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8. Elections
The following were elected, unopposed, to the Committee (Re-
election to the Committee is denoted by »):

Committee member Proposed Seconded

P. Mellon* {Secretary)  R. Timoney M. O Searcéid
M. Vandyck (Treasurer) D. Hurley J. Pulé

E. Gath* J. Pulé . Lessells

R. Gow M. O Searcdid D. Tipple

C. Nash M. O Searcéid P. Mellon

R. Timoney* B. Goldsmith 5. Dineen

The following have one more year of office: B. Goldsmith (Pres-
ident), D. Hurley (Vice-President), G. Lessells, B. McCann,
M. O Searcéid, J. Pulé.

The Committee is to co-opt cne member from UCG.

The following bave left the Committee: G. Ellis, D. Tipple

The President thanked the out-going Secretary for his services
over the last four years.

9. September meeting 7
8. Dineen and S. Gardiner are orgamzing the 1994 annual meeting
at UCD for 5th and 6th September. It will be followed by a
three day conference on polynomials and holomorphic functions.
Accommodation will be available on the UCD campus at £13.50
per night.

The 1995 annual meeting will be held at the University of
Limerick.

10. There was no other business.

The meeting closed at 1.00 pm.

Graham Ellis
University College
Galway -

A VIEWPOINT ON MINIMALITY IN TOPOLOGY

P. T. Matthews and T. B. M. McMaster

Introduction.

Given a family F of topological spaces whose point-sets all have
the same cardinality, and a particular space X in F, what should
we mean by saying that X is mintmal in F, and what use can be
made of such a concept?

Well, it depends both on the nature of the family and, crit-
ically, on the ordering relation between the spaces which belong
to it. If for example we take F as a collection of spaces all hav-
ing the same underlying point-set S, and order them by refine-
ment of topology (writing {5,m1) < (9,72) if and only if every
T1-0pen set is T2-open) then we are looking at part of the lat-
tice of topologies on 5. Here the interpretation of minimality is
entirely unambiguous and straightforward: (S, 7) is minimal in F
if, whenever (S,7') < (8,7) and (S,7') € F, then 7 = 7. The
techniques required, however, to access minimal objects in this
context can on occasions be extremely complex and subtle (see,
for instance, Larson [3], Johnston and McCartan [5,6], McClus-
key [10], McCluskey and McCartan [11,12,13]} and the resulting
insights correspondingly deep: indeed, as has been persuasively
argued, “In seeking to identify those [topologies on §] which min-
imally satisfy an invariant property, we are, in a very real sense,
examining the topological essence of the invariant” [11].

Nevertheless there are aspects of general topology for which
this approach to minimality is not appropriate. It is often the
correct practice {especially when the discussion is in any sense
categorical) to co-identify spaces which are homeomorphic to one
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another, in effect working with the homeomorphism classes in pref-
erence to the multitude of examples within each class. This device
is not readily compatible with ‘refinement of topology’ since it
is eagy to exhibit on any infinite set two homeomorphic topolo-
gies one of which is strictly finer than the cther, and in any case
the ‘same underlying point-set’ phrase is rendered meaningless
by focussing on classes. A different ordering relation is therefore
needed here, and the one most readily available is that of ‘embed-
dability as a subspace’, the binary relation sub defined by X sub
Y iff X is homeomorphic to a subspace of Y. This has several
desirable features, such as respecting homeomorphic equivalence,
relating nicely to hereditary classes of spaces, and being reflexive
and transitive. But it is not antisymmetric (the open and closed
intervals (0,1) and [0,1] are by no means the same space, yet (0,1)
sub [0,1] and [0,1] sub (0,1) are both true) and herein lies the dif-
ficulty: how can we assign a meaning to minimality of elements in
a set which is not paertially ordered but only quasi-ordered? And,
of course, why should we bother to do so? ‘

This note considers two suggestions for answering the first
question. One is effectively that adopted in Ginsburg and Sands’
paper [2] and in the unresolved “Toronto problem’ which is asso-
ciated with it. We use the other to establish a proposition, previ-
ously unnoticed so far as we have been able to determine, about
that best-known of all topological spaces, the real line; it will then
be seen to play a key role in characterizing the circumstances in
which Bankston'’s ‘Anti-’ operation [1] exhibits a certain beha-
viour. Hopefully these findings will be perceived as a partial
answer to the second question above!

We thank the referee for helpful and perceptive criticisms of
this article.

Strong and weak quasi-minimality.

Take an infinite cardinal &, T (a) to denote the family of all topo-
" logical spaces on « points, F a subfamily of 7{«), X a member of
F and sub as described in the Introduction. Let us agree to call
X strongly quasi-minimal in F if

Y sub XY € F imply Y homeomorphic to X,
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and weakly quesi-minimal in F if
Y sub X, Y € Fimply X sub Y.

The abbreviations sqgm and wgm will be employed, and the fol-

lowing remarks are immediate:

Proposition.

(i} sgm in F implies wgm in F (for any F).

(ii) The converse is not always valid (consider the two-space
counterezample
F = {(0,1),{0,1}}).

(i#) Tn any F which is partially ordered by sub {after identification
of homeomorphic spaces) the sgm, wgm end minimal elements
coincide.

Of particular interest for our applications is the case F =

T (a), so we shall compactify our notation further and write ‘X is

.sqgm’ (or wgm) rather than ‘X is sqm in 7{a)’ (or wqm in 7(c)).

So an sqm space is homeomorphic to each of its equicardinal sub-
spaces, a wgm space is embeddable into each of its equicardinal

_ subspaces. What do these spaces look like?

Well, in the case @ = No Ginsburg and Sands give a complete
and remarkably tidy answer {2]. They observe that on the set of
positive integers the discrete, trivial, cofinite, initial-segment and
final-segment topologies give sqm spaces, and they demonstrate
that every infinite space contains a copy of one or more of these
five (let us call them GS spaces).

Theorem (Ginsburg and Sands).
(i) In T(¥o) the sqm and the wgm spaces are precisely the five
GS spaces.
(ii) T(Xo) is “supported” by its wqm.members, in the sense that
for each X in T(Rg) there is some wgm Y in T(Ro) such that
Y sub X. .

Corollary. In the class T, N T(¥o) of denumerable Hausdorff
spaces, only the discrete space is sqm {or wgm) and this space on
its oun supports To N T(Mp).

At present it is far from clear what happens to these results
when Ny is replaced by a larger cardinal. Certainly not every
uncountable Hausdorff space contains a discrete equicardinal sub-
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space, so for part (ii) of the theorem to be generalizable to ¥,
or beyond we should require uncountable non-discrete Hausdorfl
sqm spaces; the Toronto problem [14, p.15] asks whether such
objects exist, and it has yet to be answered. Cur contribution to
the debate is to observe that if they do exist, then there are “not
enough of them to support their colleagues” in the above sense,
even if we relax sqm to wgm. More precisely, we show (subject to
set-theoretic assumptions) that for some uncountable cardinals «,

(a) the wqm spaces in T{a) do not support 7 {(a),

(b) the wqm spaces in T2 N 7 (a) do not support Ty N T {«),

(¢) any subfamily of 7(a) which does support the entire

family must have fairly large cardinality.

The proof, embodied largely in the following three lemmas, con-
sists of a transfinite-induction construction combined with a vari-
ant of a standard argument relating the weight of a space to the
number of its autohomeomorphisms.

Lemma A. Let o be a regular cardinal, X a set of cardinality
a, and {Sg : § < «} a family of a subsets of X each having
o elements. Then there is an a-element subset T of X which
contains none of the sets Sg.

Proof: Suppose for convenlence that X is a. We define a
strictly increasing transfinite sequence {zz, < a) in such a way
that 25 € S and zg > (z4)' for each 3, the “dash” indicating
successor in «. Initialize by choosing
zo= the least element of 5g.
Now assuming (for typical non-zero 8 < «) that the z, for v < 3
have been chosen in accordance with the desired criteria, we note
that the set {x. : v < B} has smaller cardinality than a and must
therefore be bounded above in (regular) o. Select an upper bound
u for it, notice that Sg cannot be bounded in o, and choose
15= the least element of Sy strictly greater than u'.
Now that induction guarantees the existence of the required
(zg, B < @), we observe that the set of successors of its terms
, T={z:3<a}
includes none of the z, and thus contains none of the 3.
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Lemma B. Suppose that for cardinals o and 3 we have
o <27 and

~v < B implies 27 < 3.

Then there is a Hausdorff topology on a set of cardinality o in
which every subspace has a dense subset of cardinality 3 or less.

Proof: We first consider the power set P{3) of 3. For each
v < f and each subset & of v put

[v,G}={H € P(8) : HNy=G}.
Whenever 1, < 72 in 3 we see that

[v1,G11N [, Ga] = {E{’,W,Gz] ftli?rgg; “

and it follows that B = {[y,G] : v < 8,G € 7} is a base for a
topeclogy T on P(73). Given distinct elements 4, B of P(3) it will
always be possible to find v < 3 such that v belongs to exactly
cne of A and B; then [, ANy} and [v/, BN~'] are disjoint 7-open
neighbourhoods of A and B, so t is Hausdorfl. The cardinality
of Bis Y. 27 which, under the stated supposition, is 5. Every

r<8

subspace of P(3) therefore has a base (and consequently a dense
subset) with at most 3 members. Now any set of cardinality o
can be injected into P(3) to inherit a topology with the same
property.

Lemma C. Suppose that X is a Hausdorff space of regular car-
dinality o whose subspaces all have dense subsets of 3 or fewer -
points, and that o = «. Let there be given a family {S, : v < a}
of o subsets of X each possessing « elements. Then every a-
element subspace Y of X has an a-element subspace into which
none of the S, can be homeomorphically embedded.

Proof: Fix Y. For each v < ¢, any homeomorphism £ from
S, onto a subset of ¥ is completely determined by its values on
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a dense subset of S,; since this subset may be taken to comprise
no more than 3 elements, there cannot be more than of = o of
these homeomorphisms, for which reasen the number of subsets
of ¥ that are homeomorphic to any of the various 5, is at most
o o = 0. Lemma A now assures us that ¥ has an a-element
subset containing no homeomorph of any S,

Notice that if we put 5§, = ¥ for every v < v in Lemma C, it
tells us that ¥ is not wgm. Consider now the following composite
assertion Qmin{a) concerning an uncountable cardinal o

(a) neither T(a) nor T3 N T(a) is supported by its wgm

members, and

(b) any subfamily of T (a) or of ToN7 (@) which does support

the whole

family moust have more than o members . ... [Qmin(a)]
Our three lemmas now permit us to probe the relationship
hetween set-theoretic axioms and the values of & for which this is
a valid conclusion, thus:

Theorem.
(i) The assumption R° = R; gives us Qmin(¥,).

(ii) If ¢ = 2" is regular [note: this is a consequence of Martin’s
Axiom (M A), see [4, p.284]] then we get Qmin(c).

(iii) The continuum hypothesis CH (2% = R;) implies Qmin(¥;).

(iv) If the generalized continuum hypothesis GCH (2% is the suc-
cessor of o for each a > Rp) is assumed, we get Qmin{«) for
every successor cardinal o.

Preof: Both (i) and (ii) follow directly from Lemma C without
recourse to Lemma B, since the real line (or an ¥;-element subset
of it) will suffice for the space X, choosing 3 = ¥g. (iii) follows
immediately from (ii). If we assume GCH, then every successor
cardinal « is of the form 27 (where 3 is its immediate predecessor)
and Lemma B supplies the Hausdorff space needed by Lemma C;
also o = (2°)P = @ to complete the evidence for (iv).

Corollary (to Lemma C). CH (or M A) implies that the real
line contains no Toronto space (sgm uncountable non-discrete
Hausdorff space).
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Application to Bankston’s “Anti-”.

Paul Bankston [1} developed a procedure, based on the connec-
ted/totally disconnected relationship, for converting any given
topological invariant P into another, “anti-P”: a space X is anti-
P when the only subspaces Y of X that are P are those for which
every topology on a set of ¥’s cardinality is P. A comprehensive
survey of this topic up to 1989 will be found in an earlier issue of
this Bulletin [7], to which we refer the reader for details.
Suppose now that P is a given hereditary (non-universal)
property and that Ap denotes the smallest cardinality of the non-
P spaces. Matier and McMaster have identified the circumstances
in which there is a hereditary invariant @ satisfying anti-@2 = P (a
hereditary pre-anti for P) [8,9] and in the case Ap = No they use

‘the Ginsburg and Sands theorem to identify amongst these prop-

erties @ one which is logically strongest. The question they leave
unresolved, of whether it is possible to do this also when Ap > Ng,
will now be shown to depend on the existence of ‘enough’ wgm
spaces of cardinality Ap. i

Let us first examine the special case in which no space of
cardinality Ap or more is P. Topologically this is of extreme tri-
viality, since P then is the property of having fewer than Ap points
(such an invariant has been referred to as cardinaily decisive!) but
it turns out to provide an adequate illustration of techniques and
results so far obtained.

Lemma 3. When P is cardinally decisive, then (} is a hereditary
pre-anti for P if and ouly if '
{i) @ is hereditary,
(i) Ag = Ap,
(iii) T(Ap) is supported by @ N T(Ap).

Proof: Almost immediate from the definitions.

Proposition. A cardinally decisive property P possesses a
strongest hereditary pre-anti if and only if T(Ap) is supported by
its wgm members.

Procf: Supposing that 7(Ap) is so supported, we define S
to comprise all spaces on fewer than Ap points together with all
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wqm spaces on exactly Ap points. Using Lemma D, this is easily
checked to be one of the hereditary pre-antis for P. If @ is any of
the latter properties and X is wgm in T{Ap) then ¥ sub X for
some @ space Y in 7 (Ap), and consequently X sub Y also, which
shows X to be Q; hence every S space is @, s¢ 5 is indeed the
strongest such invariant.

Conversely, suppose that there is a space X in T{Ap) none
of whose equicardinal subspaces is wqm. Given any hereditary
pre-anti @ for P, there must be a space ¥ in QN7 {Ap) such that
Y sub X, and since ¥ is not wgm we can find Z in T(Ap) with
Z sub Y but not (Y sub Z}. We define:

Q" ={T €Q: not (Y subT)}.

Another appeal to Lemma D readily shows Q" to be a hereditary
pre-anti for P which, since it excludes the @ space Y, is strictly
stronger than . We conclude that no strongest hereditary pre-
anti for P can exist.

Corollary.

(i) [9] The strongest hereditary pre-anti for the class of finite
spaces comprises the five GS spaces together with all the finite
spaces.

(ii) Assuming CH, the class of countable spaces has no strongest
hereditary pre-anti. :

(iii) Assuming GCH, for each successor cardinal o the class of
spaces having cardinalities less than o has no strongest hered-
itary pre-anti.

No very radical transformation of the argument above is
needed to generalize from the cardinally decisive case to that in
which some P spaces have Ap or more elements. We obtain the
following conclusions:

Lemma BE.
(i} A wqm space of cardinality Ap is anti-P if and only if it is
non-P. :
(ii) If X sub Y where Y is wqm and X has the same cardinality
as Y, then X is wgm.

{1l
[2]
3]
4l
(5]
f6]
[7]
(8]
[9]

=
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Theorem. Let P be a topological invariant which possesses
hereditary pre-antis. There exisis a strongest hereditary pre-anti
for P if and only if the class of non-F spaces in 7 (Ap) is suppor-
ted by its wqgm members. When it exists, it consists of the wgm
non-P spaces of cardinality Ap together with all spaces of smaller
cardinality.

Amongst the questions so far unresolved in our investigations
of this tepic, the following appear to be most pressing:
Problem 1. Find a wqm space which is not sqm. More generally,
for which values of o are wqm and sqm in 7(2) equivalent?
Problem 2. Will any reasonable set-theoretic assumptions enable
us to prove or disprove @min{a) where « is an uncountable Emit
cardinal?
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EPIMORPHISMS ACTING ON BURNSIDE
Des MacHale and Robert Sheehy

The Burnside group B(r, n) is the group of exponent n, generated
by r elements z;, ¥2, . .., Z.. It is well known that B(r, n) is finite
for n = 2, 3, 4 and 6 for all r but that for n > 865 and n odd,
B(r,n) is infinite when r > 1. In addition, it has recently been
shown that for n > 248, B(r,n) is infinite for r > 1, [1].

Let B be the set of all positive integers n for which B{r,n}
is finite for all v. Since the relation ¢® = 1 can be written as
g™t = g = (¢)] where T is the identity antomorphism, we ask
the following question.

Suppose & is a finitely generated group and the map o given
by go = g* for all g € G and a fixed positive integer &, is an
automorphism of G. What values of k force G to be finite?

In fact, in what follows, we can replace ‘automorphism’ by
‘epimorphism’, that is, an endomorphismn of G onto &, and prove
the following resulit.

Theorem. Suppose that n belongs to B and that G is a finitely
generated group such that the map o given by ga = g™ for all
g € G Is an epimorphism of G. Then G is finite.

Proof: For all @ and b in G, (ab)a = (ab)*t! = a™*1p™+1, s0 by
cancellation (ba)™ = a™b™. Then (ba)"*! = (ba)"ba = a™b"ba,
whence b™a™ = g™b"t1. Since « is onto, ga™ = a"g for all @
and ¢ in G, and so a™ € Z(G) for all a € G, where Z((7) denotes
the centre of G.

Now G/Z(G), being a factor group of a finitely generated
group, is finitely generated of exponent n and since n € B, G/Z(G)
is finite. Thus Z(G), being a subgroup of finite index in a finitely
generated group, is a finitely generated abelian group.
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