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The purpose of this book is two-fold. Firstly, to give an exposi-
tion of the basic theory of algebraic function fields using a purely
algebraic approach. Secondly, to give the applications of this the-
ory to the theory of error-correcting codes. We refer to the book
under review as [S]. Before we begin the review, we shall briefly
discuss the topics covered in the book.

1. Algebraic Function Fields

Let K be any field. An algebraic function field F'/K of one variable
over K is an extension field F of K such that F contains an
element z which is transcendental over K, and F is an algebraic
extension of finite degree over K (z).

The algebraic approach to studying such extensions F/K was
first taken by Dedekind and Weber [4], with K the complex num-
b_ers. Chevalley [3] treated arbitrary K with this approach, and
dl.?cussed geometry only with X the complex numbers. Algeb-
raic geometry enters the picture as soon as one considers the
plane algebraic curve ¢ arising from F/K. This is defined by
a polynomial equation flz,y) = 0, where F = K (z,y) and f
has coefficients in K. Conversely, given a curve C defined by
some irreducible polynomial f € K[z,y], the quotient field of
the domain K [z,y]/(f) is an algebraic function field of one vari-
able, usually denoted K (C)/K. The geometric approach has been
taken by many authors: Noether [13], Severi [14], Weil [19], and
more recently one may consult Shafarevich [15], Hartshorne [7].
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Two classics are Fulton [5] and Walker [18]. For a more sketchy
presentation but with all the ideas, see Abhyankar [1] or Moreno
[12].

In his review of [3], Weil [20] almost chastises Chevalley for
the lack of geometry:

Here is algebra with a vengeance; ... if it were not for a few
hints ... one might never suspect him of ever having heard of
algebraic curves or of taking any interest in them.

He later concedes, it should be pointed out, that “this is a
valuable and useful book”. Not the least of the reasons for this
i the strong analogy between the algebraic approach to algebraic
functions (Chevalley) and the theory of algebraic numbers, viz.
primes and irreducible polynomials, rational numbers and rational
functions. For a simultaneous treatment of algebraic functions and
algebraic numbers, see Artin [2].

Of course the “geometric” approach is through algebraic geo-
metry, and involves a nontrivial amount of algebra itself. It would
seem that this approach is the more popular. It is in reality a
pleasant mixture of both algebra and geometry. For example,
there is a one-to-one correspondence hetween points on a nonsin-
gular curve C' and places (maximal ideals of valuation rings) of
K(C)/K.

A cornerstone of either approach is the Riemann-Roch The-
orem (see Chapter I). A divisor A is a formal sum 3 pnpP where
the np are integers and only finitely many are nonzero. The sum is
over all points on a curve, or all places of a function field, depend-
ing on one’s point of view. The degree of a divisor, deg(A), is
Y. pnp. Assuming the existence of something called a canon-
ical divisor, W, and the divisor of any f € F, denoted (f), the
Riemann-Roch theorem states that

UA) — 6(W — A) = deg(A) +1 - g

where g is the genus of the curve C, or the function field 7 /K,
and £(A) is the dimension of the K-vector space

L(A) = {f € F: (f) > —A} U {0}.
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The Riemann-Roch Theorem has many important con-
sequences. For example, if f and h are two curves of degrees
m and n over the complex numbers (let us say), then by Bézout’s
Theorem [1] f and h intersect in mn points (counted properly).
Conversely, given f and mn points, does there exist a curve
h of degree n which intersects f in precisely those mn points?
Algebraically, we might ask: given specified poles and zeroes with
multiplicities, does there exist f € K(x) with exactly those poles
and zeroes? The Riemann-Roch Theorem provides answers.

2. Error-Correcting Codes

A code C over an alphabet @Q is a subset of Q™. Elements of C are
called codewords, and n is called the length of the code. Usually
@ is taken to be F, the finite field of ¢ elements. A linear code is
a subspace of F7, and we assume linearity from now on. A code
is called a code and not a subspace because of interest in a rather
non-algebraic property, its minimum distance d. For z,y € Qr,
the Hamming distance between z and y, d(z,y), is defined to be
the number of coordinates where x and y differ. For example,
the distance between 110101 and 111100 (g = 2) is 2. Then d is
defined by
d = min{d(z,y) : x,y € C,z # y}.

If C is a k-dimensional subspace of Fy, we say that C is
a g-ary [n,k,d] code. If e = LQ%IJ, C' is an e-error-correcting
code. This is because in practice, codewords are transmitted over
a channel to a receiver. Due to noise there may be errors intro-
duced during transmission, but if there are not more than e errors,
the receiver can correct them and decode the received vector to the
unique nearest codeword. Error-correcting codes are used every
day in compact disc players, and have been used by NASA to
receive data from space probes such as Mariner and Voyager. For
an introduction to the theory of error-correcting codes, see [9] or
[21].

For a fixed n (and ¢), a central problem in coding theory is
to find codes which maximize both %k and d. Unfortunately, the

Singleton bound (trivial to prove) says
k+d<n+1,
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and so these aims are contradictory.

Much work has been done on bounds relating n, k, d and q.
For asymptotic bounds, applicable for large n, the simplest results
are obtained when the rate R = k/n is plotted as a function of
d =d/n. Clearly

R+6<1+ L,
n

In fact, in Shannon’s Theorem, the desirable codes whose exist-
ence is proven have very large n. However, constructing such
codes is another matter.

Following [9], a family of codes over F, (g fixed) is said to be
good if it contains an infinite sequence of codes C;, where C; is an
[, ki, d;] code, such that both the rate R; = k;/n; and 6; = d;/n;
approach a nonzero limit as i — co.

Examples of classical families of codes are Hamming codes,
BCH codes, Reed-Solomon codes and Reed-Muller codes. These
codes have nice algebraic constructions and properties. It turns
out that all these families are bad. Construction of good families
became a problem. J.L. Massey said

... good codes just might be messy.

Justesen (1972) constructed an infinite family of good binary
codes, see [9].

That good codes exist was never in doubt: the Gilbert-
Varshamov lower bound states that if R is fixed, 0 < R < 1,
then there exist binary [n, k,d] codes with k/n > R and d/n >
H;'(1 — R) > 0 where H, !(z) is the inverse of the entropy
function Hz(z) = —zlogs(z) — (1 — z)loga(1 — z).

There is an analogous statement of the Gilbert-Varshamov
lower bound for any ¢, which can be translated into a lower bound
for a function «,(d) (which we leave undefined; see [S], Chapter
VII).

3. Algebraic Function Fields and Codes

The main idea is that algebraic function fields can be used to
construct codes which lead to an improved lower bound for o, (6).
It was thought for over thirty years that the Gilbert-Varshamov
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lower bound would prove to be exact. Hence the improved lower
bound caused a sensation in the field,

The improvement came in two stages. First came a construc-
tion from Goppa (1981) — after many years of trying to generalize
his earlier work ~ of codes from algebraic function fields. We sum-
marize this construction; it is fully described in [S], Chapter II.
Let F/F, be an algebraic function field of genus g and let Py,. ..,
P, be pairwise distinct places of F//F, of degree one. Let D be the
divisor P; +--- + P, and let G be a divisor of F/F, with disjoint
support from D. The geometric Goppa code C(D, @) (also called
an algebraic geometry code [16]) is the image of the linear map
B: L(G) — Fy defined by

The dimension and a bound on the minimum distance are found
by using the Riemann-Roch Theorem.

Asymptotic values of the ratio of the number of places of
degree one to the genus {as g — oo) are related to whether geo-
metric Goppa codes are good. Hence bounds on these asymptotic

values (from algebraic geomeiry) can be related to the Gilbert- -

Varshamov lower bound.

The definition above can be phrased in terms of nonsingular
curves, which is how Goppa first deseribed it.

Choosing F' = F(t), these codes are the Reed-Solomon codes
mentioned earlier. Hence geometric Goppa codes are a natural
generalization of Reed-Solomon codes.

The second stage of the improvement came about by find-
ing certain suitable function fields (curves) F/¥,. This was done
by Thara [8], and independently by Tsfasman, Vladut and Zink
[17], although work of Manin [10] (and presumably unpublished)
paved the way. Manin and Vladut [11] gave a proof using Drin-
feld modules. The improved lower bound is valid for ¢ > 49 and
square, so in particular we are still without any codes beating the
Gilbert-Varshamov bound in the binary case. The suitable curves
that were used are Shimura curves [8], or Drinfeld curves [16], first
suggested in [10]. [S] does not describe this second stage.
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4. Review

Chapter I contains Weil's proof of the Riemann-Roch theorem
using adeles. The author defines a Weil differential as a linear
map on the space of adeles, vanishing on some translate of F
(embedded}. As the namesake of these differentials says,

This rather abstract concept of differential is of course what makes
possible such a brief proof of the Riemann-Roch Theorem.

Later in Chapter IV these Weil differentials are identified with
our “usual” notion of a differential. Chapter I also contains the
Strong Approximation Theorem (crucial to many proofs in the
book), Weierstrass gaps, and local components of Weil differentials
(later to become residues of our usual differentials). This chapter

is self-contained, requiring only basic graduate algebra. A useful

appendix is provided with a summary of field theory.

In Chapter II the reader will find an introduction to coding
theory and the definition of geometric Goppa codes. The dual
code of C(D,H) is also defined using local components of Weil
differentials (later residues), and that it is the dual is proved using
what is “really” the residue theorem {although not called such).
Here we see perhaps the disadvantage to the algebraic approach.
BCH and classical Goppa codes are constructed from geometric
Coppa codes as subfield subcodes.

Chapter ITI {Extensions of Algebraic Function Fields) is the
longest and most technical in the book. The presentation of many
important ideas goes straight to the key theorems, and the proofs
are concise but complete. As in Chapter I, however, the reader
must make up his or her own examples in all sections except
I11.7. Topics covered include extensions and ramification, the dif-
ferent and the Hurwitz Genus formula, constant field extensions,
Galois extensions (Kummer and Artin-Schreier), wild ramifica-
tion, inseparability, and Castelnuovo’s Inequality for the genus.
A knowledge of algebraic number theory is useful (for familiarity
purposes) but certainly not essential.

Chapter IV defines differentials via derivations and proves a
one-to-one correspondence with Weil differentials from Chapter 1.
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We also find the P-adic completion of F'/ K with respect to a place
P, giving us P-adic power series, analogous to complex power
series over C. Here lies the residue theorem, another cornerstone
of the theory.

The length of the code C'(D, G} is limited by how many places
of degree one the extension F/F; has. The Hasse-Weil Theorem
(also known as the Riemann hypothesis for function fields over
finite fields, proved by Weil) tells us approximately how many
places of degree one we can expect. This theorem is famous
and has many implications, both inside and outside this book.
Chapter V defines the zeta function of F/F, and presents Bom-
bieri’s short elementary proof of Hasse-Weil. It uses only the
Riemann-Roch Theorem. As Manin [10] points out, the proof of
the upper bound is “quite code-theoretic in spirit”. Again the
presentation is faultless. Improvements to the Hasse-Weil bound
are given with proofs, including the asymptotic lower bound due
to Drinfeld-Vladut. This bound was proved to be tight (for ¢ > 49
and square) by Thara and Tsfasman-Vladut-Zink (by constructing
the suitable curves to give equality).

The reader may heave a sigh of relief upon seeing the title of
Chapter VI — Examples of Algebraic Function Fields. The author
does say (page 30) that “we defer such examples to Chapter VI
at which point we will have better methods at hand for calcu-
lating the genus”. Indeed, results from all previous chapters are
drawn on to give a thorough treatment of elliptic function fields.
It is a pleasure to see characteristic 2 not excluded. Next are
hyperelliptic function fields, and more generally, function fields
F = K(z,y) defined by y™ = f(z). Examples done are Fermat
(az™ 4+ by™ = ¢) and Hermitian (z7+! + y7t! = 1) function fields.

Chapter VII concerns the Gilbert-Varshamov bound and
the story recounted earlier. Automorphism groups of geometric
Goppa codes are discussed and applied to Hermitian codes (from
the Hermitian function field). A decoding algorithm for geo-
metric Goppa codes due to Skorobogatov and Vladut (following
Justesen) is presented. However these codes are still a long way
from being used in practice.

The final chapter (VIII) discusses the trace code of a ¢™-
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ary code C of length n, which is defined as Trgm (C) C Fy, with
trace taken componentwise. In certain special cases the minimum
distance and perhaps all the weights in these codes can be found,
or at least bounded. The bounds can be tight. Again results from
previous chapters (especially chapter III) are used regularly.

A useful feature of this book is the two appendices, one con-
taining a summary of field theory and the other explaining how to
switch between the algebraic and geometric approaches, i.e. func-
tion fields and curves. The reader interested in curves can consult
this second appendix and translate the results in the text to res-
ults about curves. Curves are not mentioned at all during the
text, in keeping with the author’s promise of an algebraic expos-
ition. The reader may also find it helpful to glance at Chapter
VI while reading the earlier chapters (especially I, TIT and TV), in
order to see some examples.

The book is approximately 250 pages long and reasonably
priced. It is typeset with some form of TEX, and one can have few
complaints about that. A minor quibble concerns the letters of
“Gal” and “Aut” (page 109), and “Der” (page 137), which are too
close together. “Aut” has been corrected by page 209. The only
typographical error this reviewer found (apart from a trivial one
on page 144) is on page 243, where “monom” should be monomial.
There are no exercises.

The exposition in this book is clean and tight. The quickest
proofs of all the theorems are given, with no time wasted. The
book is entirely self-contained. The author accomplishes what
he set out to do with simplicity. It is recommended for anyone
interested in algebraic function fields and their applications to
codes.
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