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NOTES ON APPLYING
FOR I.M.S. MEMBERSHIP

. The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member IR.£50.00
Ordinary member IRL10.00
Student member IRL4.00
ILM.T.A. reciprocity member IR£5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in

the Irish Republic, a Eurocheque, or an international money-
order.

. The subscription fee for ordinary membership can also be

paid in a currency other than Irish pounds using a cheque
drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$18.00.

If paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.
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. Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

. Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

. Please send the completed application form with one year’s
subscription fee to

The Treasurer, [.M.S.
Department of Physics

Regional Technical College, Cork
also University College, Cork
Ireland
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
31st March 1994

The Irish Mathematical Society held an ordinary meeting on
Thursday 31st March 1994 in the Dublin Institute for Advanced
Studies, 10 Burlington Road. Fourteen members were present.
The president, B. Goldsmith, was in the chair.

1. The minutes of the meeting of 21st December 1993 were
approved and signed.

2. Matters arising

It was reported that M. Tuite of UCG had been co-opted on to
the committee.

3. There was no correspondence.

4. Bulletin

It was reported that the committee appointed the following mem-
bers to form a bulletin editorial board: R. Gow, G. Lessells, M. O
Searcoid and M. Tuite. The editor reported that the bulletin is
fairly well on schedule but that more material is required for the
1995 issues. The editor encouraged members to submit articles
which might appeal to a general mathematical audience.

5. Subcommittee to manage interim affairs

It was reported that the following committee members: D. Hurley,
E. Gath, P. Mellon and M. Vandyck, were appointed to form a
subcommittee which will manage the affairs of the society between
committee meetings. ‘

6. Treasurer’s business

The treasurer’s report was circulated. A proposal to accept this
report was seconded and unanimously accepted.

As future bulletin publication costs will be considerable it
was noted that collection of subscriptions should be a priority.
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The treasurer reported that many members were in arrears with
their subscriptions and announced that the subcommittee would
be taking steps to correct this.

The possibility of corporate sponsorship and an increase in
subscriptions were briefly discussed

7. September Meeting

Preparations for the September meeting are well under way. Pro-
visional dates for the 1995 September meeting are 7th and 8th
September.

Other business

It was suggested that the subcommittee on behalf of the society
make a formal submission to the Science, Technology and Innov-
ation Advisory Council on matters to be considered in the pro-
duction of the forthcoming white paper on science and technology
policy. A discussion took place on this matter. The following
points were made:

e In the development of science and technology it is counter-
productive to take a short term economic perspective. In the
long run, any “knowledge based” economy must have a solid
research base in the mathematical sciences as this underpins
most of today’s scientific and technological research.

e The mathematical sciences community should be represented
at every level of the “new” science council.

Members were asked to send their suggestions for the submission
to the secretary via e-mail before 15th April. The subcommittee
will consider such suggestions and formulate the submission by
the end of April.

The meeting closed at 1.15pm.

Pauline Mellon
University College Dublin.

Conference Announcement

The Legacy of
GEORGE BOOLE

UNIVERSITY COLLEGE, CORK, IRELAND
28TH-30TH JUNE, 1995

In 1995, University College, Cork will celebrate the 150th
anniversary of its foundation. As part of this celebration, the
University will hold a Conference honouring the genius of Gf’zorge
Boole, who was its first Professor of Mathematics.

T.‘he.last major Conference on Boole was held in 1954. Since then
significant advances have been made in many areas influenced b3;

him, 50 the time is right for a re-assessment of his contribution to
learning.

Speakers who have accepted the invitation to participate include:

G. K. Batchelor (University of Cambridge)
Robert L. Devaney (Boston University)
Keith Devlin (St Mary’s College of California)
L. Grattan-Guinness (Middlesex University)
Theodore Hailperin (Lehigh University)
Desmond MacHale (University College, Cork)
John McCarthy (Stanford University)
Roger Penrose (University of Oxford)

ORGANIZING COMMITTEE

James Bowen (Computer Science, UCC)
Donal Hurley (Mathematics, UCC)
Desmond MacHale (Mathematics, UCC)

" Lucette Murray (UCC 150)

For further enquiries: UCC 150 Office, UCC.
Tel: 021-276871 Ext: 2090 Fax: 021-276647 e-mail uccl50@iruccvax.ucc.je




RR HOLLAND

OBLEM OF FINBA
LYNOMIALS

REMARKS ON A PR
CONCERNING TRIGONOMETRIC PO

David H. Armitage
Let P, denote the set of all non-negative trigonometric polynomi-
t n, normalized to have constant term equ

als of degree at mos
to 1. Thus a typical clement of Pn has the form

p(t) =1+ }:(aj cosjt +bj sinjt) >0 for all real t.
j=1

A problem posed by Holland {1, Problem 4.26) essentially asks for

the value of 5
1 ™
Anzsup—-j t))? dt.
9 5 Jo (p(1)
A much simpler problem is the determination of
M,, = sup max p(t)-
pEFA

[7; pp- 78-79]). 1t will be
ily to rough
hort proof see [2;
n fact if

This was solved by Fejér [4] (or see
helpful to discuss this first, for it leads eas
A,,. Fejér showed that M, =n+1 for a s
He also showed that M, is an attained supremurm: i
(1)

(ncost + (n—1) cosZt+---+cosnt),

2
Rt =1
an () + n+1
then gn € Pn (for an easy calculation shows that
() = —— (sin{(n+ yiy/end "0 (0<t<2m)
™\ = 3183 ) =

4

A Problem of Finbarr Holland
5

and

2

max gn(t) = ga(0) = 1 +
n+1

(pt{n-D+ - +1)=n+l

Goldstein and M
cDonald [6] ob _
to bounds on A, as follows. If[p]; Z }waf}?ethat Fejéi’s rositlt leads
Ty T1

1 [Qw
— (p(t))*dt < L e
o ). (t))*dt < o— max p(t)fO p(t)dt = max p(t) < n+ 1

On the other hand,

1 27
o9 (qn(t) 2dt = ‘2_
2r Jq ) 1+(n+1)2(n2+(n_1)2+__'+12)
nen+3)
) 3(n+1)
> 3n+1).

Hence 2/3 < A /(
; +1) <1
favouring th i < 1. In [6] there i .
C' 213 1], Tn Tatt, a proof of hss ot o to & Bt
s ’ i - s to a limit
C = 0.68698 ct, a proof of this conjecture, yieldi .
and Rumsey [5]‘ 1ISnlmphClt in earlier work 0f1 é;rlgil;géhe Va%ue
and MeDorald i2 T;Vork based partly on [5] Brown’ GOdeml(?,h
Ay <14 (n+ 1’)0 feOI'em 2] showed furthe;" that (;1 +011d5te1n
are used in both [5] ax?; all n > 1. Quite intricate ar o=
elementary, self-contain d[QL and it seems worthwhile toguments
. Y e -
existence of the limit C. and comparatively short proofg t);etig

Theorem. The
. se
2/3,1] and quence {A,/(n + 1)) converges to a limit C in
=+
inf An/(n+1). @)

The main st in ou P y
€D 1N our proc f is to establish the ineq ualit
1

Ankyk—1 A
nk+k ~n+l

(k>2,n>1). (3)
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i nd let C be defined by
he moment that (3) is true & etined 2
?;)pp;siz fﬁm;t Oeand let N be such that A 11\1; {G S\Tt -E—I&)‘Fj)k(n) o
. :o the least integer such tha :
ke N§ -|1~ ?)nk?(frf)(rg :S-:;T +1, and hence using (3) and the obvious
ES? t(hat (Aq) 18 non-decreasing, we obtain

An ANkmrkeI-L (N + 1)Ilc(n)
a1l (N +1)k(n) n+

An
= N+1

(1+n+1),

1) = C.
that lim sup An/(n + 1)<C+e and hence An/(n+ )
80 -
We write

27

1 2

= p(t))"dt-

J(p) =5 fo (
; i then
To prove (3), it suffices to show that if p € Prktk—1:
4

J(p) < k. (4)

Let such a function p be given by

nk+k—1 o
s =1+ D (ajcosgt+d;sing)

j:l

Since p = 0,
k—1 2m
1 f t + 2mm/k)dt
W o p(t)p(
v 2m :L;l 0

k-1
nk+k—1 2
2 amjm/k)
L1 12 z {(a?+bj)§ cos(2m) / }

j:l ity
nk+k—1 il - 2 2
1 2. 2y kD (a + bik)s
- 5 1)+ 5k (O
=k-1 2 Zl (a5 %07 3 =1
T

] A Problem of Finbarr Holland

the last-written equation follows from the fact that

k—1
- _Jk—1 ifklg
mz:lcos(Emj'ﬁ/k) = { _q kS5,
Hence
nk+k—1 1 n
J(p) =1+ 5 ; (a?+0b5) <k (1 + Qg(aik + bﬁk)) . (5)
Note that
1 n
1+ 3 Z(a’%k + b)) = J(q), (6)
=1
where

glt)=1+ Z((Igjc cos £t — by, sin £t). (7)
£=1
If we can show that ¢ is non-negative, then we shall have g € P, -
and hence J(g) < A,. From (5) and (6) it will then follow that
J(p) < kJ(q) < kA,, and (4) and hence (3) will be established.

To show that ¢ is non-negative, we first associate to p the
harmonic polynomial h defined by

nk+k—1
h(re) =1+ Z 71 (a; cos jt + b, sin jt).

=1

Let A denote the unit disc. Since h(e®) = p(t) > 0 for all ¢t €

[0, 27], we have 2 > 0 on A and hence, by the minimum principle,
h>0on A. Also define K on A by

oo
K(re) =142 Z?"f cos £t.
=1

(8)

It is easy to verify that

. 1 —¢2 )
K it — it
(™3 1—2rcost -+ r2 +1l (re® €:4).
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(In fact, K is the Poisson kernel of A with pole 1.) Since the
series in (8) 18 jocally uniformly convergent on A, We have for all

r € (0,1) and all real 0,

2
0< S f h(re“)K(Te“‘“”))dt
2T g

oo nk+k—1 27
1o g ; _ .
=1 —E E ! j i+ b t ekt + £0)dt
+ PIT ( T j;) {a;cos] ; sin j ) cos( ) )

j=1

=1% ZTE+£k(a£k cos 06 — bui sin £0)-
=1
action g defined by (7) is
d, as explained earlier, (3) now follows and
therefore (An/(n+ 1)) converges to the limit C given by (2). The
bounds on Ax obtained from Pejér’s work show that 2/3 < Cc <1
Calculations using Mathematica and based on 2 representa-
tion of An obtained by Goldstein and McDonald 6, Corollary 2|
suggest the values given in the table below. 1 am grateful to Tony
Wickstead for his help with these calculations. Our values for
L As confirm those obtaine

Letting 7 — 1— W€ find that the fu

indeed non-negative an

d in 6, p.87], except for a small

Az, .
discrepancy in the vatue of Az
n An An/n+1)
1 1.5 75
9 9.142857142... 714285714...
3 9 808840165... 702210041,
4 3.4834502..... 6966900.....
5 4.1622565....- 6937094.....
6 4.8434275..... 6919182.....
7 5.5260645..... 6907580....-
g 6.2096738..... 6399637.....
9 6.8939613..... 6893961.....

To the best of my knowledge, the conjecture ©

decreasing remains open-
QOne obvious generalization of Holland’s gue

1 2w
Ano = SUpP —f (p(£))*dt (> 0).
pEPR 2w Jo

gtion concerns

hat (An/(n+1)) 18

(2l
3]

[4]
[5]

7]

| A Problem of Finbarr Holland
9

Ifo < 0 i
o < :C :‘:e: zl;en Il-Iolder’s inequality shows that A, o < A
end since ve ¢ 1:61ha ways take .p(?f) = 1, it follows thgfj( Ry .
, then there exists a positive constant ¢ g e ;1 }chfor
o Suc! atb

_— caln +1)* 1 < Apo < (n+1)22
ere . .
i theelélv{)rpefb bound is obtained from Fejér’s result M,
er bound is obtained by estimating u n=n+1

2
A (gn(1))>dt,

where ¢, is given b

- v (1). Tt .

1ok, . seems plausible that i

Ay exists when @ > 1, but this a at limn oo (n +
question, EXCept for @ = 9. ppears to be an open
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ANALYSIS AND TOPOLOGY
IN MATHEMATICAL ECONOMICS

Alan F. Beardon

Abstract This article is an expanded set of notes of a lecture given
at University College, Cork in April 1993. Mathematical economics
provides a fertile source of applications of general topology, and we
illustrate this here, as well as discussing some topics which warrant
further study. '

1. The consumer

We wish to model the behaviour of a consumer faced with the task
of buying quantities 1, ..., zn of n goods Gy, . .., Ga. The bundle
of goods is z == (z1,...,%n) and, to avoid boundary conditions,
we usually assume that = lies in the open set

={zeR":2;,>0,j=1,...,n}

The good G has a unit price p;, the price vector p is (p1y s Pn)s
and the cost of the bundle z is the scalar product p.z. Given two
bundles z and y, the consumer is assumed to have a (weak) pref-
erence for one of them and, formally, this is described as follows.

Definition A weak preference relation is a binary relation = on
£ which is

(1) complete (either z > y or y > ; in particular, » = z), and
(2) transitive (x > y and y = z implies x = z}.

We make the natural definitions (i) z ~ y if and only if x = y
and y > = {the consumer is then said to be indifferent between
z and y), and (i) z > y if and only if # > y but not # ~ y
(the consumer then has a strict preference for z). Of course, we
assume that each good is desirable, so that if the bundle x contains
as much of each good as bundle y, and more of some good, then

10

=

=
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o

z > y. Finally, we allow ourselves to use z < y for y » = and
similarly for <.

It is easy to see that ~ is an ecquivalence relation. The
~equivalence class of = is denoted by I{x) and is called the indif-
ference class of . In general, each I{x) is an (n — 1)-dimensional
manifold (for example, a curve if n = 2) and these sets play a
basic role in any discussion of the standard problems in econom-
ics. We may ask, for example, what is the most preferred bundle
that can be purchased with a fixed sum of money; do we always
buy less of &; when p; increases (the answer is ‘no’), and so on.
For a general account of these ideas and those in the next section,
see [1], [2], [8] and [10].

2. Utility functions

The simplest way to construct a preference relation »= on {2 is to
take a real-valued function u(z1, ..., Z., that is strictly increasing
in each variable z;, and then define © » y if and only if u(z) >
u(y). With this, the indifference classes are the level sets of u, and
we say that u is a utility function representing >. As a (popular)
example, we mention the Cobb-Douglas utility function given by

w{zy,...,n) =27 ..oz, a; > 0.

Tt should be noted that we do not attach any significance to the
numerical value of u(z}, but only to the relative values of u(x)
and u{y). It follows that if w is a utility function representing >,
then so is h(u{x)) for any strictly increasing real function h.

A significant part of the theory is devoted to the problem of
when (or how) can we represent a given preference relation > by
a utility function. This is not a trivial question for, as the next
example shows, such a representation 1s not always possible.

Example: the lexicographic ordering Take n = 2 and define
{z1,22) = {y1,%2) if and only if either x; > y1, or both 1 = o
and z9 > yo. Note that in this case I{x) = { z }, a single point. To
see that this relation cannot he represented by a utility function,
we simply observe that if this were possible, each vertical line
in € would map by u» into an open interval, and these intervals
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|
Pk

would constitute an uncountable number of disjoint non-empty

open intervals in R. As this cannot be done, the function u cannot
exist.

It 18 natural to attempt to represent a preference relation by
a continuous utility function u, and if * can be so represented
then, for each y in Q, the set

Ay)={ze:z>y}={zeQ ulx)>uly))}
= u™ ufy), +20)

is open, asis B(y) = {z € R :y » z }. In fact, these conditions
are sufficient.

Theorem 2.1. A preference relation = on Q can be represented

by a continuous utility function if and only if for all y in Q, the.

sets A(y) and B(y) are open.

Proof: We have to construct a contimious utility function given
that all the sets A{y) and B(y) are open. Let D be the ‘diagonal’

in @ (given by z; = z; = --- = z,,) and consider the bundle y.-

It is not hard to see that I{y).meets D (otherwise A(y) and B(y)
disconnect D) and, as the goods are desirable, 7{y) N1 must be a
single point, say yp. We now define u : @ — R by «{y) = |lyp||,
and, because the sets A(y) and B(y) are open, it is easy to show
that » is continuous. This result is a simplified version of the mare
general result in the fundamental paper [21].

The construction of the map y — yp applies not just to D
but to any ray from the origin, and this really means that, in the
circumstances described in Theorem 2.1, each indifference class is
radially homeomorphic to that part of the unit sphere lying in 2,
and so is an (n — 1)-dimensional manifold.

3. Abstract preference relations

We now turn to discuss a preference relation =< defined on an
arbitrary non-empty set X (such circumstances are of interest to
some economists). The definition remains valid, but we lose the
concept of having ‘more’ of a good, and the topology on X (if
there is one) may be quite bizarre. However, the induced indiffer-
ence relation ~ is still an equivalence relation, and the problem

= Analysis and Topology in Econormics 13

of representing =< by a utility function remains. We say that the
pair {X, <) is a commodity space.

The question of representation of < by a continuous utility
function implies the existence of a topology on X, and even if
X comes equipped with a topology {for example, the Euclidean
topology), there is no reason at all to suppose that this topology
should be related in any intrinsic way to =. On the other hand,
there is a natural topology on X, namely the order topology To
generated by the intervals {z : 2 » y } and {z : y > ¢ }, and this
topology is obviously equivalent to the preference relation used to
define it. Note that the condition given in Theorem 2.1 can now
be rephrased as the set-theoretic inclusion Tp ¢ £, where £ is the
Euclidean topology on {). This type of inclusion arises frequently,
and for good reason. The natural question concerning continuity
is continuity with respect to the order topclogy 7o, and if u is
continuous with respect to T, and if Top C 7T, then w is also
continuous with respect to 7. For more details, see [2], [9], [10]
and [14].

‘We mention, in passing, that if S is the closed unit square in
R? ordered lexicographically, then the topological space (S, 7o)
is an example (different from the usual sin(1/x) curve) of a space
that is connected but not arcwise connected.

4. Existence of utility functions

If we now consider the commodity space (X, =) with the order
topology, the guotient space X/ ~ is linearly ordered in a natural
way and the order topology on this is indeed the quotient topology.
Abstractly, then, the existence of a utility function is equivalent to
the quotient space X/ ~ being order-isomorphic to a subset of R,
and there are various results of this type available. For example,
we have (see [12])

Theorem 4.1. An ordered set is order-isomorphic to a subset
of R if and only if it has a countable dense subset (in the order
topology), and has only countably many pairs © and y such that
z <y and {z,y)NX =10.

We call such a pair {z,y } a jump. If a linearly ordered set X
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has a jump {z,y }, then the disjoint open intervals (—oc,y} and
(z,+o0) disconnect X, so we have (see [11] and [12])

Corollary 4.2, If a commodity space (X, <) is connected in its
order topology, or in any larger topology, and if it has a countable
dense subset, then < can be represented by a utility function.

Another existence result ([2], [9], [10] and [19]) is

Theorem 4.3. Let (X, <) be a commodity space. Then < can be
represented by a utility function if and only if the order topology
To is second countable.

Proof: Tt is clear that if a utility function exists, then 7o is second

countable (because R is). Now let O}, Os, ... be a countable basis
for To. Given z, define

N#z)={n:0,C(-x,2)}, v(z)= Z i

neN ) <

It is clear that v(z) is weakly increasing with preferences. If r < y,
then (oo, x) is a proper subset of (—oo, y} (because the latter set
contains z) so that N(z), and hence v(z), is strictly increasing
with preferences and v is the required utility function. This com-
pletes the proof.

Yet another approach is to mimic the idea in the proof of
Theorem 2.1. Suppose for the moment, that a topological space
(X,T) is arcwise connected, and that it supports a preference
relation = with respect to which there is a maximally preferable
point z and a minimally preferable point w. Suppose also that
To C T. Join z and w by a curve v in X. As in the proof of
Theorem 2.1, every indifference class meets v and provided that
we can construct a utility function on ~, we can extend this to a

utility function on X. With a little more work these ideas lead to
(see [17])

Theorem 4.4. Let (X, 7)) be an arcwise connected topological
space, and let = be a preference relation on X such that To < T
If X contains a countable subset X, such that for all z in X there

e
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are points a and b in Xg such that a X ¢ < b, then X can be
represented by a utility function.

Finally, we observe that each preference relation = on X is a
subset of X x X, and that this space carries the product topology.
Ags the class of all subsets of a topological space also carries a nat-
ural {product) topology, it follows that there is a natural topology
on the space of all preference relations. With this, we can begin to
discuss more sophisticated results (and problems): for example,
under certain circumstances, we can find utility functions which
are jointly continuous with respect to both = and =.

5. The non-existence of utility functions

Preference relations which cannot be represented by a utility func-
tion are hard to find; indeed, the lexicographic order (or some vari-
ation of it) seems to be the only explicit example that is known.
A more sophisticated (and implicit) example is that of the ‘long-
line’. :

Example: the long-line A linearly ordered set X is well-ordered

by < if every non-empty subset Xp of X has a smallest element,

and (assuming the Axiom of Choice) every set can be well-ordered.
Let A be any well-ordered, uncountable set ordered, say, by <.
Now construct another well-ordered set BB as follows:

Case 1. if, for each a in A, (—o0,a) is countable, we put B = A;
Case 2 if there exists some a for which (—o0,a) is uncountable,
let b be the smallest such a (which exists as A is well-ordered) and
put B = (—o0, b}

It is immediate that (in both cases)

(1) B is well-ordered (it is a subset of A);

(2) for all z In B, (—oo, ) is countable;

{3) B is uncountable;

(4) for each % in B, there is a unique #' in B such that ' <z and
(z, 2"y =0.

Note that (4) holds because given z in B, (2} and (3) imply that
there is some t in B with & < £, and the well-ordering implies that
the set of all such ¢ has.a smallest member z'. The key properties
of B are expressed in the next result.




o
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Theorem 5.1. The ordered space (B, <) has the properties
(a) for each z in B, the order < on (—oo,z) can be represented
by a real-valued function;

{b) Bthe order < cannot be represented by a real-valued function
on B.
Proof: It is well-known (and easy to prove) that any countable
set can be mapped in an order-preserving way into the set of
rational numbers; thus (a) follows. On the other hand, < cannot
be represented on B by a real-valued function u, for if it could
then the intervals (u{z), u(z")) as z varies over B would constituté
an uncountable set of pairwise disjoint subintervals of B and we
know that this cannot happen. Note that (b) is also a consequence
of Theorem 4.1 as, by (3) and (4), B has uncountably many jumps.
N There are results which suggest that, under fairly weak con-
le:,lf)I]S, any preference relation which cannot be represented by a
utility function must look (roughly speaking) rather like either the
lexicographic order or the long-line ([17]). This seems to me to
be an area worthy of much more study; there is a need to under-
stand and illustrate the reasons why a preference relation cannot
be represented by a utility function.

6. The existence of continuous utility functions

It.is a rather surprising fact that the continuity of utility functions
with respect to the order topology is not an issue at all. We have

Theoren:x 6.1. If % can be represented by a utility funetion on
X, t‘hen it can also be represented by a utility function that is
continuous with respect to the order topology on X.

_ Clearly, if < can be represented by a continuous utility func-
tion u on X ,-then A(u(x}) is also a continuous utility function
for every continuous map A : u(X) — R. It is natural to identify
(that is, not distinguish between) the functions u and hu when h is

a hoineomorphism, and with this we have the following uniqueness
result.

The'orem 6.2. Any two coutinuous utility functions representing
= differ by composition with a homeomorphism.
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The original proof of Theorem 6.1 was given by the economist
Debreu (1952) who, for this purpose, proved

Theorem 6.3: the Gap Theorem. Let E be a subset of R.
Then there is a strictly increasing map ¢ : E — R such that the
complement of ¢(E) has no bounded components of the form [a, b)

or (a,b].

The significance of the Gap Theorem is that if we have a
utility function u on X, and if we take E = u(X), then we find
that ¢u is a continuous utility function. The original ‘proof’ of the
Gap Theorem was simply to ‘collapse’ all of the offending intervals
la,b) and (a,b] to a single point: however, it was soon realized
that this argument is not valid because in some cases (in which E
has measure zero) this would also collapse E to a single point. A
valid argument seems to require (in one form or another) a process
which at the same time ‘expands’ E (possibly from zero measure
0 positive measure) and collapses the intervals in its complement.
There are now a variety of proofs of the Gap Theorem available
(see (3], [5], [7], [9], [13], [16] and [20]), and the next result (5]
(based on the fundamental paper [21] by the economist Wold in
1943) contains, as a Corollary, the Gap Theorem and several other
important results in this area.

Theorem 6.4. Let ~ be an equivalence relation on the closed
interval [0, 1] with the property that each equivalence class is a
closed interval. Then there is an increasing continuous function
w:[0,1] = [0,1] such that u(z) = u(y) if and only if z ~ y.

To relate the Gap Theorem to a more concrete example,
consider for the moment a strictly increasing map f of [0,2] to
[0,1]U(2,3]. The map is not continuous (because the complement
of its range has a component that is a half-open half-closed inter-
val) and, equally importantly, the set [0, 1] is open in the subspace
topology of f{E) but not in the intrinsic order topology (namely,
the order topology derived from the induced order on f(E)). More
generally, given a subset K of a linearly ordered space X, K car-
ries both the subspace topology and its own intrinsic order topo-
logy (found by first restricting the order to K and then creating
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the corresponding order topology), and these two topologies need
1(1}0t b;hthe same. The ‘gap condition’ on the range ¢(E) in the
ap lheorem is precisely the condition that th i
e e ese two topologies
- 'These.ideas Igad to a study of general questions about con-
tinuity of increasing functions between linearly ordered spaces
and we can establish the following general result (see [4]) :

Theorem 6.5. Let X andY be linearly ordered spaces, and sup-
pose that the subspace topology and the intrinsic orderJ topology
on a subset E of X are the same. Then for every strictly increas-
ingmap f: E =Y, themap f 1. f(E) — E is continnous {with
respect to the subspace topologies).

Observe first that the result generalizes the well-known ele-
mﬁefuary result that if f : [a,8] = R is strictly increasing, then
F77 v f(la,b]) — [a,b] is continuous (most elementary’ texts
assume, unnecessarily, that f is continuous). Indeed, this follows
from' Theorem 6.5 because on any compact interval the subspace
and intrinsic order topologies coincide.

Next, if we consider an increasing map f : E - f(E) which
.haslth-e property that for both E and f (E) the subspace and
intrinsic order topologies coincide, then, by Theorem 6.5, f is a
homeomorphism from E to f(E). If this is taking pla,ce, in the
context of the real line, the statement about the two topologies
can be replaced by a statement about half-open half-closed gaﬁs

gnzd this leads, ultimately, to the uniqueness expressed in Theorem

7. Utility functions with values in a linearly ordered
group

A major unresolved question is what can be said if ¢ given pref-
erence relation cannot be represented by o uttlity function? From
a pur.ely mathematical point of view, the insistence that utility
fum?tmns be real-valued is bound to lead to difficulties for after
all, if X is ‘very’ large, then the range of any utility function’ on X
must necessarily be correspondingly large to cope with this, and in
many case it will be significantly larger than R.. Indeed, it’ can be
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argued that to reject utility functions whose range is ‘larger’ than
R is simply refusing to tackle the real issue. It is natural, then,
to try to develop a theory of utility functions whose range can
be any suitably large ordered set. Without further restrictions,
however, this is an empty problem (for each ordered set X can
be represented by the identity map into itself, or by the quotient
map onto X/ ~). We need, then, to find a class of ordered sets
with some additional structure, and then allow a utility function
to map into one of these sets.

One possibility is to seek utility functions with values in a
suitable linearly ordered group (that is a group which is ordered
in a way that is compatible with the group operation) and to help
the theory along, there is a large theory of linearly ordered groups
available, [15]. Moreover, the theory of linearly ordered groups
contains much on lexicographically ordered products of groups, so
there does seem to be a strong link here with the earlier discussion.
It is perhaps worth noting that with its order topology, a linearly
ordered group becomes a topological group (that is, the operations
(g,h) — gh and g — g~! are continuous).

In fact, it is known that any preference relation = on any
space X can be represented by a utility function with values in an
abelian linearly ordered group. To see this, we take the group of

_ integer-valued functions on X which are zero except at a finite set

of points of X. The group operation is addition in the nsual way,
and we write f < g if f(2) < g(z), where z is the least preferable
point of X at which f and g disagree

We have not really solved our problem, however, for as a lin-
early ordered group is an ordered space, it supports its own order
topology and knowing this, we must surely seek the existence of a
continuous utility function. In this respect, there is an amusing,
and tantalizing, observation to be made. The very example that
is universally quoted as a preference relation which cannot be rep-
resented by a utility function, namely the lexicographic order on
the first quadrant, is itself a linearly ordered group with the group
operation

(2,9) & (u,v) = (u,y).

This means, of course, that the lexicographic preference relation
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can be represented by @ continuous utdity function with values in
an abelian linearly ordered group, namely the identity function
mapping 3 onto itself!

We end with an avenue for further study. The Gap Thecrem
has been proved for maps from R to R, and, in the light of the
remarks just made, we now ask for which linearly ordered groups
is there 3 corresponding ‘Gap Theorem’ available? If we could
show that R is the only linearly ordered group for which such a
result is true, then this would provide a mathematical Jjustification
for restricting our attention to real-valued utility functions. If, on
the other hand, there were other groups for which such a result
existed, it might lead to a theory of more general utility functions

which would, on mathematical grounds at least, have an equal
claim to our attention.
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USING APPLIED MATHEMATICS
IN INDUSTRIAL PROBLEMS

Stephen B. G. O’Brien

1. Introduction

Tradit; .
plaa;ilglotrlllai mathen}atlcs degree courses in Ireland have often
e, Coi empl;fasmd cl)ln the pure mathematics and even the
: T5es oflered have paid little attenti 1bili
les for applying mathematics t problems. o oot
i r 2 o real world probl
- ' . problems. In the U.S.,
ritain and in Europe, applied mathematicians have retained
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does not work! This is a far ery from starting with a neat, properly
formulated problem.

In my experience, formulation of the problem is possibly the
most important step during the complex process of solving an
industrial problem. A certain amount of basic physics is required,
and at the very least the ability to communicate with physicists
and engineers and ask them the right sorts of questions. Once
the basic physics has been captured, for example by writing down
a systemn of differential equations, physical insight is required to
make reasonable simplifications without losing the essence of the
problemn. Then a full non-dimensionalization should be carried out
leading (usually) to a reduction in the number of parameters in
the problem (via the Buckingham Pi theorem) and the possibility
for further simplification via asymptotic means by exploiting the
occurrence of small parameters. At this point, the system can
hopefully be analysed using asymptotic techniques or, if it is still
too complicated, it can be solved numerically. Having attained
solutions, the applied mathematician is certainly not yet finished.
The (non-dimensional) solutions must now be interpreted to see
what physical insight can be gained. Non-dimensional solutions
often contain a wealth of physical information, but this has to be
translated back into physics and suggestions made for improving
the industrial process under consideration.

To summarize, the applied mathematician’s approach to
industrial problems can be divided into four steps:

(i) formulation (physics to mathematics);

(ii) simplification, non-dimensionalization of mathematical prob-
lem;

(iii) analytical/numerical solution of mathematical problem;

(tv) interpretation (mathematics to physics).

Traditional applied mathematics courses have concentrated
on step (iii). Obviously a certain amount of physical intuition
is required, and one extremely useful way of developing students’
feel for physics is by including a physical fluid mechanics course at
undergraduate level. This has the advantage that it is a subject
rich in physical mechanisms (viscous effects, inertia terms, diffus-
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. slow ¢ i
flow, thin film flow, boundary layer flow). It should( certai;i;p;i%

be treated in a purely theoretical manner. Applied mathematics

' ouraged to take a certain numb
Eﬁysxcsdcourseg and 'shoul.d be exposed to the elements of msge?—f
g and noun-dimensionalization ag early as possible. Finally, the

' woil;z rest of 1;];1113 ia}r}i;icle will consider a physical problem which
on a e Philips Research Laboratories i i
(in Holland), and illustrate iversi  diffonttios fonms
- , s the diversity of difficulti i
industrial applied mathematici i il e s he
_ J 1an. In particular, whil
lation of the actual i i ot i o
physical problem is carried out i i
. in Sect
(followed approximately by steps (i) to (iv) above), it shouignb4
noted that in order to reach this point a : :

her e
" e, each 'Of the_se Sub—problems also T quires its OWIL formula—
o1, non—dlmensmnahzation, Simpliﬁcation etc
N .

2. Problem description

A dirt particle adhering t i ircui

the §tability and reliabilgityoo? I;higtle(g?%?(ff ICCI;C(;}; e oroases
particles of the order of 0.1pm are critical
methods (for example, scrubbing .
r{?moval forces proportional to cha

current interest,
' Existing cleansing
Jet cleaning) generally exert
surface area or volume of a

o AR
AT ey H<<R, (1)
le:]eie Fy is ‘the Londop—van der Waals force, A is the Hamaker
parts' aint, I; éi the particle radius and & is the gap between the
1cle and the substrate. During ¢l i
. : g cieansing a force must b -
ted on the particle which opposes the adhesion force. The mgt‘lel)(()ec{s
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mentioned above exert a force proportional to the second or third
power of the particle radius R. All other factors remaining the
same, if we reduce the particle size then the forces of adhesion
as in equation (1) will eventually dominate the removal forces.
A cleansing technique which just succeeds for R = 1pm will fail
when R = 0.1pm. A new cleansing method is illustrated in fig.1.
The substrate to. be cleaned is immersed in water and as the dirt
particle passes through the liquid/air phase boundary, the surface
tension forces which originate at the contaet line around the sphere
can oppose the adhesion forces, given favourable wetting condi-
tions (contact angles) i.e. conditions which result in a favourable
removal force ag denoted by F,. The crucial factor is that the
capillary forces can be shown to be linear in R, so the method is
essentially independent of particle size because the adhesion forces
(1) which cause the particle to stick to the substrate are also linear
in R. In the next section we summarize some of the experimental

work done.

2.1. Experimental work ‘

Precise details of the experiments are to be found in {2} and [4]. In
summary, a number of silicon substrates were contaminated with
TiO, (rutile), a-Fez O3 (haematite) and SiOp (amorphous silica).
Where necessary, the contaminated substrates were silylated to
change the contact angles favourably. The substrates were then
passed slowly through an air/water interface. Before and after
immersion, the particles were sized and counted using an electron
microscope. In general 70% — 97% of the particles were removed,
given favourable wetting conditions. The method was equally suc-
cessful for particles as small as 0.1pym provided the immersion
velocity was in the range 1pm/sec to several cm/sec. Almost no
particles were removed for velocities of the order of 10 cm/sec or

higher.

3. Develeping a mathematical model

Experiment suggests the existence of a critical velocity above
which the removing process no longer works. We begin by rul-
ing out gravity forces and hydrostatic pressure as being of any
importance, since they will both be O(R?) or smaller and can
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easil igl

e 01113; g)g Iil?own to be negligible for particles of radius less than
icrons. The surface tension forces can he shown to be:

| Fy = 2nRvysin Psin(f - ¢), {2)
7 being the surface tension of a liquid

. S . .

éd;esr :ll:z S;It;atlon depi(fted in fig.2 where the water level is risin

s anal 1u]:"s of a dirt particle (assumed spherical), @ is thgé
gle between water and the dirt particle and,gé = ¢(¥)

indi iti
tcates the position of the water/air interface at any time t. In

fig.2 i
&2 the net surface tension force F, clearly opposes the adhesion

force Fy. In order t
. 0 use (2) to write down the i
the surface tension forces as o function of the tinﬁa'gn?mde oy

-§as interface where we con-

surface and involves findi
: : Ing an ex i i
time t. This is done in Section 3‘1-1318351011 or g asa function of

In what follows we
) assume const
f'a.nalyms of the problem would mvolylés ant contact angle. A full

atla particular point the resultant
this case is wholly opposing the
the adhesion force, the particle w
wall. Tht'an, as in lubrication th

surface tension force (which in
f'a,dhesiou force) is greater than
ill tend to move away from the
€01y, we expect the generation
t resistance to the further
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where F,, represents the viscous forces, and it becomes clear that
the time for which the surface tension forces operate, and hence the
veloeity of flusd émmersion, is crucial to ensure that the separation
of the particle from the substrate is large enough, i.e. that the
area under the curve (representing the impulse delivered to the
particle} in fig.3 is as large as possible. We now propose a one
dimensional model for a particle moving away from a substrate.
Before we can proceed with formulating an equation of motion
for the particle, we must first obtain expressions for the different

forces acting.
3.1. Surface tension forces as a function of the time

The basic form of the surface tension forces is given by eqn (2)
with ¢ = ¢(t), the form of ¢ being as yet unknown. We consider
the situation occurring in fig.2 as the fluid level rises. The velocity
at which the undisturbed meniscus at oo rises is constant but will
not be the same as the rate of rise of the circle of contact on the
sphere. The former is given by: dhs/dt = V, where h,, is the
height of the water meniscus far from the particle (at oo}, t.e. the
globally observed height. We thus view the dynamic formation of
the meniscus as a series of quasi-steady state problems and seek
a relationship between the undisiurbed fluid meniscus height and
the position of the contact line on the sphere as indicated by the
angle ¢ or ¢q (see fig.2}).

We will not go into the details of solving this sub-problem
here (see for example [3]), but the shape of the fluid meniscus
is described by a non-linear ordinary differential equation and
on non-dimensionalizing and exploiting the occurrence of a small
parameter, € (~ 1073} which is the ratio between the particle
radius R and the capillary length a = (v/pg)/2, where p is liquid
density and g is gravitational acceleration, we obtain a solution
using matched asymptotic expansions and deduce the following
relationship between the physical height, h (see fig.2), and the

angle ¢ = (7/2 — ¢), defining the position of the circle of contact

as:

h=aeC(lne+In (COS $o + m) “lndta), ()
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where ¢ = cos(f + ¢y) cos %0, Y. being Euler’s constant. As A ig
known as a function of i, 80 too is @ or ¢g.

3.2. The viscous forces

As a particle starts 10 move away from the substrate {see fig.23,
We expect the occurrence of strong viscous forces Opposing the
Separation. In order to approximate this flow, we note that thig
so-called ‘squeeze Aow’ between the sphere and substrate may be
modelled using the lubrication approximation, ag the layer of Auid
Separating the two bodies is $0 thin. We again neglect the detajls
of this sub-problem. For the case in question where 5 <« R, it

was shown in [3] that the lubrication forces Opposing separation
are given hy:

portional to the velocity of removal. Beer drinkers wil] have exper-

lenced similar ‘squeeze flow’ phenomena while trying to lift thejr
glasses from g smooth wet table top!

4, Formulation, simpliﬁcation, solution and interpreta-
tion

4.1, Fermulation

Referring to fig.2 we consider force balance on 4 sphere moving
away from the substrate, the sphere being considered 2 particle.
Equilibrium occurs as resulg of g balancing of the inertial, sur-
face tension, viscous and adhesion (van der Waals) forces on the
particle. Then, considering eqns (1}, (2) (incorporating (6)) and
(6), we can formulate an initia] value problem non-dimensionalized
using the following scales:

. T « IV
z :_HT; t :7{, (7)

where z(t) is the separation between sphere and substrate. We

"-1
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thus formulate:

i) 1 dz* (8)

K3 = Gltx) = oy~ Mg

where G(tx) = sin [¢p(Rt™ [V)] sin [8 — ¢(Rt* /V)],
20, VEH A Y
K:T’ 6_H27127T’ ¥

i 1 num-
d p, is the density of the particie and Ca is theicszaé:);gg:gd o
be Jgph'le differentiation with respect to the time denoted
gei’ v:;slboundary conditions in dimensionless form
ot.

2(0) =1, &(0)=0, (9)

.
di( allng l]:la:t the partlcle Sta-rls f()llll I'eSt al a kIl()WIl (]J.Sla.n.ce
m
from the SubStI ate.

.2. Simplification ' -
o i sp(8) and (9) can be considered a mngolatr ps;"tgfllzathat
quijzlrin as K << 1 (see also [3]). However it tur
pro ’

. ; inertia
. . 8) ignoring the iner
ion obtained by solving eqn ( " ives
o Omerds Oiéﬁﬁznoily the first of the boundary conditions give
terms an

ition. Thus
i i igfies the second condi
i lution which also satis : s
Ii:e too?:li?nudloes not display boundary layer behaviour a

r -
ngeﬁ: and can be solved in closed form.

.3. Soluticn e
?Fh olution of (8) satisfying the first boundary condition of (9)
es

d neglecting the O(K} terms (this gives a Bernoulli equation)
and neg
is easily shown to be:
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T 2(t*) = exp (:\Q—{I(t*) - I(O)])

where
4
1) = f G*(r) dr.
4.4. Interpretation

_ T]:}e important factor in (10) is the 2
chngenswn]ess group v/uV (as
capillary number (g — LV

/A which identifies the
A =1/(3Ca)), the reciprocal of the

sible. (10) would traditionally h i

mathematician’s work b i
ut as point i i i
preseat phamn e a,S imporfam_ ed out in the introduction, the

In dimensional form the solution (

0= ew [ [ ho] -

10) becomes:

24 ox 2»7 t t 2 -
36mpuR P 3!13./ F‘é(T)dTJfO exp [‘ﬁf FqS(U)dU} dr

where F,(t) = g .
of fig.3 éﬁa(n) = Slm Cli(t) sIn(# — ¢{¢)). In this instance the relevance
. sty be seen. Decreasing the velocity of immersion

inc surface tension-tim
her . ‘ € graph and -
es the separation between particle and substrate.pApplicgga{;

of the results attained here to the physical problem (fig.1), which

i-aexl) (;I(t*)) /Ot* exp (H)%I(HO dp, "
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makes the rather crude assumption that the meniscus is axisym-
metric, in order to attain an estimate for the length of time for
which the fluid meniscus remains in contact with the sphere (fig.
1,80 =a=70° R=03um, p = 103%kgm s, 4 =1.510719],
p = 10%kgm™?), predicts a cut-off velocity of the order of 25¢cm/s.
Above this value the process should no longer work, although

‘experiment suggests that it is somewhat lower in the 10-15cm/s

range.

5. Discussion of the physical model

There are a number of factors in the physical process which pro-
duce uncertainties in the results, e.g. the Hamaker constant A4
and initial separation H (see (1)). The latter is taken here to
be Inm but Kim and Lawrence, [1], suggest that a more real-
istic value would be 0.6nm. A further possible source of error is
estimating when a particle is actually free from the substrate. As
the nature of the van der Waals forces is known to change for a
separation of 10nm, we arbitrarily assumed a particle to be free
when it reached this distance, which is ten times the initial separ-
ation. Nevertheless the approximate model derived here captures
the essential features of the experimental process, i.e. the signific-
ance of the viscous forces and the velocity dependent nature of the
mechanism. One dynamic factor missing from the model is the
variation of contact angle with substrate velocity for the simple
reason that no values of the dynamic contact angle for the case
considered in this paper are known, be it theoretically or exper-
imentally. Leenaars [2] assumes that the contact angle remains
constant.

The basic analysis identifies the capillary number as the most
significant dimensionless parameter and indicates that the critical
velocity of immersion can be increased by decreasing the ratio of
g/~ for the cleaning fluid. A further rather obvious improvement
is also indicated: the experimental process as shown in fig.1 has
the disadvantage that part of the removal power of the surface
tension forces is lost due to the effect of the inclination o. The
theoretical set-up in fig.2 removes this problem completely and |
results in a much higher theoretical critical velocity. In practice

~ this arrangement would be difficult to obtain when dealing with
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5- E
submicron particles. However, a more favourable arrangement
than fig.1 could be obtained by submerging the substrates at an
angle, thus striving for g set-up between the extremes of figs.]
and 2. This alsg has the advantage of speeding up the process
and of removing the uncertainty about the contact angle from the
analysis.
substrate
Fig. 2. Removal of particle from horizontal substrate.
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Fig. 1. Spherical particle adhering to substrate for slow and fas

during passage of phase boundary.
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Fergus Gaines

S.B. G, O’Brien, E The International Mathematical Olympiad (IMO) is the most
Centre for Industrial an ; prestigious mathematical competition in the world for pre-
University of Limerick : university students. Tt is held annually and the 1994 contest
Limerick. , L took place in Hong Kong in July. The number of countries and
: regions officially participating was 68. Each participating country
gent a team of up to six members. The competition consisted
of two four and a half-hour examinations, each exam made up
of three problems. Each student competed as an individual and

medals were awarded to the top performers.

IMO problems are celsbrated for their extreme level of dif-
ficulty and some of them can even defeat professional mathem-
aticians. It is no surprise, therefore, to find that a young stu-
dent stands little chance of success in the competition, without
a considerable amount of training. Some countries have a whole
series of mathematics competitions—one for each year of the school
programme-and in this way they can identify and encourage tal-
ented students from an early age. The f{irst task in the process of
choosing a team to represent Ireland in Hong Kong was to identify
suitable candidates for training. Because a certain basis of math-
ematical knowledge is required in order to benefit from the train-
ing programme, generally only students who have completed the
Junior Certificate are eligible. In November 1993 most seccndary
schools were invited to send up to three of their most mathemat-
ically talented pupils to attend training sessions in one of UCC,
UCD, UCG and the University of Limerick. From information
supplied by the Department of Education the top two hundred
performers in the 1993 Junior Certificate mathematics examina-
tion were also personally invited to attend. The training sessions

d Applied Mathematics,

35




IMS Bulletin 33, 1994

The Seventh Iris
urday, 7 May 1994 5
The top six perform

h Mathematica] 01
nd consisted of two three

-hour examinati
: : minations.
€rs In this contest were: .

5. Ri
6. I\R/Ila?kalguﬁgrlﬁ » 5t Munchen’s College, Limerick.
Dublin » Newpark Comprehensive School, Blackrock, Co

and these were invited to form
Kong. They all accepted the i

A final three-day training
University of Limerick from 29

the Irish team for the IMO in Hon
nvitation. s

camp for the team was held in the

. _ June to 1 Jul ini

s ¥. The tra

b ]:ign 1m1i>o.rtant for the students-as well ag concenlg"]:tgincamp

A to—slf ving strategies it gives the students the opportug 'i:m
now each other well, it helps to generate a team s;filri)tr

€ motivation of the students to do their

ympiad was held on Sat-

= The 35th International Mathematical Olympiad 37

tee in Hong Kong had formed a short list of 24 problems from all
those submitted. After three days of very long, and sometimes
acrimonious, meetings, the six problems for the competition were
gelected. Although problems submitted are supposed to be ori-
ginal, a number of problems on the list of 24 were rejected because
they, or problems very like them, had already appeared in other
competitions. There was some dissatisfaction expressed at the
quality of the shortlisted problems. Versions of the final six prob-
lems were prepared in the four official languages, English, French,
Russian and Spanish, and the official text agreed. Finally, trans-
lations were made into all the languages required by the students.
All the jury meetings took place in the Chinese University of Hong
Kong.

The team, accompanied by Donal Hurley, arrived in Hong
Kong on Monday, 11 July and were taken to their accommoda-
tion in summer camp-style residences in a rural part of Kowloon.
There was no contact of any kind between them and the team
leader until after the competition. The accommodation was
adequate, if a little spartan, and the students found the lack of
air-conditioning a bit trying in the humid, summer heat of Hong
Kong. They found it difficult to adjust to the Chinese food, but
they were able to buy food more to their taste in the local shops
and the local McDonalds! The opening ceremony took place on
Tuesday, 12 July, performed by the governor of Hong Kong, Mr
Christopher Patten. The first exam was held at the Chinese
University on Wednesday, 13 July when the first three problems
were examined in a four and a half-hour exam. I received the
exams of the Irish students that evening and began the work of
reading their answers. The second exam was held on the morning
of Thursday, 14 July and, that afternoon, all the deputy team
leaders moved from their accommodation with the students to
join the team leaders in the Panda Hotel.

Donal Hurley and I spent many hours reading the students’
work and working out for each student the marks he would be
expected to get, based on the marking scheme prepared by the
coordinators. We also spent a considerable amount of time pur-
suing some of the students’ lines of thought to see if they would
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lead to solutions. This needs to be done if a case is to he made
for extra marks. To give an idea of the amount of work involved,
it happened twice that more than three hours were spent on the
work of one student on one problem to get a complete understand-
ing of that piece of work. On Friday and Saturday, 15 and 16
July, we went seven times to the coordinators to agree the marks
to be awarded for each question. The seventh trip was needed
because John Sullivan had a particularly complicated (and essen-
tially correct) solution to problem no. 6 and a large amount of
time was needed to understand his work before it could be presen-
ted for coordination. The coordinators for each problem consisted
of a group of three local mathematicians. Donal Hurley and T
explained, in great detail, what each of the students had done on
that problem and agreed, in some cases after much argument, the
mark to be awarded to each student.

This year’s IMO exam was considered by most ohservers to
be somewhat easier than usual and this was reflected in the high
scores of many of the students. The rules of the IMO state that
medals can be awarded to at most half of the contestants. It is

are 1/3 and 1/2, respectively. A perfect answer to a question gains
7 points and, thus, the maximum number of points that 2 student
€an score is 42. Partial credit for a question is awarded, but a
student has to do some significant work hefore any marks at all
are given. The marks gained by the Irish students were:

Mark Dukes 11
‘Eoghan Flanagan 16
Mark Flanagan 10
Richard Murphy 15
Deirdre O’Brien 2
John Sullivan 14

Thus the team score was 68, which meant that Ireland got 49th
place out of 69 competing countries. In order to win a bronze
medal a contestant had to score at least 19 points, so the Irish
won no medals this year. However, since any student who does
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not get a medal and who scores 7 points 01}11 attlejsttonéocg}lf‘:;
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e The team scores, out of a maximum of 252, for the leading

ten countries were:

United States 252
- China ggz
Russia s
Bulgaria 321
Hungary oo
Vietnam
United Kingdom 206
Iran 203
Romania 123
Japan 1

It would not be possible for Ireland to participate in the IMS
without considerable support from maliy ﬁllale(zpl:h:i(;l) Ofia;??or
i i ly grate 0
. The organizers are extremely : § o
Eilr?zrslcial and fther assistance. The sponsors of the Irish particip
ation in the 1994 IMO were
An Roinn Oideachais
Forbairt -
University of Limeric .
Arts Faculty, University College Dublin
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Royal Irish Academy
Irish National Mathematics Contest.

I give here the six problems of the 35th IMO. Solutions are
given below on pages 74 to 76.

1. Let r and n be positive integers. Let ai, Az ..., a,, be distinct
elements of 1,2, n} such that whenever a; +a; < n for some
tand 7,1 <4 < 7 £ m, there exists k, where 1 < k < m, with
a: + a; = a,. Prove that

a1+a2+--'+am>n+1
— =T TOm .
m - 2

2. ABC is an isosceles triangle with AB = AC. Suppose that
(4) M is the midpoint of BC and O is the point on the line Al
such that OB is perpendicular to AB;

(%) Q is an arbitrary point on the segment BC different from B
and C;

(#it) E lies on the line AR and F' lies on the line AC such that B,
@ and F are distinct and collinear.

Prove that 0Q is perpendicular to EF if and only if QF = QF.

3. For any positive integer &, let f (k) be the number of elements
in the set {k + 1,k + 2,...,2k} whose base 2 representation has
exactly three 1.

(a) Prove that, for each positive integer m, there exists at least
one positive integer k such that fk) =m.

(b) Determine all positive integers m for which there exists exactly
one k with f(k) = m.

4. Determine all ordered pairs (m,n) of positive integers such
that

nd+1

mn — 1

Is an integer.

5. Let S be the set of rea] numbers strictly greater than —1. Find
all functions f: § 4 § satisfying the two conditions:
O @+ W) +3f@) =y + f(z) + yf(z) for all z and y in 8,

The 35th International Mathematical Olympiad 41

= i i -1<zx<0
(i) £(=) ig gtrictly increasing on each of the intervals
T

and z > 0.

6. Show that there exists a set A of positive integertshmthe ;};i
; infini S of primes there
i erty: for any infinite set pritt
fou?‘g:;gglnlzzggrs gz € A and n € A each of which is a product of
pos

k distinct elements of S for some &k > 2.

Fergus Gaines, .
Department of Mathematics,
University College,

Belfield,

Dublin 4.



DAVID HILBERT AND THE THEORY
OF ALGEBRAIC INVARIAN TS

David W. Lewis

1. Introduction

The Fhe(.)ry of algebraic invariants was at the forefront of math-
gmamcs in the latter half of the 19-th century. It attracted the
mterest of many top-class mathematicians. For example Cayle
and Sylvester in England were known as the “Invariant ’I‘Wiis”y
t':md when.Salmon in Dublin made useful contributions to the sub:
Ject the trio were christened by Hermite as the “Invariant Trinity”
Another Irish link with invariant theory is provided by Geof e-
Boole who spent much of his working life in Cork. In 1841 Boogl
.wrot? a paper [1] which is often regarded as ;
Invariant theory, and in 1845 he wrote another paper on the sub-
ject but seemed to do nothing further on invariants. (Admitted]
Boole was still in England when he wrote these papers. He moveg
to Ire}a,nd to become Professor of Mathematics at Quee-n’s Colie e
Cork in 1849). See [10] for an excellent account of the life and wogrlé
of ]A?,oole-. The Ttalian mathematician Fai di Bruno wrote a hook
on invariant theory which was highly regarded by Hilbert. In (e
many the first mathematician to draw attention to the 1;heor (13;
mvariants was Aronhold. He was followed by Clebsch and Gorfian
who wolrked extensively on the subject and developed symbolic
calctﬂat.lon in invariant theory. Indeed Gordan was known as
the “King (_)f Invariants” and apparently would talk intermin-
ably about invariant theory to anyone who was willing to listen
(The names of Clebsch and Gordan will be familiar to students of
quantum mechanics via the Clebsch-Gordan series and Clebsch-
Gordan ({oefﬁcients. The Clebsch-Gordan series played an import-
ant role in their theory of invariants of binary forms. See gVeyl

the beginnings of

42
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[19].) Their work involved massive calculations. According to [3],
there are papers of Gordan where twenty pages of formulae are not
interrupted by a single text word, and it is alleged that Gordan
often wrote only the formulae in his papers, the text being added
later by friends.

Although invariant theory was a piece of pure mathemat-
ics, attempts were made to make use of invariant theory in other
disciplines. For example, Sylvester in 1878, and later Gordan
and Alexejeff, tried to apply invariant theory to chemistry, in
connection with chemical valency. A brief account of this so-
called “chemico-algebraic theory” appears in [5, pp.366-368]. In
the period from 1885 to 1893 David Hilbert demolished the old-
style invariant theory by solving, in a novel and unexpected way,
the central finiteness problem of invariant theory. After Hilbert’s
work, many people thought that invariant theory was a dead sub-
ject. However it has refused to lie down and has resurrected itself
on quite a few occasions in the 20th century. Indeed, to quote
from the 1984 survey article by Kung and Rota [9], “the theory
of invariants, pronounced dead at the turn of the century, is once
again at the forefront of mathematics”. Today, invariant theory is
alive and well and the subjects of commutative algebra, algebraic
geometry, representation theory , and combinatorics each owe an
important debt to invariant theory.

2. David Hilbert

David Hilbert was born in 1862 in Konigsberg, then part of East
Prussia but renamed Kaliningrad after the Second World War and
now a part of Russia. Konigsberg has a long intellectual tradition,
especially in mathematics and philosophy. (Mathematicians will
all know of the famous “Koénigsberg bridge problem” solved by
Euler in the 18th century. The philosopher Kant was one of the
city’s most famous sons. Clebsch was also born in Kénigsberg
and attended the university there.) Hilbert went to university in
Konigsberg where he became a close friend of fellow student Her-
mann Minkowski, this friendship lasting until Minkowski’s early
death in 1909. After spending several very productive years lectur-
ing at Kénigsberg, during which time he did all of his important



44 IMS Bulletin 33, 1994 =

work in invariant theory, he was offered and accepted in 1895 5

many at that time. Hilbert s ent is li

‘ . i . o

v o pent the rest of his life in Gottingen

Saﬁstg}lbgt ha,s_ been described as “the last of the great univer-

o di‘;erszer hls lor;g career he made vital contributions to large

areas of mathematics. One mi ht

mathematics out of the 19t} ithe dt s
. : century and into the 20th cent

His famous list of unsolved problems at the International CI:)IK

;ige;i E;)Ins onedp?]jticular area of mathematical research for a period
an €0 move on to a different branch. Hj
work, according to [17], was roughly as follows: | reearh
1885-1893 - Invariant Theory
1893-1898 - Number Theory
1898-1902 - Foundati
o ndations of Geometry and of Mathematics in gen-
1902-1912 - Integral Equations
1912-1922 - Mathematica] Physics
i’flhi ;;;al;nisi;lﬁl];nber theorist Takagi visited Hilbert at Gottingen
u ert is reported to only have been being j
) ‘ _ eing inter-
zlsctgi'lijn talking about mtegral equations (the work of Takiginail;l
861 ert forms the beginnings of class field theory). See [13
ipl'l. 1g];bg T;ﬁfe 1Iwere exceptions to the list above. For example,
1ibert successfully solved Waring’s bl ‘
outstanding since 1770 about ex e Dbt B
pressing a natural number as
~sum of n-th powers. He produced this solution Just at the timf:

Elanagfeg to resuscitate Dirichlet’s Principle concerning the solu-
lon of boundary value problems, this being totally unrelated to
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the main research work he was pursuing at this period. It was in
the period on foundations of geometry that he made his famous
pronouncement about the axiomatic method-“One must be able
to say at all times-instead of points, straight lines and planes -
tables, chairs, and beer mugs”.

From 1912 on he worked on the idea of axiomatizing physics—
this having been proposed as his 6th problem at the 1900 Paris
congress. “Physics is much too hard for physicists”, he said. He
did not have much success however, the axiomatic method not
seeming to be suitable for physics.

For a full account of the life of Hilbert the reader should refer
to the book of Constance Reid, [13]. See also the book of Fang,

[3].
3. Hilbert’s 1897 lectures

In 1897 David Hilbert gave an introductory course of lectures on
the theory of algebraic invariants at the University of Gottingen.
These lectures, or rather a modern English translation by Rein-
hard C. Laubenbacher of the lecture notes, handwritten by Hil-
bert’s student Sophus Marxsen, have recently been published by
the Cambridge University Press, [6]. They provide a fascinating
view of invariant theory and a glimpse of what it must have been
like to have studied with Hilbert at G&ttingen at that time. The
course consisted of 51 lectures starting on 26 April 1897 and end-
ing on 6 August 1897, 3 lectures per week for 17 weeks. Sophus
Marxsen ended up with 527 pages of handwritten notes. As a
lecturer Hilbert was inspiring but he sometimes ran into diffi-
culty in a lecture because he had not prepared all the technical
details. (This was in sharp contrast to his Gottingen colleague
Felix Klein who is reported to always have prepared everything in
meticulous detail. Klein was older and more famous than Hilbert
at that time, although nowadays he is perhaps best remembered
for his bottle, the “Klein bottle” being the famous one-sided sur-
face loved by all topologists.) The year 1897 was an appropriate
time for Hilbert to give an expository course on invariant theory
because in two papers [7], [8], in 1890 and 1893 he had solved the
major problems in invariant theory. Thus he was able in these lec-
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tures to incorporate the work
and revolutionary approach t

of Salmon [14],
1885, as one of
theory.

An m-ary n-form ¢ is a homogeneous polynomial of degree n
in m variables. (For n = 2, this is a quadratic form.) If we write
1, Za,..., T,, for the variables, then we may write

= E T Lo
¢' - ahlz---lmwllwz "'zm

for some suitable constants a;,;,.
constants are allowed to be comp.

For m = 2, the form is called a binary form, for m = 3 a
ternary form etc. The degree of the term Qiyiy. 5 T2
1 tig+ 44, (All terms of the form will have
because the form is a homogeneous polynomial.)

Suppose we make a linear change of variables from T1, T3,
oy Tm tO T], Th, L., T,,, i.e we write 7 — Px' where x = (z;),
&' = (x{) are column vectors and P = (p;;) is an m x m matrix.

Then the form may be written in terms of the new variables i

with new coefficients @i~ The determinant of the matrix P
is denoted ¢ and is call

ed the transformation determinant.
Hilbert, in his lectures, limits himself to binary forms but
says that generalizing to m-ary forms poses no difficulties in most
cases. He writes a general binary form ¢ in the manner

$enn) = 3 (7 auatag—

i=0

Modern Higher Algebra (fourth edition), Dublin
the best introductions to the subject of invariant

im- In Hilbert’s lectures these
lex numbers.

Ty 3
Ty s

(He always uses the word “coeflicients”
form is written in this way,
coefficients!)

An invariant of the form
I(ag,a,,.. -+an) of the coeffici

to mean the a; when the
L.e. not multiplied by the binomial

¢ above is a polynomial function
ents of ¢ which changes only by a
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factor equal to a power of the transformation detern’{.inant 4 when
one makes a linear transformation of the variables, i.e.

I(a’C})a":'l: cen aa;«") = 6PI(G01 ai, "'5a’ﬂ)

0 e a' are the coefficients

some natural number p. Here a;, 1y -es G :
f)?q& after a linear change of variables given by the matrix P. Ij c%r;
be shown by elementary considerations that I must nefi';essar y e
homogeneous of degree g where ng = 2p. We illustrate by a coup
of examples.

le 1 -
Exa?ﬁlp: aoz? + 2a171%2 + ax7% is a binary _form‘of degfie;et.Z.
I, = agas — a2lis an invariant of ¢. (Those fa,mlhla,r w1t.h qua ac,1 1;
fér;s Svi?l reéognize ¢ as a quadratic form of dimension 2 an
as the discriminant of this form.)
mple 2 . .

q]?)iaaol;“ + 4a1$?xz + SaQI%:cg + 4a3$1$§ + a4x§ is a binary form

= 1
of degree 4. _

i i t of ¢.

= — daqas + 3a2 is an invarian f . .
? = 2022a4 - ;@ag — af2a4 +2a;a2a3 — @ is also an 1mn':1r1al;ln::;l of ﬁ.
Osbserx?e that I; in example 1 and I3 in e?cample 2 are eacf dsn;ee
geneous of degree 2 and I3 in example 2 is homogeneous of deg
> Hilbert proceeds in the first half of tl}ese lecture-s_tf) chtali;
acterize those polynomials which are invariants by utilizing
operator D defined as follows:

a
8 d 9 . . Ly
—_—c 3 “+ + Ny

D e g e T e Oan

An invariant I is shown necessarily to be a homogeneoug poly_*no;
ial and it must satisfy DI = 0. Also it is shown that an 1111*«&1’121'11I
I ' al
I must be an isobaric function of ayg, a1y -, Gn- (A poﬂ}}lrnosr;?;n 2
in ag, ai an is said to be isobaric if each term has the
Qs ga R

= vg 1 g Yy 'S
weight, where the weight of a term ag°a*as® ... al* i
?

vi +2vp +3v3 + - 4 nem)
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CI;Illbert sho;vs that each isobaric homogeneous polynomial in ¢
wlh’.eél'e ,V Z: ;_)) Ideggee }glr a;]d weight p, where ng = 2p, is an invaria,lg'f;
: = Y. He also calculates the number of i
given degree g for a form . It in oxamas 1
: . ; turns out that I; in exam le 1
above is the only Invariant of a binary quadratic form andpthat

e linear transformation is appli i
ied -

ultane(?usly to all of the base forms. For example SPP o

have binary forms s B s

T
7 . :
hlanz) =3 ("o

=0

Pa(z1,22) = Z (T) bfﬂ:iib‘;n—i.

=0

Then a simultaneous invar;
ariant for the pair b1, @ i
: : 2 under a lj
transformation changing the a;, b; to a’l, b isja polynomi ll}e_&l’
" +m + 2 variables such that o e

!
I(ao,...,a;,bg,...,b;'n) =JPI(ao,.,.,an,bo,...,bm)

fi
iE; I?;)melzv natttural numbfar P, _where 4 is the transformation determ-
- {Note that any invariant of ¢, alone yields a simultaneous

invariant by viewing it as of d )
i egree ze . b
for an invariant of ¢, alone.) ° *0 n the by, and similarly
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Example 3
Consider the two binary cubic forms

$1(z1,T2) = aoxs + 3a123 29 + 3asz1 7% + sz

d2(z1,32) = bo:L‘? + 3b1$%$2 + 352:!71.’5% + b3$g.

One may check that I = agbs — 3a1by + 3asb, — asbg 18 a simul-
taneous invariant of these two cubic forms.

Starting with an arbitrary system of base forms, the simul-
taneous invariants of the system can in general be an infinite set.
It was Cayley who first conjectured that any system of base forms
has an invariant set which is finitely generated, i.e. there is a finite
subset I, Is,..., I}, of the invariant set such that each element of
the invariant set is a polynomial in I}, I5,. .., Ix. However, Cayley
soon began to doubt the validity of his conjecture and, in an 1856
memoir, he incorrectly claimed that the fundamental system of
invariants is infinite for forms of degree more than six. His mis-
take arose from wrongly taking certain syzygies to be independent.
(See below for more about syzygies.) Gordan, via cumbersome
calculations using the symbolic method, succeeded in proving the
finiteness theorem for an arbitrary system of binary base forms.
This achievement in 1868 was what gained Gordan his title of

“King of Invariants”. However attempts by Gordan himself and
others to prove finiteness for base forms of higher degree were
unsuccessful. The finiteness problem, i.e. the proof of Cayley’s
conjecture for an arbitrary system of base forms of any degree,
had become the main problem of invariant theory by the time
Hilbert came on the scene. (The earlier stages of invariant theory
had been concerned with finding the laws governing the structure
of invariants and then with the enumeration and production of
invariants systematically.) Hilbert solved the finiteness problem
by realizing that one only needs to prove the ezistence of a finite
basis (1.e. generating set) for the invariants. It was not necessary
to construct a basis explicitly, which is what Gordan and oth-
ers had tried to do. Hilbert’s solution when it appeared in 1890,
[7], caused consternation amongst mathematicians. His “existence
theorem” was not accepted by some of them as being a solution
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at a,lI.. Gordan commented about the proof, “Das ist nicht Math-
emgtlk. .Das ist Theologie”. Hilbert did indeed continue to work
on Invariant theory and in [8] he gave an essentially constructive
and algorithmic method for obtaining a finite basis.

In the second part of his Gottingen lectures, (lecture 34
onufa.rds}, he begins by proving the finiteness theorem for an
arbitrary system of binary forms. His proof uses a technique
called representation by root differences which involves the ele-
mentary symmetric functions. It does not generalize to systems
of forms of degree greater than two. A key lemma used in this
proof asserts that a system of linear equations with coefficients in
the_ natural numbers has a finite number of non-negative solutions
lVVthh generate all the other non-negative solutions. This lemma
is foundational nowadays in the theory of integer programmin
See [15}. Hilbert proceeds (in lectures 34-36) to prove his ger%—-
eral finiteness theorem as in his 1890 paper, using the key result
}cnown nowadays as the Hilbert Basis Theorem for polynomial
1degls_together with Cayley’s Q-process. The )-process is a differ-
entlaltlou process which behaves like a kind averaging and when
app%led repeatedly to a polynomial it vields an invariant. His
Basis Theorem yields a finite set Iy, Ir,..., I, such tha.t an
invariant [ is expressible in the form , g

I'=Rh+ B+ + R,

_for some forms Fy, F3,..., F,. Applying Q to each of the F; yields
mvariants 7; such that we can write

I'=Gih + Gy + - 4 Gy,

and each G; clearly has degree less than the degree of 7, since each
F; has degree at least one. By expressing each G, in tc;rms of the
set- I, 15,..., I and repeating as necessary, we can eventuall

write I as a polynomial in the set I, L, .., I.. The remaindei
o_f the lectures are based on Hilbert’s 1893 paper, (8], where he
gives his algorithmic method for constructing a ﬁni,te b,a,sis. From
a modern perspective there are two highly significant theorems
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contained there, although their full importance and application
was not apparent then. In lecture 39 he gives the theorem now
known as the Hilbert Nullstellensatz, although he refers to [8] for
a full proof. This theorem concerning the zero sets of families
of polynomials is basic and fundamental for modern commutative
algebra and algebraic geometry. Lecture 47 describes the result
ugually known now as Hilbert’s Syzygy Theorem. The set I, I,
..., Ix is not likely to be linearly independent, i.e. there will be
a set of relations between them. This relation set also must have
a finite basis Ry, Ra,..., Ry by the finiteness theorem. There
may well be relations amongst the relations, i.e. expressions of

the form
S1B1 + SaRa+ -+ SR, =0.

Such an expression is called a syzygy of the first order. These
syzygies again form an ideal to which the finiteness theorem
applies and a finite basis exists. Any relation for this basis is a
syzygy of the second order. It may seem that this process can
be repeated ad infinitum, but Hilbert’s Syzygy Theorem says
that the chain of syzygies breaks off after finitely many steps. In
the last few lectures Hilbert outlines some applications of invari-
ant theory to geometry and discusses possible generalizations of
invariant theory.

4. The view from the end of the 20th century

In modern terms we may describe invariant theory as being con-
cerned with the linear action of a group G on a K-vector space V
for some field K. Writing K[V] for the ring of all polynomial func-
tions on V, the basic problem is to describe the subring K[V]%
of all polynomials invariant under the action of the group G. In
particular, we may ask whether K[V]% is finitely generated as a
K-algebra and, if so, find an algorithm for determining a set of
generators. In the classical case described above we have K = C,
the complex numbers, G = GL,,(C), the group of all invertible
m X m matrices with complex entries, V' an m-dimensional vector
space over K, and K[V] the ring of all homogeneous polynomials
in m variables. Hilbert proved that K[V]® is finitely generated as
a K-algebra in the classical case. Hilbert’s 14th problem at the
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1900 congress asked whether this finiteness theorem remains true
if G is an arbitrary subgroup of GL,,(C). It remained an open
problem until 1959 when Nagata [12] answered it in the negative
by producing an example of a group G with K [V]¢ not finitely
generated.

Three of Hilbert’s results in the above lectures have turned
out to have tremendous significance and importance and we will
describe now how they fit into 20th century algebra. The Hilbert
Basis Theorem is now usually stated in the form that the poly-
nomial ring K|z, zs, ... »Zn] i8 a noetherian ring. A ring is said
to be noetherian if every ascending chain of ideals terminates. It
is not hard to prove that this ascending chain condition for the
polynomial ring is equivalent to the ideals being finitely gener-
ated. The name noetherian is after Emmy Noether who, in the
1920’s and 1930’s, was the main influence in the development of
modern abstract algebra. It is curious that Emmy Noether began
her career as a student of Paul Gordan at Erlangen, writing a
thesis in 1907 on invariant theory. Gordan was still doing very
computational invariant theory. Noether later referred to invari-
ant theory as a “jungle of formulae” (formelngestriipp) and one
may speculate that it was her distaste for this kind of mathemat-
ics which led her to develop the conceptual approach of modern
abstract algebra.

Hilbert's Nullstellensatz is now usually regarded as the found-
ation of algebraic geometry, yielding the correspondence between
geometric objects (varieties) and algebraic objects (co-ordinate
rings), although we have seen that this was not the purpose for
which Hilbert originally developed it.

Hilbert’s Syzygy Theorem is now stated as a result in homo-
logical algebra, saying that the polynomial ring Clzy, s, ..., z,]
has finite global dimension (in fact dimension n), i.e. every mod-
ule over this polynomial ring admits a finite free resolution of
length at most n.

We finish with a few words ahout how invariant theory has
developed in the 20th century, although this author claims no
great expertise in modern invariant theory. Weyl [18] developed
invariant theory for all the classical Lie groups and linked it with
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representation theory. Mumford [11] developed a geometric 1mtar1;
ant theory. The survey by Kung and Rota, [9], desS:nbes mvar%?

theory from the viewpoint of modern cotnbmatorla.l theory. fure
books by Springer [14] and by Dieu40nne and Carrell [2] arli -
ther modern references on the subject. As a final remard, ie
note that the “death” of invariant theory has even attracted the
interest of a sociologist! See [4].
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SYLOW'’S PROOF OF SYLOW'’S THEOREM
Rod Gow

1. Introduction

While looking through some early volumes of Mathematische
Annalen, we came across a paper with the following title:

Théorémes sur les groupes de substitutions.

Par M. L. SyLow & FREDERIKSHALD en NORVEGE.

This was, of course, the paper containing Ludwig Sylow’s funda-
mental contribution to group theory, [9]. We thought it might
be interesting to see how Sylow actually proved his theorem and
then to comment briefly on some later proofs and earlier work. Tt
is likely that there have been prior discussions of the history of
Sylow’s theorem in the literature and we apologize for failing to
acknowledge any relevant publications. (Qur excuse is that the
UCD library is badly stocked with periodicals on the history of
science.)

Sylow’s starting point is as follows: On sait que si Pordre
d’un groupe de substitutions est divisible par le nombre premier
n, le groupe contient toujours une substitution d’ordre n. (The
notation of Sylow is a little wayward to modern tastes. His prime
is denoted by n, rather than the traditional p. Later in the paper,
the expression np + 1 appears as the number of Sylow subgroups,
but p denotes merely some non-negative integer. In virtually all
later literature relating to the proof of Sylow’s theorem and earlier
literature on Cauchy’s theorem that we have seen, the prime is rep-
resented by p. We shall follow standard practice and denote our
prime by p in this exposition, except when enunciating Sylow’s

55



56 IMS Bulletin 33, 1994 I

theorems in his own words.) We recognize the statement above as
Cauchy’s theorem, which we would normally state as: if a prime
p divides the order of a finite group, then the group contains an
element of order p. The stipulation that we should have a group
of permutations is irrelevant, although in Cauchy’s day, abstract
finite groups would not have been under consideration. Indeed
in the fourth edition of Serret’s book, there is some discussion of
permutation groups and of groups of linear fractional transforma-
tions, but no discussion of abstract groups or of Cauchy’s theorem.
There is, however, a discussion of a construction, due to Cauchy,
of a Sylow p-subgroup of the Symmetric group S, in [8, p.302].
Cauchy’s theorem underlies Sylow’s proof. It is not proved. Later
proofs sought to remove this reliance on Cauchy’s theorem, whose
original demonstration was quite complicated, although it con-
tained germs of ideas vital to modern group theory. In particular,
Frobenius was able to give a proof of the existence of Sylow sub-
groups which avoided Cauchy’s theorem and became the standard
proof of Sylow’s theorem until the advent of Wielandt’s proof in
1959, [11].

Sylow proves the existence of a Sylow p-subgroup P in a finite
group G, at the same time showing that if V is the normalizer of
Pin G, then |G : N | = 1 mod p. Afterwards, he shows that any
other Sylow p-subgroup @ is conjugate to P in G. A basic idea
used by Sylow, the spirit of which really occurs in all proofs, is
that of letting P and Q permute the cosets of V by multiplication.
Simple congruences modulo p force out the desired conclusion.
Needless to say, Sylow does not talk in terms of permuting cosets,
but this is the way to interpret his procedures nowadays.

2. Sylow’s proof

We now consider the details of Sylow’s proof. We try to follow
the spirit, as we see it, of Sylow’s ideas but use more modern
concepts to try to explain what is happening. We will make a
few comments about Sylow’s precise method later. Let G be a
non-trivial finite group and let p“ be the p-part of |G|, where P
is a prime and & > 1. Let P be 5 p-subgroup of @ of maximal
order and let N be its normalizer in G. Sylow first proves that

I
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|N : P| is not divisible by p. From our point of view, thils is clear.
If p divides |N : P|, Cauchy’s theorem guarantees the existence Qf
a subgroup of M /P of order p in the quotient group N /P. M is
then a p-subgroup of order larger than |P|, which is 1mp0551b1‘e.
Sylow next proves that P contains all elements of p-power order in
N. His proof is essentially the same as any modern one. Suppose
¢ is an element of N not in P. The elements 9¢*, where ¥ runs
over P and 7 over the integers, form a subgroup of IV properl_y
containing P. The order of this subgroup is |P|m, where m is
the smallest positive integer j such that ¢’ € P. But m clearly
divides the order of ¢. Since P is a p-subgroup of maximal order,
¢ cannot have order a power of p, as required. _

The crucial part of the proof is to show that |G : N| is not
divisible by p. Once this is known, we see that |P| = p®, and the
existence of Sylow p-subgroups is established. In fact, S.ylow shows
that |G : N| = 1 mod p, which is another part of his ba\_sm theorem.
The following would seem to be a modern version O.f hlS- argument.
P permutes the left cosets of IV in G by left multiplication. It fixes
N, because it is contained in N. It fixes no other left coset. For
if P fixes the coset 9N, we have ¢ ' Py < N. But the argument
above shows that the p-subgroup v ~!P now contained in N
equals P, as it has the same order as P. Hence ¢ € N and
N = N, as required. The left cosets of N different from N 'falll
into P-orbits of size greater than 1, and the size of each orbit is
a power of p, as it divides the order of P, by the orbit-stabilizer
theorem. This proves what Sylow gives as his first theorem, where
we return to Sylow’s original notation:

Si n® désigne la plus grande puissance du nombre premier n qui
divise I'ordre du groupe G, ce groupe contient un autre g de Pordre
n%; si de plus n®v désigne l'ordre du plus grand groupe contenu
dans G dont les substitutions sont permutables 4 g, Pordre de G
sera de la forme n®v{np + 1).

Sylow’s second theorem is the following:

Tout étant posé comme au théoréme précédent, le groupe G con-
tient précisement np + 1 groupes distincts d’ordre n®; on les
obtient tous en transformant I'un quelconque d’entre eux par les
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substitutions de G, tout groupe étant donné par n®v transform-
antes distinctes.

His proof is the following (returning to our notation). Let
@) be a subgroup of order [P|. Q permutes the left cosets of N
in G into orbits, the size of each Q-orbit being a power of D
As the number of orbits is congruent to 1 modulo p, it fixes a
coset. Thus ¥ ~1Qy < N for some . But the argument of the
previous paragraph shows that »p~1Qy = P, as P contains all p-
elements in V. Sylow notes that the same argument proves that
any p-subgroup of G is contained in a conjugate of P. Thus the
standard results comprising Sylow’s theorem are obtained.

Having proved his main theorems, Sylow continues his paper
by considering the conjugating action of the p-group P on itself.
P acts on P according to the rule

¥ — ¢ 19g.
This is a permutation action, since
9y 07 69102 = (9182) 801 95).

The orbits of P acting in this way are its conjugacy classes (not so-
called by Sylow) and their sizes are powers of p. Since the identity
of P forms a single orbit, we have an equation of the form

pa:1+pa+pb+“_

This implies that at least P — 1 of the indices a, b, .., are 0.
Thus, in modern terminology, the centre of P is non-trivial (the
argument is unchanged to this day).

An element 9y of order p may then be found in the centre. If
©y denotes the subgroup of P generated by 9y, Sylow essentially
forms the quotient group P/Oq of order p*~1. This group has a
non-trivial centre. Let ¥, project onto an element of order pin
the centre of P/@p. Then #7 = 95. Furthermore

971909 = 9hw,
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for all ¥ in P (here b depends on ¥). The elements of -the- for_m
¥49% form a (normal) subgroup of P of order p?. Continuing in
this way, we then obtain ¥5 so that

95 = 950¢
91999 = 950495
for all ¢ € P (the exponents again depending on ¢). This leads
to Sylow’s third theorem:

Si I'ordre d'un groupe est n®, n étant premier, une substitution
quelconque ¥ du groupe peut étre exprimée par la formule

9 = Dhordh .. 9T,

ol
vy =1
b=
97 = 9505
7 = 9§50l
et ott 'on a

I 1900 = 9
710,09 = 959,
910,09 = 9795,
971939 = 95959095

Thus, Sylow obtains the beginnings of the structure theory for
p-groups, showing in particular that such groups are solva;ble.
As we explained earlier, we have tried to render Sylow’s pro?f
into a modern formulation. To give some of the flavour o-f Sylow S
version, we describe his proof of the fact that p does not divide v =
|V : P|. P isa permutation group of degree r, say, and so may be
thought to act on certain variables 1, ..., z,.. Let yy be a rational
function of the x; which is invariant under P but fixed by no other
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the custom of the time, Sylow uses the word isomorphic rather
tl_lan homomorphic). (N' is just the quotient group N/P.) If p
divides v, then N' contains a permutation of order p by Cauchy’s
theorem and Sylow obtains a contradiction to this using the same

line of reasoning that proved that p contains all elements of -
power order in V.

3. Cauchy’s theorem

We turn now to a brief look at Cauchy’s theorem, which was vital
lto Sylow’s proof. The paper, [2], in which Cauchy’s proof appears
is well worth studying. It is 102 pages long and its general spirit
18 quite close to modern algebra, unlike that of many ostensibly
algebraic papers of the 19th century, which are often hopelessly
vague. Much of the elementary theory of permutations may be
found there. For example, the size of g conjugacy class of 8.
containing an element of 3 given cycle type is determined. Among
other things, Cauchy gives an explicit construction of a Sylow p-
'subgroup of 5, ([2, Pp.195-196]). This is interesting in itself, as
it requires the idea of a wreath product. Wreath products plé;y a
vital role in the study of permutation and linear groups.

. The concept of a doub]e coset decomposition of 3 group rel-
ative to two subgroups is implicit in §12 of [2]. To paraphrase
Cauchy's argument, the following is proved. Let G be a finite
Eroup containing subgroups A4 and B Suppose that no non-
1€ientity element of 4 ig conjugate to an element of B. Then the
size of a double coset AgB is |A||B|. Moreover, G is the disjoint
union of all the different double cosets. Consequently, with the
hypothesis as above, [A]|B| divides |G|. Cauchy applies this when
G=258, Aisa Sylow p-subgroup of S, (which he has already
copstructed) and B is a subgroup whose order is divisible by the
prime p. Since |A||B| cannot divide n!, a non-trivial element of
.A 1s conjugate to an element of B and thus Cauchy’s theorem
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Cauchy 30 or more years before Sylow’s proof. Cauchy’s proof of
his theorem is reproduced in Jordan’s famous treatise, [6, pp.26-
29]. Cauchy’s theorem applies to a subgroup of §,,, but Cayley’s
embedding theorem, that a finite group G is isomorphic to a sub-
group of Sg|, shows that it applies to any abstract finite group.

4. Later proofs of Sylow’s theorem

Fairly soon after the publication of Sylow’s theorem in 1872,
attempts were made to avoid the use of Cauchy’s theorem in its
proof. In 1877, Fugen Netto gave a proof in [7] which used only
part of the proof of Cauchy’s theorem. In Netto’s situation, as
in Sylow’s, we have a subgroup G of S, of order k, where k is
divisible by the prime p. (Note that Netto uses what has become
standard notation in respect of n and p). He assumes Cauchy’s
constructive result that S, contains a Sylow p-subgroup, H, say,
of order pf, and then proves that G contains a Sylow p-subgroup.
We found Netto’s proof difficult to follow, but it seems clear that
he is using a decomposition of §,, into (G, H)-double cosets. He
obtains the equation

n! n! n!  nl n!

Kol e P p*
where 5 is an integer, and p® > p?, and so on. Multiplying each
side above by kpf/n!, we obtain the usual equation expressing
the order of S, as the sum of the sizes of the different (G, H )-
double cosets. The powers of p that appear in the denominators
are the orders of the intersections of G with various conjugates of
H. Netto’s proof, in double coset form, has become a standard
one. An alternative is to embed a finite group into a finite general
linear group GL(n, p), where p is a prime, and use the fact that
the linear group contains an explicit Sylow subgroup, consisting
of lower triangular matrices with all diagonal entries equal to 1.
See, for example, the exercises on p.36 of [5].

The proof that was to become the standard proof of the
existence of Sylow subgroups until 1959 is that of Frobenius, (3].
Although it appeared in 1887, it is dated Ziirich, March 1884,
Perhaps this is evidence that the publication backlogs of journals
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are not a new phenomenon. Frobenius aims to remove all refer-
ence to Cauchy’s work and keep the discussion as elementary ag
possible. The proof is by induction, the main tool to be used being
the conjugacy class equation in a finite group. The concept of a
quotient group is also required. Frobenius works with an abstract
finite group H, noting that it may be considered as a group of per-
mutations. He also notes that his abstract finite group is defined
by three axioms, which he states. He then considers the centre,
G, of H and supposes that p divides its order. He shows (without
using Cauchy’s theorem) that the centre contains an element P of
order p. He declares that two elements of H are to be considered
(relatively) equal if they differ only by a power of P. The relat-
ively different elements form a group, whose order is |H|/p (this
is the quotient group of & modulo the cyclic group generated by
P). By induction, this group has a Sylow subgroup which lifts
back to give a Sylow subgroup of H.

Finally, he supposes that p does not divide |G|. The con-
Jugacy class equation shows that there must be an element not in
the centre, the size of whose conjugacy class is relatively prime
to p. But then the p-part of the order of the centralizer of this
element equals the p-part of |H], and since the order of this cent-
ralizer is less than that of & » by induction, the centralizer contains
a Sylow p-subgroup of H, as required. This proof may be found
in such early textbooks as those of Burnside, (1], and Hilton, [4].

6. Life and work of Sylow

We close by making a few remarks about the life and career of
Sylow. Sylow (1832-1918) taught from 1858 to 1898 at a school in
Halden (Frederikshald) in Norway. A town of this name is located
south of Oslo, near the Swedish border. A chair was created for
him in 1898 at Christiana (Oslo) University. His other main paper
is [10], devoted to complex multiplication of elliptic functions and
assoclated singular moduli. He seems to have been drawn to this
subject while editing a new edition of the collected work of Abel,
his famous compatriot, who contributed important early work on
elliptic functions. Sylow’s 1872 paper showed that he had consid-
erable talent in abstract algebra and it is a pity that he did not

[1]

(3]
[4]

[5]
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get more opportunity to put his talent into effect.
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Book Review

Algebraic Function Fields and Codes

H. Stichtenoth
Springer—Verlag 1993, x+260 pp.
ISBN 3-540-56489-6
Price $34.00.

Reviewed by Gary McGuire

The purpose of this book is two-fold. Firstly, to give an exposi-
tion of the basic theory of algebraic function fields using a purely
algebraic approach. Secondly, to give the applications of this the-
ory to the theory of error-correcting codes. We refer to the book
under review as [S]. Before we begin the review, we shall briefly
discuss the topics covered in the book.

1. Algebraic Function Fields

Let K be any field. An algebraic function field F'/K of one variable
over K is an extension field F of K such that F contains an
element z which is transcendental over K, and F is an algebraic
extension of finite degree over K (z).

The algebraic approach to studying such extensions F/K was
first taken by Dedekind and Weber [4], with K the complex num-
b_ers. Chevalley [3] treated arbitrary K with this approach, and
dl.?cussed geometry only with X the complex numbers. Algeb-
raic geometry enters the picture as soon as one considers the
plane algebraic curve ¢ arising from F/K. This is defined by
a polynomial equation flz,y) = 0, where F = K (z,y) and f
has coefficients in K. Conversely, given a curve C defined by
some irreducible polynomial f € K[z,y], the quotient field of
the domain K [z,y]/(f) is an algebraic function field of one vari-
able, usually denoted K (C)/K. The geometric approach has been
taken by many authors: Noether [13], Severi [14], Weil [19], and
more recently one may consult Shafarevich [15], Hartshorne [7].
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Two classics are Fulton [5] and Walker [18]. For a more sketchy
presentation but with all the ideas, see Abhyankar [1] or Moreno
[12].

In his review of [3], Weil [20] almost chastises Chevalley for
the lack of geometry:

Here is algebra with a vengeance; ... if it were not for a few
hints ... one might never suspect him of ever having heard of
algebraic curves or of taking any interest in them.

He later concedes, it should be pointed out, that “this is a
valuable and useful book”. Not the least of the reasons for this
i the strong analogy between the algebraic approach to algebraic
functions (Chevalley) and the theory of algebraic numbers, viz.
primes and irreducible polynomials, rational numbers and rational
functions. For a simultaneous treatment of algebraic functions and
algebraic numbers, see Artin [2].

Of course the “geometric” approach is through algebraic geo-
metry, and involves a nontrivial amount of algebra itself. It would
seem that this approach is the more popular. It is in reality a
pleasant mixture of both algebra and geometry. For example,
there is a one-to-one correspondence hetween points on a nonsin-
gular curve C' and places (maximal ideals of valuation rings) of
K(C)/K.

A cornerstone of either approach is the Riemann-Roch The-
orem (see Chapter I). A divisor A is a formal sum 3 pnpP where
the np are integers and only finitely many are nonzero. The sum is
over all points on a curve, or all places of a function field, depend-
ing on one’s point of view. The degree of a divisor, deg(A), is
Y. pnp. Assuming the existence of something called a canon-
ical divisor, W, and the divisor of any f € F, denoted (f), the
Riemann-Roch theorem states that

UA) — 6(W — A) = deg(A) +1 - g

where g is the genus of the curve C, or the function field 7 /K,
and £(A) is the dimension of the K-vector space

L(A) = {f € F: (f) > —A} U {0}.
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The Riemann-Roch Theorem has many important con-
sequences. For example, if f and h are two curves of degrees
m and n over the complex numbers (let us say), then by Bézout’s
Theorem [1] f and h intersect in mn points (counted properly).
Conversely, given f and mn points, does there exist a curve
h of degree n which intersects f in precisely those mn points?
Algebraically, we might ask: given specified poles and zeroes with
multiplicities, does there exist f € K(x) with exactly those poles
and zeroes? The Riemann-Roch Theorem provides answers.

2. Error-Correcting Codes

A code C over an alphabet @Q is a subset of Q™. Elements of C are
called codewords, and n is called the length of the code. Usually
@ is taken to be F, the finite field of ¢ elements. A linear code is
a subspace of F7, and we assume linearity from now on. A code
is called a code and not a subspace because of interest in a rather
non-algebraic property, its minimum distance d. For z,y € Qr,
the Hamming distance between z and y, d(z,y), is defined to be
the number of coordinates where x and y differ. For example,
the distance between 110101 and 111100 (g = 2) is 2. Then d is
defined by
d = min{d(z,y) : x,y € C,z # y}.

If C is a k-dimensional subspace of Fy, we say that C is
a g-ary [n,k,d] code. If e = LQ%IJ, C' is an e-error-correcting
code. This is because in practice, codewords are transmitted over
a channel to a receiver. Due to noise there may be errors intro-
duced during transmission, but if there are not more than e errors,
the receiver can correct them and decode the received vector to the
unique nearest codeword. Error-correcting codes are used every
day in compact disc players, and have been used by NASA to
receive data from space probes such as Mariner and Voyager. For
an introduction to the theory of error-correcting codes, see [9] or
[21].

For a fixed n (and ¢), a central problem in coding theory is
to find codes which maximize both %k and d. Unfortunately, the

Singleton bound (trivial to prove) says
k+d<n+1,
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and so these aims are contradictory.

Much work has been done on bounds relating n, k, d and q.
For asymptotic bounds, applicable for large n, the simplest results
are obtained when the rate R = k/n is plotted as a function of
d =d/n. Clearly

R+6<1+ L,
n

In fact, in Shannon’s Theorem, the desirable codes whose exist-
ence is proven have very large n. However, constructing such
codes is another matter.

Following [9], a family of codes over F, (g fixed) is said to be
good if it contains an infinite sequence of codes C;, where C; is an
[, ki, d;] code, such that both the rate R; = k;/n; and 6; = d;/n;
approach a nonzero limit as i — co.

Examples of classical families of codes are Hamming codes,
BCH codes, Reed-Solomon codes and Reed-Muller codes. These
codes have nice algebraic constructions and properties. It turns
out that all these families are bad. Construction of good families
became a problem. J.L. Massey said

... good codes just might be messy.

Justesen (1972) constructed an infinite family of good binary
codes, see [9].

That good codes exist was never in doubt: the Gilbert-
Varshamov lower bound states that if R is fixed, 0 < R < 1,
then there exist binary [n, k,d] codes with k/n > R and d/n >
H;'(1 — R) > 0 where H, !(z) is the inverse of the entropy
function Hz(z) = —zlogs(z) — (1 — z)loga(1 — z).

There is an analogous statement of the Gilbert-Varshamov
lower bound for any ¢, which can be translated into a lower bound
for a function «,(d) (which we leave undefined; see [S], Chapter
VII).

3. Algebraic Function Fields and Codes

The main idea is that algebraic function fields can be used to
construct codes which lead to an improved lower bound for o, (6).
It was thought for over thirty years that the Gilbert-Varshamov
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lower bound would prove to be exact. Hence the improved lower
bound caused a sensation in the field,

The improvement came in two stages. First came a construc-
tion from Goppa (1981) — after many years of trying to generalize
his earlier work ~ of codes from algebraic function fields. We sum-
marize this construction; it is fully described in [S], Chapter II.
Let F/F, be an algebraic function field of genus g and let Py,. ..,
P, be pairwise distinct places of F//F, of degree one. Let D be the
divisor P; +--- + P, and let G be a divisor of F/F, with disjoint
support from D. The geometric Goppa code C(D, @) (also called
an algebraic geometry code [16]) is the image of the linear map
B: L(G) — Fy defined by

The dimension and a bound on the minimum distance are found
by using the Riemann-Roch Theorem.

Asymptotic values of the ratio of the number of places of
degree one to the genus {as g — oo) are related to whether geo-
metric Goppa codes are good. Hence bounds on these asymptotic

values (from algebraic geomeiry) can be related to the Gilbert- -

Varshamov lower bound.

The definition above can be phrased in terms of nonsingular
curves, which is how Goppa first deseribed it.

Choosing F' = F(t), these codes are the Reed-Solomon codes
mentioned earlier. Hence geometric Goppa codes are a natural
generalization of Reed-Solomon codes.

The second stage of the improvement came about by find-
ing certain suitable function fields (curves) F/¥,. This was done
by Thara [8], and independently by Tsfasman, Vladut and Zink
[17], although work of Manin [10] (and presumably unpublished)
paved the way. Manin and Vladut [11] gave a proof using Drin-
feld modules. The improved lower bound is valid for ¢ > 49 and
square, so in particular we are still without any codes beating the
Gilbert-Varshamov bound in the binary case. The suitable curves
that were used are Shimura curves [8], or Drinfeld curves [16], first
suggested in [10]. [S] does not describe this second stage.
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4. Review

Chapter I contains Weil's proof of the Riemann-Roch theorem
using adeles. The author defines a Weil differential as a linear
map on the space of adeles, vanishing on some translate of F
(embedded}. As the namesake of these differentials says,

This rather abstract concept of differential is of course what makes
possible such a brief proof of the Riemann-Roch Theorem.

Later in Chapter IV these Weil differentials are identified with
our “usual” notion of a differential. Chapter I also contains the
Strong Approximation Theorem (crucial to many proofs in the
book), Weierstrass gaps, and local components of Weil differentials
(later to become residues of our usual differentials). This chapter

is self-contained, requiring only basic graduate algebra. A useful

appendix is provided with a summary of field theory.

In Chapter II the reader will find an introduction to coding
theory and the definition of geometric Goppa codes. The dual
code of C(D,H) is also defined using local components of Weil
differentials (later residues), and that it is the dual is proved using
what is “really” the residue theorem {although not called such).
Here we see perhaps the disadvantage to the algebraic approach.
BCH and classical Goppa codes are constructed from geometric
Coppa codes as subfield subcodes.

Chapter ITI {Extensions of Algebraic Function Fields) is the
longest and most technical in the book. The presentation of many
important ideas goes straight to the key theorems, and the proofs
are concise but complete. As in Chapter I, however, the reader
must make up his or her own examples in all sections except
I11.7. Topics covered include extensions and ramification, the dif-
ferent and the Hurwitz Genus formula, constant field extensions,
Galois extensions (Kummer and Artin-Schreier), wild ramifica-
tion, inseparability, and Castelnuovo’s Inequality for the genus.
A knowledge of algebraic number theory is useful (for familiarity
purposes) but certainly not essential.

Chapter IV defines differentials via derivations and proves a
one-to-one correspondence with Weil differentials from Chapter 1.
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We also find the P-adic completion of F'/ K with respect to a place
P, giving us P-adic power series, analogous to complex power
series over C. Here lies the residue theorem, another cornerstone
of the theory.

The length of the code C'(D, G} is limited by how many places
of degree one the extension F/F; has. The Hasse-Weil Theorem
(also known as the Riemann hypothesis for function fields over
finite fields, proved by Weil) tells us approximately how many
places of degree one we can expect. This theorem is famous
and has many implications, both inside and outside this book.
Chapter V defines the zeta function of F/F, and presents Bom-
bieri’s short elementary proof of Hasse-Weil. It uses only the
Riemann-Roch Theorem. As Manin [10] points out, the proof of
the upper bound is “quite code-theoretic in spirit”. Again the
presentation is faultless. Improvements to the Hasse-Weil bound
are given with proofs, including the asymptotic lower bound due
to Drinfeld-Vladut. This bound was proved to be tight (for ¢ > 49
and square) by Thara and Tsfasman-Vladut-Zink (by constructing
the suitable curves to give equality).

The reader may heave a sigh of relief upon seeing the title of
Chapter VI — Examples of Algebraic Function Fields. The author
does say (page 30) that “we defer such examples to Chapter VI
at which point we will have better methods at hand for calcu-
lating the genus”. Indeed, results from all previous chapters are
drawn on to give a thorough treatment of elliptic function fields.
It is a pleasure to see characteristic 2 not excluded. Next are
hyperelliptic function fields, and more generally, function fields
F = K(z,y) defined by y™ = f(z). Examples done are Fermat
(az™ 4+ by™ = ¢) and Hermitian (z7+! + y7t! = 1) function fields.

Chapter VII concerns the Gilbert-Varshamov bound and
the story recounted earlier. Automorphism groups of geometric
Goppa codes are discussed and applied to Hermitian codes (from
the Hermitian function field). A decoding algorithm for geo-
metric Goppa codes due to Skorobogatov and Vladut (following
Justesen) is presented. However these codes are still a long way
from being used in practice.

The final chapter (VIII) discusses the trace code of a ¢™-

[S]

(1]
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ary code C of length n, which is defined as Trgm (C) C Fy, with
trace taken componentwise. In certain special cases the minimum
distance and perhaps all the weights in these codes can be found,
or at least bounded. The bounds can be tight. Again results from
previous chapters (especially chapter III) are used regularly.

A useful feature of this book is the two appendices, one con-
taining a summary of field theory and the other explaining how to
switch between the algebraic and geometric approaches, i.e. func-
tion fields and curves. The reader interested in curves can consult
this second appendix and translate the results in the text to res-
ults about curves. Curves are not mentioned at all during the
text, in keeping with the author’s promise of an algebraic expos-
ition. The reader may also find it helpful to glance at Chapter
VI while reading the earlier chapters (especially I, TIT and TV), in
order to see some examples.

The book is approximately 250 pages long and reasonably
priced. It is typeset with some form of TEX, and one can have few
complaints about that. A minor quibble concerns the letters of
“Gal” and “Aut” (page 109), and “Der” (page 137), which are too
close together. “Aut” has been corrected by page 209. The only
typographical error this reviewer found (apart from a trivial one
on page 144) is on page 243, where “monom” should be monomial.
There are no exercises.

The exposition in this book is clean and tight. The quickest
proofs of all the theorems are given, with no time wasted. The
book is entirely self-contained. The author accomplishes what
he set out to do with simplicity. It is recommended for anyone
interested in algebraic function fields and their applications to
codes.
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Outline Solutions of the Problems
for the 35th IMO

1. Without loss of generality a; < ay < ... < a,. Suppose
Qi+ Gmy1—s < 0, for some ¢ with 1 <4 <m. Then a; +amp1—; <
n, for j =1,2,...,¢. But then the ¢ distinet integers a; + a@m+1—1,
J=1,2,...,4¢ must lie in the set {m,m—1,...,m —i+ 2}, which
contains only ¢ — 1 elements. Thus a; + ¢my1—s > n + 1, for
1=1,2,...,m. Add these inequalities to obtain the result.

2. Use coordinates. Without loss of generality, let M = (0,0),

B =(-1,0) C = (1,0). Let A = (0,a) and @ = (¢,0). The rest

of the solution is straightforward.

3. (a) Let A, be the set of integers in {1,2,...,k} whose base 2
representation contains exactly three 1’s and let g(k) be the num-

ber of elements in A;. Then f and g are nondecreasing functions
and f(k) = g(2k) — g(k). Then

Fk+1) — f(k) = g(2k + 2) — g(2k) — (9(k + 1) — g(k)).

Now either both 2k + 2 € Agpis and £+ 1 € Ay or neither
is true. Thus f(k + 1) — f(k) = 0 or 1, depending on whether
2k +1 € Asgyq or not. Thus f(k) does not skip any positive
integer values. Since

9(2") = (’;) =g(2" - 1),

we get, after some calculation, f(2") = (}). Thus f is not

bounded above and hence assumes every non-negative integer
value.

(b) Suppose f(k) = m has a unique solution. Then
flk+1) = flk)=1=f(k) - f(k—1).

The former holds if and only if 2k + 1 € Agyyo, i.e. there are
exactly two 1'’s in the base 2 digits of &. The same holds for k¥ —1.

74

& IMO Solutions 75

This is possible if and only if k£ — 1 has exactly two 1’s in its b-as:e
2 representation, where the last digit is 1 and the second last digit

is 0, i.e. k= 2" + 2 for some integer n > 2. A calculation gives
|

27 +2) = (g) +1,

Thus the set of positive integers m for which f(k) = m has a
unique solution is {(}) +1:n > 2}.

4. We note that

w1 nlttm)
mn — 1 mn— 1

and that
m(n? +m) = m?+n

mn —1 T mn—1"

Thus mn — 1 divides n® + 1 if and only if it divides m? + n and
this holds if and only if mn — 1 divides m3 + 1.

If m = n it is easy to see that m = 2.

If m > n, then % = k, an integer, implies that n* + k =
m(kn—1) > kn? —n and thus (k—1)n® —n —k < 0. This implies
that n < 25, if k > 1.

Ifk=1,thenn?+m=mn—1 Thusm =n+1+-2;. The
fact that n — 1 divides 2 proves that n = 2 or 3. If n = 2, then
m =25 and if n = 3 then m = 5.

Ifk>1,thenn < % < 2 implies that n = 1. Then m = 2
or 3.

Thus, if

s.q . . : -
2+l jg an integer, (m,n) is one of the pairs:

(1,2),(1,3),(2,1), (3, 1), (2,5), (3,5), (5,2), (5,3), (2,2).

It is clear that ;ﬁ% is an integer if (m,n) is one of these nine
pairs.

5. It is clear that f—(fl can take the value 1 at most once in each
of the intervals (-1,0) and (0, 00). Let f(a) = a, then property (7)
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implies that f(2a + a?) = 2a+a?. If -1 < a < 0, then -1 <
2a + a? < 0 and thus @ = 2a + a®. This gives the contradiction
o = 0 or —1. Similarly, the assumption that a > 0 leads to a
contradiction. Thus f(a) = a implies ¢ = 0. Using this fact and
letting y = x in () proves

x4+ f(x) +zf(z) =0,

for all z in S. Thus

—x

flo) = s

for all z in §. It is clear that this function satisfies (z) and (i)
and is the only function with these two properties.

6. First solution. Let A be the set of all positive integers of the
form giga . ..¢qq, where g1 < g2 < ... < gq, are primes. For any
infinite set {p1,pz,p3,...} of primes p1 < ps < ps < ..., we can
satisfy the requirements of the problem, by taking

m = pips...Pp, and 1 = PaPs...Pp 41

Second solution. Let IT = {p1,p2,ps,...} denote the set of all
primes. Let

Az':{qﬂlﬂ---‘k :QI:Q%---:%EHandpiXQIQQ---Qi}

andlet A = AJUA,UA3U. ... Let S be any infinite subset of II and
let pr. be in S. Choose distinct primes ¢1,¢2,...,¢x in S — {px}-
Then m = qiqa - - - ge—1qk is in A, whereas n = q1qa . .. gk—1Px 18
not in A.
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