. Having laid this
analytical ground work, the book then switches to p-adic vec_tor
spaces and field extensions, finishing off with a nice discussion
of normed vector spaces over complete valued fields and show-
ing that the algebraic closure, 'CZ,, of the field of p-adic numbers is
not complete with respect to the (extended) p-adic absolute value.
This leads, rather naturally to a discussion of the completion Cp.

A delightful feature of the book is the large number (329, to
be exact!) of exercises which form an integral part of the text.
Equally useful is the section ‘Hints and Comments on the Prob-
lems’ where hints of varying degrees of detail are given! The book
concludes with a brief discussion on the literature, some com-
ments on software for doing p-adic calculations and a sensible
bibliography.

I found the book a pleasure to read and while one might occa-

“sionally wish to delve deeper into some topics, one must accept

that the author’s ‘aim is sightseeing, rather than a scientific exped-
ition’. However, this must not be interpreted incorrectly; this is
a serious book looking at important mathematics and definitely
worthy of a place in the prestigious Springer Universitext series.

Brendan Goldsmith,

Dublin Institute of Technology,
Fitzwilliam House,

30 Upper Pembroke Street,
Dublin 2.




Book Review

Bifurcation and Chaos:
Analysis, Algorithins, Applications

International Series of Numerical Mathematics, Vol .97

Ed. by R. Seydel, F. W. Schneider, T. Kiipper, H. Troger
Birkhduser Verlag (Basel) 1991, 388 pp.
ISBN 3-7643-2593-3
Price SF 118.00.

Reviewed by Eugene Gath

The title of this book was the theme of a conference held in
Wiirzburg, Germany in August 1990, and its contents are the con-
ference proceedings. The title gives the broad thrust of most of
the 49 articles, but the variety and breadth of nonlinear phenom-
ena to be found here covers a wide area of science and engineering,
including what we normally think of as the nonphysical sciences,
chemistry and biology. This diversity makes the book attractive
from the perspective of a scientist. The applications of nonlinear
dynamics considered here include gas combustion, chemical oscil-
lators, Rayleigh-Bénard convection, elasticity, the rolling of a ship,
the stability of a rotating satellite, robot control, climatic mod-
elling, pattern formation, hydrostatics, electronic circuitry and
much more! If one ever needs reassurance about the relevance of
{applied) mathematics within the world of science and engineer-
ing, just browse through this book.

There are several articles which are purely mathematical, and
many more which deal with numerical analysis or computational
aspects of problems. The attraction for the applied mathem-
atician is the range of different mathematical models employed.
The use of nonlinear ordinary and partial differential equations
still dominates, and most of the standard examples like the Duff-
ing, reaction-diffusion and nonlinear Laplace equation appear in
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various guises. The treatment of many problems combines ana-
lytical, numerical and experimental approaches. The language of
nonlinear dynamics is assumed throughout, but for most articles,
a knowledge at the level of an introductory text, such as Wiggins
[11, should suffice.

Without giving undue emphasis to any particular article, for
the purpose of illustration of the complexity of some of the models
used, I will menticn a model, discussed in several articles, namely
a nonlinear chemical oscillator called the Brusselator, (2], (which
has nothing whatscever to do with EU funding!). This describes a
chemical conversion A+ B — D + E via the intermediates X and
Y. The latter undergo a trimolecular autocatalysis 2X +V — 3X:

AL x
X+B52y 4+
2X +YBax
xg

There is an influx of species A and F into the reaction

Ain - Agt
B'™ = Bi"(1 + a coswt)
that is, there is a constant influx of A while the influx of B varies

sinuscidally. The system of differential equations describing this
reaction is:

dA :

= k L .A.

pr k1A + ke(A )

‘Z—f = —k;BX + ks (B"™ — B)

ax 5

— = kA —kBX + kXY — kX — ks X
% =kyBX ~ ks XY — ksY

where k¢ (a control parameter) is the flow rate through the “Con-
timious Flow Stirred Tank Reactor” described in [3]. The authors
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of that article then add a 1% Gaussian white noise to each variable
and they assign physically realistic values to the parameters. The
result of a Runge-Kutta integration of the model demonstrates
that the transition between high and low amplitude oscillations is
characterized by a secondary periodic Hopf bifurcation, and that
the extent of this transition varies with the noise frequency, in
qualitative agreement with the sharp pulses of chemiluminescence
observed in a luminol oscillator experiment.

The articles in this text, with a few exceptions (primarily
those not written with TgX), knit together quite well visually,
allowing for the difficulties in imposing uniformity of format for
conference proceedings. However, some of the graphics would
benefit from the addition of colour to this monochrome text.
Another minor criticism relates to the contents, which are given
only in alphabetic order, by name of the first author. The edit-
ors justify this on the basis that many papers contain overlapping
themes, but an extra two or three pages given to a classification
by subject or theme would have been a useful addition.

This book undoubtedly deserves a place in a mathematics
library, but should also find a place on the shelves of the practi-
tioners of differential equations, numerical analysis and dynamical
systems.
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