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1. Introduction

The Fhe(.)ry of algebraic invariants was at the forefront of math-
gmamcs in the latter half of the 19-th century. It attracted the
mterest of many top-class mathematicians. For example Cayle
and Sylvester in England were known as the “Invariant ’I‘Wiis”y
t':md when.Salmon in Dublin made useful contributions to the sub:
Ject the trio were christened by Hermite as the “Invariant Trinity”
Another Irish link with invariant theory is provided by Geof e-
Boole who spent much of his working life in Cork. In 1841 Boogl
.wrot? a paper [1] which is often regarded as ;
Invariant theory, and in 1845 he wrote another paper on the sub-
ject but seemed to do nothing further on invariants. (Admitted]
Boole was still in England when he wrote these papers. He moveg
to Ire}a,nd to become Professor of Mathematics at Quee-n’s Colie e
Cork in 1849). See [10] for an excellent account of the life and wogrlé
of ]A?,oole-. The Ttalian mathematician Fai di Bruno wrote a hook
on invariant theory which was highly regarded by Hilbert. In (e
many the first mathematician to draw attention to the 1;heor (13;
mvariants was Aronhold. He was followed by Clebsch and Gorfian
who wolrked extensively on the subject and developed symbolic
calctﬂat.lon in invariant theory. Indeed Gordan was known as
the “King (_)f Invariants” and apparently would talk intermin-
ably about invariant theory to anyone who was willing to listen
(The names of Clebsch and Gordan will be familiar to students of
quantum mechanics via the Clebsch-Gordan series and Clebsch-
Gordan ({oefﬁcients. The Clebsch-Gordan series played an import-
ant role in their theory of invariants of binary forms. See gVeyl
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[19].) Their work involved massive calculations. According to [3],
there are papers of Gordan where twenty pages of formulae are not
interrupted by a single text word, and it is alleged that Gordan
often wrote only the formulae in his papers, the text being added
later by friends.

Although invariant theory was a piece of pure mathemat-
ics, attempts were made to make use of invariant theory in other
disciplines. For example, Sylvester in 1878, and later Gordan
and Alexejeff, tried to apply invariant theory to chemistry, in
connection with chemical valency. A brief account of this so-
called “chemico-algebraic theory” appears in [5, pp.366-368]. In
the period from 1885 to 1893 David Hilbert demolished the old-
style invariant theory by solving, in a novel and unexpected way,
the central finiteness problem of invariant theory. After Hilbert’s
work, many people thought that invariant theory was a dead sub-
ject. However it has refused to lie down and has resurrected itself
on quite a few occasions in the 20th century. Indeed, to quote
from the 1984 survey article by Kung and Rota [9], “the theory
of invariants, pronounced dead at the turn of the century, is once
again at the forefront of mathematics”. Today, invariant theory is
alive and well and the subjects of commutative algebra, algebraic
geometry, representation theory , and combinatorics each owe an
important debt to invariant theory.

2. David Hilbert

David Hilbert was born in 1862 in Konigsberg, then part of East
Prussia but renamed Kaliningrad after the Second World War and
now a part of Russia. Konigsberg has a long intellectual tradition,
especially in mathematics and philosophy. (Mathematicians will
all know of the famous “Koénigsberg bridge problem” solved by
Euler in the 18th century. The philosopher Kant was one of the
city’s most famous sons. Clebsch was also born in Kénigsberg
and attended the university there.) Hilbert went to university in
Konigsberg where he became a close friend of fellow student Her-
mann Minkowski, this friendship lasting until Minkowski’s early
death in 1909. After spending several very productive years lectur-
ing at Kénigsberg, during which time he did all of his important
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work in invariant theory, he was offered and accepted in 1895 5

many at that time. Hilbert s ent is li

‘ . i . o

v o pent the rest of his life in Gottingen

Saﬁstg}lbgt ha,s_ been described as “the last of the great univer-

o di‘;erszer hls lor;g career he made vital contributions to large

areas of mathematics. One mi ht

mathematics out of the 19t} ithe dt s
. : century and into the 20th cent

His famous list of unsolved problems at the International CI:)IK

;ige;i E;)Ins onedp?]jticular area of mathematical research for a period
an €0 move on to a different branch. Hj
work, according to [17], was roughly as follows: | reearh
1885-1893 - Invariant Theory
1893-1898 - Number Theory
1898-1902 - Foundati
o ndations of Geometry and of Mathematics in gen-
1902-1912 - Integral Equations
1912-1922 - Mathematica] Physics
i’flhi ;;;al;nisi;lﬁl];nber theorist Takagi visited Hilbert at Gottingen
u ert is reported to only have been being j
) ‘ _ eing inter-
zlsctgi'lijn talking about mtegral equations (the work of Takiginail;l
861 ert forms the beginnings of class field theory). See [13
ipl'l. 1g];bg T;ﬁfe 1Iwere exceptions to the list above. For example,
1ibert successfully solved Waring’s bl ‘
outstanding since 1770 about ex e Dbt B
pressing a natural number as
~sum of n-th powers. He produced this solution Just at the timf:

Elanagfeg to resuscitate Dirichlet’s Principle concerning the solu-
lon of boundary value problems, this being totally unrelated to
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the main research work he was pursuing at this period. It was in
the period on foundations of geometry that he made his famous
pronouncement about the axiomatic method-“One must be able
to say at all times-instead of points, straight lines and planes -
tables, chairs, and beer mugs”.

From 1912 on he worked on the idea of axiomatizing physics—
this having been proposed as his 6th problem at the 1900 Paris
congress. “Physics is much too hard for physicists”, he said. He
did not have much success however, the axiomatic method not
seeming to be suitable for physics.

For a full account of the life of Hilbert the reader should refer
to the book of Constance Reid, [13]. See also the book of Fang,

[3].
3. Hilbert’s 1897 lectures

In 1897 David Hilbert gave an introductory course of lectures on
the theory of algebraic invariants at the University of Gottingen.
These lectures, or rather a modern English translation by Rein-
hard C. Laubenbacher of the lecture notes, handwritten by Hil-
bert’s student Sophus Marxsen, have recently been published by
the Cambridge University Press, [6]. They provide a fascinating
view of invariant theory and a glimpse of what it must have been
like to have studied with Hilbert at G&ttingen at that time. The
course consisted of 51 lectures starting on 26 April 1897 and end-
ing on 6 August 1897, 3 lectures per week for 17 weeks. Sophus
Marxsen ended up with 527 pages of handwritten notes. As a
lecturer Hilbert was inspiring but he sometimes ran into diffi-
culty in a lecture because he had not prepared all the technical
details. (This was in sharp contrast to his Gottingen colleague
Felix Klein who is reported to always have prepared everything in
meticulous detail. Klein was older and more famous than Hilbert
at that time, although nowadays he is perhaps best remembered
for his bottle, the “Klein bottle” being the famous one-sided sur-
face loved by all topologists.) The year 1897 was an appropriate
time for Hilbert to give an expository course on invariant theory
because in two papers [7], [8], in 1890 and 1893 he had solved the
major problems in invariant theory. Thus he was able in these lec-
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tures to incorporate the work
and revolutionary approach t

of Salmon [14],
1885, as one of
theory.

An m-ary n-form ¢ is a homogeneous polynomial of degree n
in m variables. (For n = 2, this is a quadratic form.) If we write
1, Za,..., T,, for the variables, then we may write

= E T Lo
¢' - ahlz---lmwllwz "'zm

for some suitable constants a;,;,.
constants are allowed to be comp.

For m = 2, the form is called a binary form, for m = 3 a
ternary form etc. The degree of the term Qiyiy. 5 T2
1 tig+ 44, (All terms of the form will have
because the form is a homogeneous polynomial.)

Suppose we make a linear change of variables from T1, T3,
oy Tm tO T], Th, L., T,,, i.e we write 7 — Px' where x = (z;),
&' = (x{) are column vectors and P = (p;;) is an m x m matrix.

Then the form may be written in terms of the new variables i

with new coefficients @i~ The determinant of the matrix P
is denoted ¢ and is call

ed the transformation determinant.
Hilbert, in his lectures, limits himself to binary forms but
says that generalizing to m-ary forms poses no difficulties in most
cases. He writes a general binary form ¢ in the manner

$enn) = 3 (7 auatag—

i=0

Modern Higher Algebra (fourth edition), Dublin
the best introductions to the subject of invariant

im- In Hilbert’s lectures these
lex numbers.

Ty 3
Ty s

(He always uses the word “coeflicients”
form is written in this way,
coefficients!)

An invariant of the form
I(ag,a,,.. -+an) of the coeffici

to mean the a; when the
L.e. not multiplied by the binomial

¢ above is a polynomial function
ents of ¢ which changes only by a
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factor equal to a power of the transformation detern’{.inant 4 when
one makes a linear transformation of the variables, i.e.

I(a’C})a":'l: cen aa;«") = 6PI(G01 ai, "'5a’ﬂ)

0 e a' are the coefficients

some natural number p. Here a;, 1y -es G :
f)?q& after a linear change of variables given by the matrix P. Ij c%r;
be shown by elementary considerations that I must nefi';essar y e
homogeneous of degree g where ng = 2p. We illustrate by a coup
of examples.

le 1 -
Exa?ﬁlp: aoz? + 2a171%2 + ax7% is a binary _form‘of degfie;et.Z.
I, = agas — a2lis an invariant of ¢. (Those fa,mlhla,r w1t.h qua ac,1 1;
fér;s Svi?l reéognize ¢ as a quadratic form of dimension 2 an
as the discriminant of this form.)
mple 2 . .

q]?)iaaol;“ + 4a1$?xz + SaQI%:cg + 4a3$1$§ + a4x§ is a binary form

= 1
of degree 4. _

i i t of ¢.

= — daqas + 3a2 is an invarian f . .
? = 2022a4 - ;@ag — af2a4 +2a;a2a3 — @ is also an 1mn':1r1al;ln::;l of ﬁ.
Osbserx?e that I; in example 1 and I3 in e?cample 2 are eacf dsn;ee
geneous of degree 2 and I3 in example 2 is homogeneous of deg
> Hilbert proceeds in the first half of tl}ese lecture-s_tf) chtali;
acterize those polynomials which are invariants by utilizing
operator D defined as follows:

a
8 d 9 . . Ly
—_—c 3 “+ + Ny

D e g e T e Oan

An invariant I is shown necessarily to be a homogeneoug poly_*no;
ial and it must satisfy DI = 0. Also it is shown that an 1111*«&1’121'11I
I ' al
I must be an isobaric function of ayg, a1y -, Gn- (A poﬂ}}lrnosr;?;n 2
in ag, ai an is said to be isobaric if each term has the
Qs ga R

= vg 1 g Yy 'S
weight, where the weight of a term ag°a*as® ... al* i
?

vi +2vp +3v3 + - 4 nem)
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CI;Illbert sho;vs that each isobaric homogeneous polynomial in ¢
wlh’.eél'e ,V Z: ;_)) Ideggee }glr a;]d weight p, where ng = 2p, is an invaria,lg'f;
: = Y. He also calculates the number of i
given degree g for a form . It in oxamas 1
: . ; turns out that I; in exam le 1
above is the only Invariant of a binary quadratic form andpthat

e linear transformation is appli i
ied -

ultane(?usly to all of the base forms. For example SPP o

have binary forms s B s

T
7 . :
hlanz) =3 ("o

=0

Pa(z1,22) = Z (T) bfﬂ:iib‘;n—i.

=0

Then a simultaneous invar;
ariant for the pair b1, @ i
: : 2 under a lj
transformation changing the a;, b; to a’l, b isja polynomi ll}e_&l’
" +m + 2 variables such that o e

!
I(ao,...,a;,bg,...,b;'n) =JPI(ao,.,.,an,bo,...,bm)

fi
iE; I?;)melzv natttural numbfar P, _where 4 is the transformation determ-
- {Note that any invariant of ¢, alone yields a simultaneous

invariant by viewing it as of d )
i egree ze . b
for an invariant of ¢, alone.) ° *0 n the by, and similarly
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Example 3
Consider the two binary cubic forms

$1(z1,T2) = aoxs + 3a123 29 + 3asz1 7% + sz

d2(z1,32) = bo:L‘? + 3b1$%$2 + 352:!71.’5% + b3$g.

One may check that I = agbs — 3a1by + 3asb, — asbg 18 a simul-
taneous invariant of these two cubic forms.

Starting with an arbitrary system of base forms, the simul-
taneous invariants of the system can in general be an infinite set.
It was Cayley who first conjectured that any system of base forms
has an invariant set which is finitely generated, i.e. there is a finite
subset I, Is,..., I}, of the invariant set such that each element of
the invariant set is a polynomial in I}, I5,. .., Ix. However, Cayley
soon began to doubt the validity of his conjecture and, in an 1856
memoir, he incorrectly claimed that the fundamental system of
invariants is infinite for forms of degree more than six. His mis-
take arose from wrongly taking certain syzygies to be independent.
(See below for more about syzygies.) Gordan, via cumbersome
calculations using the symbolic method, succeeded in proving the
finiteness theorem for an arbitrary system of binary base forms.
This achievement in 1868 was what gained Gordan his title of

“King of Invariants”. However attempts by Gordan himself and
others to prove finiteness for base forms of higher degree were
unsuccessful. The finiteness problem, i.e. the proof of Cayley’s
conjecture for an arbitrary system of base forms of any degree,
had become the main problem of invariant theory by the time
Hilbert came on the scene. (The earlier stages of invariant theory
had been concerned with finding the laws governing the structure
of invariants and then with the enumeration and production of
invariants systematically.) Hilbert solved the finiteness problem
by realizing that one only needs to prove the ezistence of a finite
basis (1.e. generating set) for the invariants. It was not necessary
to construct a basis explicitly, which is what Gordan and oth-
ers had tried to do. Hilbert’s solution when it appeared in 1890,
[7], caused consternation amongst mathematicians. His “existence
theorem” was not accepted by some of them as being a solution
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at a,lI.. Gordan commented about the proof, “Das ist nicht Math-
emgtlk. .Das ist Theologie”. Hilbert did indeed continue to work
on Invariant theory and in [8] he gave an essentially constructive
and algorithmic method for obtaining a finite basis.

In the second part of his Gottingen lectures, (lecture 34
onufa.rds}, he begins by proving the finiteness theorem for an
arbitrary system of binary forms. His proof uses a technique
called representation by root differences which involves the ele-
mentary symmetric functions. It does not generalize to systems
of forms of degree greater than two. A key lemma used in this
proof asserts that a system of linear equations with coefficients in
the_ natural numbers has a finite number of non-negative solutions
lVVthh generate all the other non-negative solutions. This lemma
is foundational nowadays in the theory of integer programmin
See [15}. Hilbert proceeds (in lectures 34-36) to prove his ger%—-
eral finiteness theorem as in his 1890 paper, using the key result
}cnown nowadays as the Hilbert Basis Theorem for polynomial
1degls_together with Cayley’s Q-process. The )-process is a differ-
entlaltlou process which behaves like a kind averaging and when
app%led repeatedly to a polynomial it vields an invariant. His
Basis Theorem yields a finite set Iy, Ir,..., I, such tha.t an
invariant [ is expressible in the form , g

I'=Rh+ B+ + R,

_for some forms Fy, F3,..., F,. Applying Q to each of the F; yields
mvariants 7; such that we can write

I'=Gih + Gy + - 4 Gy,

and each G; clearly has degree less than the degree of 7, since each
F; has degree at least one. By expressing each G, in tc;rms of the
set- I, 15,..., I and repeating as necessary, we can eventuall

write I as a polynomial in the set I, L, .., I.. The remaindei
o_f the lectures are based on Hilbert’s 1893 paper, (8], where he
gives his algorithmic method for constructing a ﬁni,te b,a,sis. From
a modern perspective there are two highly significant theorems

3 Hilbert and Algebraic Invariants 51

el

contained there, although their full importance and application
was not apparent then. In lecture 39 he gives the theorem now
known as the Hilbert Nullstellensatz, although he refers to [8] for
a full proof. This theorem concerning the zero sets of families
of polynomials is basic and fundamental for modern commutative
algebra and algebraic geometry. Lecture 47 describes the result
ugually known now as Hilbert’s Syzygy Theorem. The set I, I,
..., Ix is not likely to be linearly independent, i.e. there will be
a set of relations between them. This relation set also must have
a finite basis Ry, Ra,..., Ry by the finiteness theorem. There
may well be relations amongst the relations, i.e. expressions of

the form
S1B1 + SaRa+ -+ SR, =0.

Such an expression is called a syzygy of the first order. These
syzygies again form an ideal to which the finiteness theorem
applies and a finite basis exists. Any relation for this basis is a
syzygy of the second order. It may seem that this process can
be repeated ad infinitum, but Hilbert’s Syzygy Theorem says
that the chain of syzygies breaks off after finitely many steps. In
the last few lectures Hilbert outlines some applications of invari-
ant theory to geometry and discusses possible generalizations of
invariant theory.

4. The view from the end of the 20th century

In modern terms we may describe invariant theory as being con-
cerned with the linear action of a group G on a K-vector space V
for some field K. Writing K[V] for the ring of all polynomial func-
tions on V, the basic problem is to describe the subring K[V]%
of all polynomials invariant under the action of the group G. In
particular, we may ask whether K[V]% is finitely generated as a
K-algebra and, if so, find an algorithm for determining a set of
generators. In the classical case described above we have K = C,
the complex numbers, G = GL,,(C), the group of all invertible
m X m matrices with complex entries, V' an m-dimensional vector
space over K, and K[V] the ring of all homogeneous polynomials
in m variables. Hilbert proved that K[V]® is finitely generated as
a K-algebra in the classical case. Hilbert’s 14th problem at the
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1900 congress asked whether this finiteness theorem remains true
if G is an arbitrary subgroup of GL,,(C). It remained an open
problem until 1959 when Nagata [12] answered it in the negative
by producing an example of a group G with K [V]¢ not finitely
generated.

Three of Hilbert’s results in the above lectures have turned
out to have tremendous significance and importance and we will
describe now how they fit into 20th century algebra. The Hilbert
Basis Theorem is now usually stated in the form that the poly-
nomial ring K|z, zs, ... »Zn] i8 a noetherian ring. A ring is said
to be noetherian if every ascending chain of ideals terminates. It
is not hard to prove that this ascending chain condition for the
polynomial ring is equivalent to the ideals being finitely gener-
ated. The name noetherian is after Emmy Noether who, in the
1920’s and 1930’s, was the main influence in the development of
modern abstract algebra. It is curious that Emmy Noether began
her career as a student of Paul Gordan at Erlangen, writing a
thesis in 1907 on invariant theory. Gordan was still doing very
computational invariant theory. Noether later referred to invari-
ant theory as a “jungle of formulae” (formelngestriipp) and one
may speculate that it was her distaste for this kind of mathemat-
ics which led her to develop the conceptual approach of modern
abstract algebra.

Hilbert's Nullstellensatz is now usually regarded as the found-
ation of algebraic geometry, yielding the correspondence between
geometric objects (varieties) and algebraic objects (co-ordinate
rings), although we have seen that this was not the purpose for
which Hilbert originally developed it.

Hilbert’s Syzygy Theorem is now stated as a result in homo-
logical algebra, saying that the polynomial ring Clzy, s, ..., z,]
has finite global dimension (in fact dimension n), i.e. every mod-
ule over this polynomial ring admits a finite free resolution of
length at most n.

We finish with a few words ahout how invariant theory has
developed in the 20th century, although this author claims no
great expertise in modern invariant theory. Weyl [18] developed
invariant theory for all the classical Lie groups and linked it with
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representation theory. Mumford [11] developed a geometric 1mtar1;
ant theory. The survey by Kung and Rota, [9], desS:nbes mvar%?

theory from the viewpoint of modern cotnbmatorla.l theory. fure
books by Springer [14] and by Dieu40nne and Carrell [2] arli -
ther modern references on the subject. As a final remard, ie
note that the “death” of invariant theory has even attracted the
interest of a sociologist! See [4].
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SYLOW'’S PROOF OF SYLOW'’S THEOREM
Rod Gow

1. Introduction

While looking through some early volumes of Mathematische
Annalen, we came across a paper with the following title:

Théorémes sur les groupes de substitutions.

Par M. L. SyLow & FREDERIKSHALD en NORVEGE.

This was, of course, the paper containing Ludwig Sylow’s funda-
mental contribution to group theory, [9]. We thought it might
be interesting to see how Sylow actually proved his theorem and
then to comment briefly on some later proofs and earlier work. Tt
is likely that there have been prior discussions of the history of
Sylow’s theorem in the literature and we apologize for failing to
acknowledge any relevant publications. (Qur excuse is that the
UCD library is badly stocked with periodicals on the history of
science.)

Sylow’s starting point is as follows: On sait que si Pordre
d’un groupe de substitutions est divisible par le nombre premier
n, le groupe contient toujours une substitution d’ordre n. (The
notation of Sylow is a little wayward to modern tastes. His prime
is denoted by n, rather than the traditional p. Later in the paper,
the expression np + 1 appears as the number of Sylow subgroups,
but p denotes merely some non-negative integer. In virtually all
later literature relating to the proof of Sylow’s theorem and earlier
literature on Cauchy’s theorem that we have seen, the prime is rep-
resented by p. We shall follow standard practice and denote our
prime by p in this exposition, except when enunciating Sylow’s
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