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SYLOW'’S PROOF OF SYLOW'’S THEOREM
Rod Gow

1. Introduction

While looking through some early volumes of Mathematische
Annalen, we came across a paper with the following title:

Théorémes sur les groupes de substitutions.

Par M. L. SyLow & FREDERIKSHALD en NORVEGE.

This was, of course, the paper containing Ludwig Sylow’s funda-
mental contribution to group theory, [9]. We thought it might
be interesting to see how Sylow actually proved his theorem and
then to comment briefly on some later proofs and earlier work. Tt
is likely that there have been prior discussions of the history of
Sylow’s theorem in the literature and we apologize for failing to
acknowledge any relevant publications. (Qur excuse is that the
UCD library is badly stocked with periodicals on the history of
science.)

Sylow’s starting point is as follows: On sait que si Pordre
d’un groupe de substitutions est divisible par le nombre premier
n, le groupe contient toujours une substitution d’ordre n. (The
notation of Sylow is a little wayward to modern tastes. His prime
is denoted by n, rather than the traditional p. Later in the paper,
the expression np + 1 appears as the number of Sylow subgroups,
but p denotes merely some non-negative integer. In virtually all
later literature relating to the proof of Sylow’s theorem and earlier
literature on Cauchy’s theorem that we have seen, the prime is rep-
resented by p. We shall follow standard practice and denote our
prime by p in this exposition, except when enunciating Sylow’s
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theorems in his own words.) We recognize the statement above as
Cauchy’s theorem, which we would normally state as: if a prime
p divides the order of a finite group, then the group contains an
element of order p. The stipulation that we should have a group
of permutations is irrelevant, although in Cauchy’s day, abstract
finite groups would not have been under consideration. Indeed
in the fourth edition of Serret’s book, there is some discussion of
permutation groups and of groups of linear fractional transforma-
tions, but no discussion of abstract groups or of Cauchy’s theorem.
There is, however, a discussion of a construction, due to Cauchy,
of a Sylow p-subgroup of the Symmetric group S, in [8, p.302].
Cauchy’s theorem underlies Sylow’s proof. It is not proved. Later
proofs sought to remove this reliance on Cauchy’s theorem, whose
original demonstration was quite complicated, although it con-
tained germs of ideas vital to modern group theory. In particular,
Frobenius was able to give a proof of the existence of Sylow sub-
groups which avoided Cauchy’s theorem and became the standard
proof of Sylow’s theorem until the advent of Wielandt’s proof in
1959, [11].

Sylow proves the existence of a Sylow p-subgroup P in a finite
group G, at the same time showing that if V is the normalizer of
Pin G, then |G : N | = 1 mod p. Afterwards, he shows that any
other Sylow p-subgroup @ is conjugate to P in G. A basic idea
used by Sylow, the spirit of which really occurs in all proofs, is
that of letting P and Q permute the cosets of V by multiplication.
Simple congruences modulo p force out the desired conclusion.
Needless to say, Sylow does not talk in terms of permuting cosets,
but this is the way to interpret his procedures nowadays.

2. Sylow’s proof

We now consider the details of Sylow’s proof. We try to follow
the spirit, as we see it, of Sylow’s ideas but use more modern
concepts to try to explain what is happening. We will make a
few comments about Sylow’s precise method later. Let G be a
non-trivial finite group and let p“ be the p-part of |G|, where P
is a prime and & > 1. Let P be 5 p-subgroup of @ of maximal
order and let N be its normalizer in G. Sylow first proves that

I
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|N : P| is not divisible by p. From our point of view, thils is clear.
If p divides |N : P|, Cauchy’s theorem guarantees the existence Qf
a subgroup of M /P of order p in the quotient group N /P. M is
then a p-subgroup of order larger than |P|, which is 1mp0551b1‘e.
Sylow next proves that P contains all elements of p-power order in
N. His proof is essentially the same as any modern one. Suppose
¢ is an element of N not in P. The elements 9¢*, where ¥ runs
over P and 7 over the integers, form a subgroup of IV properl_y
containing P. The order of this subgroup is |P|m, where m is
the smallest positive integer j such that ¢’ € P. But m clearly
divides the order of ¢. Since P is a p-subgroup of maximal order,
¢ cannot have order a power of p, as required. _

The crucial part of the proof is to show that |G : N| is not
divisible by p. Once this is known, we see that |P| = p®, and the
existence of Sylow p-subgroups is established. In fact, S.ylow shows
that |G : N| = 1 mod p, which is another part of his ba\_sm theorem.
The following would seem to be a modern version O.f hlS- argument.
P permutes the left cosets of IV in G by left multiplication. It fixes
N, because it is contained in N. It fixes no other left coset. For
if P fixes the coset 9N, we have ¢ ' Py < N. But the argument
above shows that the p-subgroup v ~!P now contained in N
equals P, as it has the same order as P. Hence ¢ € N and
N = N, as required. The left cosets of N different from N 'falll
into P-orbits of size greater than 1, and the size of each orbit is
a power of p, as it divides the order of P, by the orbit-stabilizer
theorem. This proves what Sylow gives as his first theorem, where
we return to Sylow’s original notation:

Si n® désigne la plus grande puissance du nombre premier n qui
divise I'ordre du groupe G, ce groupe contient un autre g de Pordre
n%; si de plus n®v désigne l'ordre du plus grand groupe contenu
dans G dont les substitutions sont permutables 4 g, Pordre de G
sera de la forme n®v{np + 1).

Sylow’s second theorem is the following:

Tout étant posé comme au théoréme précédent, le groupe G con-
tient précisement np + 1 groupes distincts d’ordre n®; on les
obtient tous en transformant I'un quelconque d’entre eux par les
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substitutions de G, tout groupe étant donné par n®v transform-
antes distinctes.

His proof is the following (returning to our notation). Let
@) be a subgroup of order [P|. Q permutes the left cosets of N
in G into orbits, the size of each Q-orbit being a power of D
As the number of orbits is congruent to 1 modulo p, it fixes a
coset. Thus ¥ ~1Qy < N for some . But the argument of the
previous paragraph shows that »p~1Qy = P, as P contains all p-
elements in V. Sylow notes that the same argument proves that
any p-subgroup of G is contained in a conjugate of P. Thus the
standard results comprising Sylow’s theorem are obtained.

Having proved his main theorems, Sylow continues his paper
by considering the conjugating action of the p-group P on itself.
P acts on P according to the rule

¥ — ¢ 19g.
This is a permutation action, since
9y 07 69102 = (9182) 801 95).

The orbits of P acting in this way are its conjugacy classes (not so-
called by Sylow) and their sizes are powers of p. Since the identity
of P forms a single orbit, we have an equation of the form

pa:1+pa+pb+“_

This implies that at least P — 1 of the indices a, b, .., are 0.
Thus, in modern terminology, the centre of P is non-trivial (the
argument is unchanged to this day).

An element 9y of order p may then be found in the centre. If
©y denotes the subgroup of P generated by 9y, Sylow essentially
forms the quotient group P/Oq of order p*~1. This group has a
non-trivial centre. Let ¥, project onto an element of order pin
the centre of P/@p. Then #7 = 95. Furthermore

971909 = 9hw,
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for all ¥ in P (here b depends on ¥). The elements of -the- for_m
¥49% form a (normal) subgroup of P of order p?. Continuing in
this way, we then obtain ¥5 so that

95 = 950¢
91999 = 950495
for all ¢ € P (the exponents again depending on ¢). This leads
to Sylow’s third theorem:

Si I'ordre d'un groupe est n®, n étant premier, une substitution
quelconque ¥ du groupe peut étre exprimée par la formule

9 = Dhordh .. 9T,

ol
vy =1
b=
97 = 9505
7 = 9§50l
et ott 'on a

I 1900 = 9
710,09 = 959,
910,09 = 9795,
971939 = 95959095

Thus, Sylow obtains the beginnings of the structure theory for
p-groups, showing in particular that such groups are solva;ble.
As we explained earlier, we have tried to render Sylow’s pro?f
into a modern formulation. To give some of the flavour o-f Sylow S
version, we describe his proof of the fact that p does not divide v =
|V : P|. P isa permutation group of degree r, say, and so may be
thought to act on certain variables 1, ..., z,.. Let yy be a rational
function of the x; which is invariant under P but fixed by no other
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the custom of the time, Sylow uses the word isomorphic rather
tl_lan homomorphic). (N' is just the quotient group N/P.) If p
divides v, then N' contains a permutation of order p by Cauchy’s
theorem and Sylow obtains a contradiction to this using the same

line of reasoning that proved that p contains all elements of -
power order in V.

3. Cauchy’s theorem

We turn now to a brief look at Cauchy’s theorem, which was vital
lto Sylow’s proof. The paper, [2], in which Cauchy’s proof appears
is well worth studying. It is 102 pages long and its general spirit
18 quite close to modern algebra, unlike that of many ostensibly
algebraic papers of the 19th century, which are often hopelessly
vague. Much of the elementary theory of permutations may be
found there. For example, the size of g conjugacy class of 8.
containing an element of 3 given cycle type is determined. Among
other things, Cauchy gives an explicit construction of a Sylow p-
'subgroup of 5, ([2, Pp.195-196]). This is interesting in itself, as
it requires the idea of a wreath product. Wreath products plé;y a
vital role in the study of permutation and linear groups.

. The concept of a doub]e coset decomposition of 3 group rel-
ative to two subgroups is implicit in §12 of [2]. To paraphrase
Cauchy's argument, the following is proved. Let G be a finite
Eroup containing subgroups A4 and B Suppose that no non-
1€ientity element of 4 ig conjugate to an element of B. Then the
size of a double coset AgB is |A||B|. Moreover, G is the disjoint
union of all the different double cosets. Consequently, with the
hypothesis as above, [A]|B| divides |G|. Cauchy applies this when
G=258, Aisa Sylow p-subgroup of S, (which he has already
copstructed) and B is a subgroup whose order is divisible by the
prime p. Since |A||B| cannot divide n!, a non-trivial element of
.A 1s conjugate to an element of B and thus Cauchy’s theorem
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Cauchy 30 or more years before Sylow’s proof. Cauchy’s proof of
his theorem is reproduced in Jordan’s famous treatise, [6, pp.26-
29]. Cauchy’s theorem applies to a subgroup of §,,, but Cayley’s
embedding theorem, that a finite group G is isomorphic to a sub-
group of Sg|, shows that it applies to any abstract finite group.

4. Later proofs of Sylow’s theorem

Fairly soon after the publication of Sylow’s theorem in 1872,
attempts were made to avoid the use of Cauchy’s theorem in its
proof. In 1877, Fugen Netto gave a proof in [7] which used only
part of the proof of Cauchy’s theorem. In Netto’s situation, as
in Sylow’s, we have a subgroup G of S, of order k, where k is
divisible by the prime p. (Note that Netto uses what has become
standard notation in respect of n and p). He assumes Cauchy’s
constructive result that S, contains a Sylow p-subgroup, H, say,
of order pf, and then proves that G contains a Sylow p-subgroup.
We found Netto’s proof difficult to follow, but it seems clear that
he is using a decomposition of §,, into (G, H)-double cosets. He
obtains the equation

n! n! n!  nl n!

Kol e P p*
where 5 is an integer, and p® > p?, and so on. Multiplying each
side above by kpf/n!, we obtain the usual equation expressing
the order of S, as the sum of the sizes of the different (G, H )-
double cosets. The powers of p that appear in the denominators
are the orders of the intersections of G with various conjugates of
H. Netto’s proof, in double coset form, has become a standard
one. An alternative is to embed a finite group into a finite general
linear group GL(n, p), where p is a prime, and use the fact that
the linear group contains an explicit Sylow subgroup, consisting
of lower triangular matrices with all diagonal entries equal to 1.
See, for example, the exercises on p.36 of [5].

The proof that was to become the standard proof of the
existence of Sylow subgroups until 1959 is that of Frobenius, (3].
Although it appeared in 1887, it is dated Ziirich, March 1884,
Perhaps this is evidence that the publication backlogs of journals
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are not a new phenomenon. Frobenius aims to remove all refer-
ence to Cauchy’s work and keep the discussion as elementary ag
possible. The proof is by induction, the main tool to be used being
the conjugacy class equation in a finite group. The concept of a
quotient group is also required. Frobenius works with an abstract
finite group H, noting that it may be considered as a group of per-
mutations. He also notes that his abstract finite group is defined
by three axioms, which he states. He then considers the centre,
G, of H and supposes that p divides its order. He shows (without
using Cauchy’s theorem) that the centre contains an element P of
order p. He declares that two elements of H are to be considered
(relatively) equal if they differ only by a power of P. The relat-
ively different elements form a group, whose order is |H|/p (this
is the quotient group of & modulo the cyclic group generated by
P). By induction, this group has a Sylow subgroup which lifts
back to give a Sylow subgroup of H.

Finally, he supposes that p does not divide |G|. The con-
Jugacy class equation shows that there must be an element not in
the centre, the size of whose conjugacy class is relatively prime
to p. But then the p-part of the order of the centralizer of this
element equals the p-part of |H], and since the order of this cent-
ralizer is less than that of & » by induction, the centralizer contains
a Sylow p-subgroup of H, as required. This proof may be found
in such early textbooks as those of Burnside, (1], and Hilton, [4].

6. Life and work of Sylow

We close by making a few remarks about the life and career of
Sylow. Sylow (1832-1918) taught from 1858 to 1898 at a school in
Halden (Frederikshald) in Norway. A town of this name is located
south of Oslo, near the Swedish border. A chair was created for
him in 1898 at Christiana (Oslo) University. His other main paper
is [10], devoted to complex multiplication of elliptic functions and
assoclated singular moduli. He seems to have been drawn to this
subject while editing a new edition of the collected work of Abel,
his famous compatriot, who contributed important early work on
elliptic functions. Sylow’s 1872 paper showed that he had consid-
erable talent in abstract algebra and it is a pity that he did not

[1]

(3]
[4]

[5]
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get more opportunity to put his talent into effect.
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