ANALYSIS AND TOPOLOGY
IN MATHEMATICAL ECONOMICS

Alan F. Beardon

Abstract This article is an expanded set of notes of a lecture given
at University College, Cork in April 1993. Mathematical economics
provides a fertile source of applications of general topology, and we
illustrate this here, as well as discussing some topics which warrant
further study. '

1. The consumer

We wish to model the behaviour of a consumer faced with the task
of buying quantities 1, ..., zn of n goods Gy, . .., Ga. The bundle
of goods is z == (z1,...,%n) and, to avoid boundary conditions,
we usually assume that = lies in the open set

={zeR":2;,>0,j=1,...,n}

The good G has a unit price p;, the price vector p is (p1y s Pn)s
and the cost of the bundle z is the scalar product p.z. Given two
bundles z and y, the consumer is assumed to have a (weak) pref-
erence for one of them and, formally, this is described as follows.

Definition A weak preference relation is a binary relation = on
£ which is

(1) complete (either z > y or y > ; in particular, » = z), and
(2) transitive (x > y and y = z implies x = z}.

We make the natural definitions (i) z ~ y if and only if x = y
and y > = {the consumer is then said to be indifferent between
z and y), and (i) z > y if and only if # > y but not # ~ y
(the consumer then has a strict preference for z). Of course, we
assume that each good is desirable, so that if the bundle x contains
as much of each good as bundle y, and more of some good, then
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z > y. Finally, we allow ourselves to use z < y for y » = and
similarly for <.

It is easy to see that ~ is an ecquivalence relation. The
~equivalence class of = is denoted by I{x) and is called the indif-
ference class of . In general, each I{x) is an (n — 1)-dimensional
manifold (for example, a curve if n = 2) and these sets play a
basic role in any discussion of the standard problems in econom-
ics. We may ask, for example, what is the most preferred bundle
that can be purchased with a fixed sum of money; do we always
buy less of &; when p; increases (the answer is ‘no’), and so on.
For a general account of these ideas and those in the next section,
see [1], [2], [8] and [10].

2. Utility functions

The simplest way to construct a preference relation »= on {2 is to
take a real-valued function u(z1, ..., Z., that is strictly increasing
in each variable z;, and then define © » y if and only if u(z) >
u(y). With this, the indifference classes are the level sets of u, and
we say that u is a utility function representing >. As a (popular)
example, we mention the Cobb-Douglas utility function given by

w{zy,...,n) =27 ..oz, a; > 0.

Tt should be noted that we do not attach any significance to the
numerical value of u(z}, but only to the relative values of u(x)
and u{y). It follows that if w is a utility function representing >,
then so is h(u{x)) for any strictly increasing real function h.

A significant part of the theory is devoted to the problem of
when (or how) can we represent a given preference relation > by
a utility function. This is not a trivial question for, as the next
example shows, such a representation 1s not always possible.

Example: the lexicographic ordering Take n = 2 and define
{z1,22) = {y1,%2) if and only if either x; > y1, or both 1 = o
and z9 > yo. Note that in this case I{x) = { z }, a single point. To
see that this relation cannot he represented by a utility function,
we simply observe that if this were possible, each vertical line
in € would map by u» into an open interval, and these intervals
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would constitute an uncountable number of disjoint non-empty

open intervals in R. As this cannot be done, the function u cannot
exist.

It 18 natural to attempt to represent a preference relation by
a continuous utility function u, and if * can be so represented
then, for each y in Q, the set

Ay)={ze:z>y}={zeQ ulx)>uly))}
= u™ ufy), +20)

is open, asis B(y) = {z € R :y » z }. In fact, these conditions
are sufficient.

Theorem 2.1. A preference relation = on Q can be represented

by a continuous utility function if and only if for all y in Q, the.

sets A(y) and B(y) are open.

Proof: We have to construct a contimious utility function given
that all the sets A{y) and B(y) are open. Let D be the ‘diagonal’

in @ (given by z; = z; = --- = z,,) and consider the bundle y.-

It is not hard to see that I{y).meets D (otherwise A(y) and B(y)
disconnect D) and, as the goods are desirable, 7{y) N1 must be a
single point, say yp. We now define u : @ — R by «{y) = |lyp||,
and, because the sets A(y) and B(y) are open, it is easy to show
that » is continuous. This result is a simplified version of the mare
general result in the fundamental paper [21].

The construction of the map y — yp applies not just to D
but to any ray from the origin, and this really means that, in the
circumstances described in Theorem 2.1, each indifference class is
radially homeomorphic to that part of the unit sphere lying in 2,
and so is an (n — 1)-dimensional manifold.

3. Abstract preference relations

We now turn to discuss a preference relation =< defined on an
arbitrary non-empty set X (such circumstances are of interest to
some economists). The definition remains valid, but we lose the
concept of having ‘more’ of a good, and the topology on X (if
there is one) may be quite bizarre. However, the induced indiffer-
ence relation ~ is still an equivalence relation, and the problem
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of representing =< by a utility function remains. We say that the
pair {X, <) is a commodity space.

The question of representation of < by a continuous utility
function implies the existence of a topology on X, and even if
X comes equipped with a topology {for example, the Euclidean
topology), there is no reason at all to suppose that this topology
should be related in any intrinsic way to =. On the other hand,
there is a natural topology on X, namely the order topology To
generated by the intervals {z : 2 » y } and {z : y > ¢ }, and this
topology is obviously equivalent to the preference relation used to
define it. Note that the condition given in Theorem 2.1 can now
be rephrased as the set-theoretic inclusion Tp ¢ £, where £ is the
Euclidean topology on {). This type of inclusion arises frequently,
and for good reason. The natural question concerning continuity
is continuity with respect to the order topclogy 7o, and if u is
continuous with respect to T, and if Top C 7T, then w is also
continuous with respect to 7. For more details, see [2], [9], [10]
and [14].

‘We mention, in passing, that if S is the closed unit square in
R? ordered lexicographically, then the topological space (S, 7o)
is an example (different from the usual sin(1/x) curve) of a space
that is connected but not arcwise connected.

4. Existence of utility functions

If we now consider the commodity space (X, =) with the order
topology, the guotient space X/ ~ is linearly ordered in a natural
way and the order topology on this is indeed the quotient topology.
Abstractly, then, the existence of a utility function is equivalent to
the quotient space X/ ~ being order-isomorphic to a subset of R,
and there are various results of this type available. For example,
we have (see [12])

Theorem 4.1. An ordered set is order-isomorphic to a subset
of R if and only if it has a countable dense subset (in the order
topology), and has only countably many pairs © and y such that
z <y and {z,y)NX =10.

We call such a pair {z,y } a jump. If a linearly ordered set X
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has a jump {z,y }, then the disjoint open intervals (—oc,y} and
(z,+o0) disconnect X, so we have (see [11] and [12])

Corollary 4.2, If a commodity space (X, <) is connected in its
order topology, or in any larger topology, and if it has a countable
dense subset, then < can be represented by a utility function.

Another existence result ([2], [9], [10] and [19]) is

Theorem 4.3. Let (X, <) be a commodity space. Then < can be
represented by a utility function if and only if the order topology
To is second countable.

Proof: Tt is clear that if a utility function exists, then 7o is second

countable (because R is). Now let O}, Os, ... be a countable basis
for To. Given z, define

N#z)={n:0,C(-x,2)}, v(z)= Z i

neN ) <

It is clear that v(z) is weakly increasing with preferences. If r < y,
then (oo, x) is a proper subset of (—oo, y} (because the latter set
contains z) so that N(z), and hence v(z), is strictly increasing
with preferences and v is the required utility function. This com-
pletes the proof.

Yet another approach is to mimic the idea in the proof of
Theorem 2.1. Suppose for the moment, that a topological space
(X,T) is arcwise connected, and that it supports a preference
relation = with respect to which there is a maximally preferable
point z and a minimally preferable point w. Suppose also that
To C T. Join z and w by a curve v in X. As in the proof of
Theorem 2.1, every indifference class meets v and provided that
we can construct a utility function on ~, we can extend this to a

utility function on X. With a little more work these ideas lead to
(see [17])

Theorem 4.4. Let (X, 7)) be an arcwise connected topological
space, and let = be a preference relation on X such that To < T
If X contains a countable subset X, such that for all z in X there

e
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are points a and b in Xg such that a X ¢ < b, then X can be
represented by a utility function.

Finally, we observe that each preference relation = on X is a
subset of X x X, and that this space carries the product topology.
Ags the class of all subsets of a topological space also carries a nat-
ural {product) topology, it follows that there is a natural topology
on the space of all preference relations. With this, we can begin to
discuss more sophisticated results (and problems): for example,
under certain circumstances, we can find utility functions which
are jointly continuous with respect to both = and =.

5. The non-existence of utility functions

Preference relations which cannot be represented by a utility func-
tion are hard to find; indeed, the lexicographic order (or some vari-
ation of it) seems to be the only explicit example that is known.
A more sophisticated (and implicit) example is that of the ‘long-
line’. :

Example: the long-line A linearly ordered set X is well-ordered

by < if every non-empty subset Xp of X has a smallest element,

and (assuming the Axiom of Choice) every set can be well-ordered.
Let A be any well-ordered, uncountable set ordered, say, by <.
Now construct another well-ordered set BB as follows:

Case 1. if, for each a in A, (—o0,a) is countable, we put B = A;
Case 2 if there exists some a for which (—o0,a) is uncountable,
let b be the smallest such a (which exists as A is well-ordered) and
put B = (—o0, b}

It is immediate that (in both cases)

(1) B is well-ordered (it is a subset of A);

(2) for all z In B, (—oo, ) is countable;

{3) B is uncountable;

(4) for each % in B, there is a unique #' in B such that ' <z and
(z, 2"y =0.

Note that (4) holds because given z in B, (2} and (3) imply that
there is some t in B with & < £, and the well-ordering implies that
the set of all such ¢ has.a smallest member z'. The key properties
of B are expressed in the next result.
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Theorem 5.1. The ordered space (B, <) has the properties
(a) for each z in B, the order < on (—oo,z) can be represented
by a real-valued function;

{b) Bthe order < cannot be represented by a real-valued function
on B.
Proof: It is well-known (and easy to prove) that any countable
set can be mapped in an order-preserving way into the set of
rational numbers; thus (a) follows. On the other hand, < cannot
be represented on B by a real-valued function u, for if it could
then the intervals (u{z), u(z")) as z varies over B would constituté
an uncountable set of pairwise disjoint subintervals of B and we
know that this cannot happen. Note that (b) is also a consequence
of Theorem 4.1 as, by (3) and (4), B has uncountably many jumps.
N There are results which suggest that, under fairly weak con-
le:,lf)I]S, any preference relation which cannot be represented by a
utility function must look (roughly speaking) rather like either the
lexicographic order or the long-line ([17]). This seems to me to
be an area worthy of much more study; there is a need to under-
stand and illustrate the reasons why a preference relation cannot
be represented by a utility function.

6. The existence of continuous utility functions

It.is a rather surprising fact that the continuity of utility functions
with respect to the order topology is not an issue at all. We have

Theoren:x 6.1. If % can be represented by a utility funetion on
X, t‘hen it can also be represented by a utility function that is
continuous with respect to the order topology on X.

_ Clearly, if < can be represented by a continuous utility func-
tion u on X ,-then A(u(x}) is also a continuous utility function
for every continuous map A : u(X) — R. It is natural to identify
(that is, not distinguish between) the functions u and hu when h is

a hoineomorphism, and with this we have the following uniqueness
result.

The'orem 6.2. Any two coutinuous utility functions representing
= differ by composition with a homeomorphism.
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The original proof of Theorem 6.1 was given by the economist
Debreu (1952) who, for this purpose, proved

Theorem 6.3: the Gap Theorem. Let E be a subset of R.
Then there is a strictly increasing map ¢ : E — R such that the
complement of ¢(E) has no bounded components of the form [a, b)

or (a,b].

The significance of the Gap Theorem is that if we have a
utility function u on X, and if we take E = u(X), then we find
that ¢u is a continuous utility function. The original ‘proof’ of the
Gap Theorem was simply to ‘collapse’ all of the offending intervals
la,b) and (a,b] to a single point: however, it was soon realized
that this argument is not valid because in some cases (in which E
has measure zero) this would also collapse E to a single point. A
valid argument seems to require (in one form or another) a process
which at the same time ‘expands’ E (possibly from zero measure
0 positive measure) and collapses the intervals in its complement.
There are now a variety of proofs of the Gap Theorem available
(see (3], [5], [7], [9], [13], [16] and [20]), and the next result (5]
(based on the fundamental paper [21] by the economist Wold in
1943) contains, as a Corollary, the Gap Theorem and several other
important results in this area.

Theorem 6.4. Let ~ be an equivalence relation on the closed
interval [0, 1] with the property that each equivalence class is a
closed interval. Then there is an increasing continuous function
w:[0,1] = [0,1] such that u(z) = u(y) if and only if z ~ y.

To relate the Gap Theorem to a more concrete example,
consider for the moment a strictly increasing map f of [0,2] to
[0,1]U(2,3]. The map is not continuous (because the complement
of its range has a component that is a half-open half-closed inter-
val) and, equally importantly, the set [0, 1] is open in the subspace
topology of f{E) but not in the intrinsic order topology (namely,
the order topology derived from the induced order on f(E)). More
generally, given a subset K of a linearly ordered space X, K car-
ries both the subspace topology and its own intrinsic order topo-
logy (found by first restricting the order to K and then creating
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the corresponding order topology), and these two topologies need
1(1}0t b;hthe same. The ‘gap condition’ on the range ¢(E) in the
ap lheorem is precisely the condition that th i
e e ese two topologies
- 'These.ideas Igad to a study of general questions about con-
tinuity of increasing functions between linearly ordered spaces
and we can establish the following general result (see [4]) :

Theorem 6.5. Let X andY be linearly ordered spaces, and sup-
pose that the subspace topology and the intrinsic orderJ topology
on a subset E of X are the same. Then for every strictly increas-
ingmap f: E =Y, themap f 1. f(E) — E is continnous {with
respect to the subspace topologies).

Observe first that the result generalizes the well-known ele-
mﬁefuary result that if f : [a,8] = R is strictly increasing, then
F77 v f(la,b]) — [a,b] is continuous (most elementary’ texts
assume, unnecessarily, that f is continuous). Indeed, this follows
from' Theorem 6.5 because on any compact interval the subspace
and intrinsic order topologies coincide.

Next, if we consider an increasing map f : E - f(E) which
.haslth-e property that for both E and f (E) the subspace and
intrinsic order topologies coincide, then, by Theorem 6.5, f is a
homeomorphism from E to f(E). If this is taking pla,ce, in the
context of the real line, the statement about the two topologies
can be replaced by a statement about half-open half-closed gaﬁs

gnzd this leads, ultimately, to the uniqueness expressed in Theorem

7. Utility functions with values in a linearly ordered
group

A major unresolved question is what can be said if ¢ given pref-
erence relation cannot be represented by o uttlity function? From
a pur.ely mathematical point of view, the insistence that utility
fum?tmns be real-valued is bound to lead to difficulties for after
all, if X is ‘very’ large, then the range of any utility function’ on X
must necessarily be correspondingly large to cope with this, and in
many case it will be significantly larger than R.. Indeed, it’ can be
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argued that to reject utility functions whose range is ‘larger’ than
R is simply refusing to tackle the real issue. It is natural, then,
to try to develop a theory of utility functions whose range can
be any suitably large ordered set. Without further restrictions,
however, this is an empty problem (for each ordered set X can
be represented by the identity map into itself, or by the quotient
map onto X/ ~). We need, then, to find a class of ordered sets
with some additional structure, and then allow a utility function
to map into one of these sets.

One possibility is to seek utility functions with values in a
suitable linearly ordered group (that is a group which is ordered
in a way that is compatible with the group operation) and to help
the theory along, there is a large theory of linearly ordered groups
available, [15]. Moreover, the theory of linearly ordered groups
contains much on lexicographically ordered products of groups, so
there does seem to be a strong link here with the earlier discussion.
It is perhaps worth noting that with its order topology, a linearly
ordered group becomes a topological group (that is, the operations
(g,h) — gh and g — g~! are continuous).

In fact, it is known that any preference relation = on any
space X can be represented by a utility function with values in an
abelian linearly ordered group. To see this, we take the group of

_ integer-valued functions on X which are zero except at a finite set

of points of X. The group operation is addition in the nsual way,
and we write f < g if f(2) < g(z), where z is the least preferable
point of X at which f and g disagree

We have not really solved our problem, however, for as a lin-
early ordered group is an ordered space, it supports its own order
topology and knowing this, we must surely seek the existence of a
continuous utility function. In this respect, there is an amusing,
and tantalizing, observation to be made. The very example that
is universally quoted as a preference relation which cannot be rep-
resented by a utility function, namely the lexicographic order on
the first quadrant, is itself a linearly ordered group with the group
operation

(2,9) & (u,v) = (u,y).

This means, of course, that the lexicographic preference relation
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can be represented by @ continuous utdity function with values in
an abelian linearly ordered group, namely the identity function
mapping 3 onto itself!

We end with an avenue for further study. The Gap Thecrem
has been proved for maps from R to R, and, in the light of the
remarks just made, we now ask for which linearly ordered groups
is there 3 corresponding ‘Gap Theorem’ available? If we could
show that R is the only linearly ordered group for which such a
result is true, then this would provide a mathematical Jjustification
for restricting our attention to real-valued utility functions. If, on
the other hand, there were other groups for which such a result
existed, it might lead to a theory of more general utility functions

which would, on mathematical grounds at least, have an equal
claim to our attention.
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