Outline Solutions of the Problems
for the 35th IMO

1. Without loss of generality a; < ay < ... < a,. Suppose
Qi+ Gmy1—s < 0, for some ¢ with 1 <4 <m. Then a; +amp1—; <
n, for j =1,2,...,¢. But then the ¢ distinet integers a; + a@m+1—1,
J=1,2,...,4¢ must lie in the set {m,m—1,...,m —i+ 2}, which
contains only ¢ — 1 elements. Thus a; + ¢my1—s > n + 1, for
1=1,2,...,m. Add these inequalities to obtain the result.

2. Use coordinates. Without loss of generality, let M = (0,0),

B =(-1,0) C = (1,0). Let A = (0,a) and @ = (¢,0). The rest

of the solution is straightforward.

3. (a) Let A, be the set of integers in {1,2,...,k} whose base 2
representation contains exactly three 1’s and let g(k) be the num-

ber of elements in A;. Then f and g are nondecreasing functions
and f(k) = g(2k) — g(k). Then

Fk+1) — f(k) = g(2k + 2) — g(2k) — (9(k + 1) — g(k)).

Now either both 2k + 2 € Agpis and £+ 1 € Ay or neither
is true. Thus f(k + 1) — f(k) = 0 or 1, depending on whether
2k +1 € Asgyq or not. Thus f(k) does not skip any positive
integer values. Since

9(2") = (’;) =g(2" - 1),

we get, after some calculation, f(2") = (}). Thus f is not

bounded above and hence assumes every non-negative integer
value.

(b) Suppose f(k) = m has a unique solution. Then
flk+1) = flk)=1=f(k) - f(k—1).

The former holds if and only if 2k + 1 € Agyyo, i.e. there are
exactly two 1'’s in the base 2 digits of &. The same holds for k¥ —1.
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This is possible if and only if k£ — 1 has exactly two 1’s in its b-as:e
2 representation, where the last digit is 1 and the second last digit

is 0, i.e. k= 2" + 2 for some integer n > 2. A calculation gives
|

27 +2) = (g) +1,

Thus the set of positive integers m for which f(k) = m has a
unique solution is {(}) +1:n > 2}.

4. We note that

w1 nlttm)
mn — 1 mn— 1

and that
m(n? +m) = m?+n

mn —1 T mn—1"

Thus mn — 1 divides n® + 1 if and only if it divides m? + n and
this holds if and only if mn — 1 divides m3 + 1.

If m = n it is easy to see that m = 2.

If m > n, then % = k, an integer, implies that n* + k =
m(kn—1) > kn? —n and thus (k—1)n® —n —k < 0. This implies
that n < 25, if k > 1.

Ifk=1,thenn?+m=mn—1 Thusm =n+1+-2;. The
fact that n — 1 divides 2 proves that n = 2 or 3. If n = 2, then
m =25 and if n = 3 then m = 5.

Ifk>1,thenn < % < 2 implies that n = 1. Then m = 2
or 3.

Thus, if

s.q . . : -
2+l jg an integer, (m,n) is one of the pairs:

(1,2),(1,3),(2,1), (3, 1), (2,5), (3,5), (5,2), (5,3), (2,2).

It is clear that ;ﬁ% is an integer if (m,n) is one of these nine
pairs.

5. It is clear that f—(fl can take the value 1 at most once in each
of the intervals (-1,0) and (0, 00). Let f(a) = a, then property (7)
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implies that f(2a + a?) = 2a+a?. If -1 < a < 0, then -1 <
2a + a? < 0 and thus @ = 2a + a®. This gives the contradiction
o = 0 or —1. Similarly, the assumption that a > 0 leads to a
contradiction. Thus f(a) = a implies ¢ = 0. Using this fact and
letting y = x in () proves

x4+ f(x) +zf(z) =0,

for all z in S. Thus

—x

flo) = s

for all z in §. It is clear that this function satisfies (z) and (i)
and is the only function with these two properties.

6. First solution. Let A be the set of all positive integers of the
form giga . ..¢qq, where g1 < g2 < ... < gq, are primes. For any
infinite set {p1,pz,p3,...} of primes p1 < ps < ps < ..., we can
satisfy the requirements of the problem, by taking

m = pips...Pp, and 1 = PaPs...Pp 41

Second solution. Let IT = {p1,p2,ps,...} denote the set of all
primes. Let

Az':{qﬂlﬂ---‘k :QI:Q%---:%EHandpiXQIQQ---Qi}

andlet A = AJUA,UA3U. ... Let S be any infinite subset of II and
let pr. be in S. Choose distinct primes ¢1,¢2,...,¢x in S — {px}-
Then m = qiqa - - - ge—1qk is in A, whereas n = q1qa . .. gk—1Px 18
not in A.
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