HIGHER ORDER SYMMETRY OF GRAPHS®

Ronald Brown

Symmetry in analogues of set theory.

This article gives background to and results of work of my stu-
dent John Shrimpton [18, 19, 20]. It advertises the joining of
two themes: groups and symmetry; and categorical methods and
analogues of set theory.

Groups are expected to be associated with symmetry. Klein'’s
famous Erlanger Programm asserted that the study of a geometry
was the study of the group of automorphisms of that geometry.

The structure of group alone may not give all the expression
one needs of the intuitive idea of symmetry. One often needs struc-
tured groups (for example topological, Lie, algebraic, order,...).
Here we consider groups with the additional structure of a direc-
ted graph, which we abbreviate to graph. This type of structure
appears in {13] and [17].

We shall associate with a graph A4 a group AUT(A) which 1s
also a graph. The vertices of AUT(A) are the automorphisms of
the graph A and the edges between automorphisms give an expres-
sion of “adjacency” of automorphisms. The vertices of this graph
form a group, and so also do the edges. The automorphisms of A
adjacent to the identity will be called the inner automorphisms of
the graph A. One aspect of the problem is to describe these inner
automorphisms in terms of the internal structure of the graph A.

* This paper is an account of a lecture “Groups which are
graphs (and vice versal)” given to the Fifth September Meeting
of the Irish Mathematical Soctety at Waterford Regional Technical
College, 1992,
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The second theme is that of regarding the usual category of
sets and mappings as but one environment for doing mathemat-
ics, and one which may be replaced by others. We use the word
“environment” here rather than “foundation”, because the former
word implies a more relativistic approach.

The other environment we choose here is the category of dir-
ected graphs and their morphisms. We define this category, and
then use methods analogous to those of set theory within this
category. This allows set-theoretic intuition to be used to gen-
eratc new results and methods, and is possible because of the
“sood” properties of this category of graphs. The background
here is that of topos theory, which has given methods for consider-
ing many other environments for mathematics, and for comparing
these environments.

Topos theory takes a relative rather than absolute viewpoint
towards sets. The topos of sets is obviously an important, stand-
ard and basic kind of topos, but suffers from the defect of being
somewhat boring, reflecting the fact that the objects of the topos,
namely the abstract sets, are devoid of structure. The topos
theory approach allows not only other versions of the category,
or topos, of sets, but also allows comparison of different versions,
through the notion of functor and natural transforination.

Thus different notions of set, or graph, can be evaluated by
comparing the properties of the associated categery. This global
viewpoint has proved fruitful. One point of appearance was in
topology, where the standard category of topelogical spaces was
found not to have a function space with convenient properties.
So different categories of topological spaces were proposed with
“better” or mare convenient function spaces.

The idea of emphasizing the categorical aspects of sets is not
so familiar outside of category theory. Tor example, the article
[1] does not mention any categorical approach. The traditional
viewpoint is that sets are defined by the membership relation.
There is, however, a sirong argument that this approach is counter
intuitive, since for many sets we wish to use, such as that of real
numbers, it is very difficult to get one’s hands on any but a small
fraction of their members.
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The categorical approach is that sets are defined by the rela-
tions between them, namely the functions, and this view has been
strengthened by the success of topos theory. The book [14] is
a good introduction to topos theory for those with a foundation
in category theory. For an article relating the history of topos
theory to notions of the foundations of sets, see [15]. The author
emphasizes that the notion of topos was defined by Grothendieck
as a replacement for the notion of topological space. Thus it was
intrinsic to the definition that many different topol were to be
considered.

In the work of Lawvere, categories of structures other than
sets are regarded as having intuitive value equal to that of the
category of sets. That is, the category of sets is not regarded
as a foundation for mathematics. Some words have to be said
on the advantages of categorical methods, whose objectives and
methedology have failed to be realized by some. The book by Reid
[16] even writes: “The study of category theory for its own sake
{surely one of the most sterile of intellectual pursuits) also dates
from this time; Grothendieck himself can't necessarily be blamed
for this, since his own use of categories was very successful in
solving problems”.

This quotation has aspects which should be noted. One is
that it derides some vaguely specified group of colleagues as essen-
tially unprofessional. A second is its lack of adventure. Let me
propose a game: “I can think of a more sterile intellectueal pursuit
than you”. A third is that it is hardly sensible to think of “blam-
ing” Grothendieck for developments in mathematics. A fourth
is its avoidance of historical analysis and of supporting evidence.
This should be contrasted with McLarty’s article [15].

A fifth is the view that the aim of mathematics is the solution
of problems, which, by implication, are already formulated. By
contrast, a historical view shows that the value of mathematics
for other subjects, and for its own ends, is that it has developed
language for: :

o the study of patterns and structures;
¢ the formulation of problems;
o the development of methods of calculation and deduction.
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The solution of problems is cften a byproduct of this wider process
and these wider aims. In this process, the study of an area for its
own sake is often a necessary developmental stage. Judgements
on the sterility or otherwise of such a study can be a matter of
timing, or of gossip and snobbery, and are not always based on
comparison and scholarship.

Does our education of mathematicians train them in the
development of faculties of value, judgement, and scholarship?
I believe we need more in this respect, so as to give people a
sound base and mode of criticism for discussion and debate on
the development of ideas.

The origins of category theory help to explain its ut1l1ty It
arose from attempting to explain the meaning of the word “nat-
ural” in mathematics, and with a strong impetus from the axio-
matic approach to homology theories, developed by Eilenberg and
Steenrod, [6]. The original paper on the subject by Eilenberg and
Mac Lane, [5]; has an interesting discussion of the word “natural”
in terms of the map V — V** of a vector space into its double
dual. To define natural reguired a definition of functors, and to
define functors required a definition of category. This itself reflec-
ted also the growing realization that whenever a structure has
been defined, it is usually necessary to consider also the morph-
isms of that structure.

By now, the general notions of limit and colimit, whose for-
mulation was possible with the use of categories, and the later
notion of adjoint functor, must be regarded as basic tools in math-
ematics. For example, the fact that a functor which is a left adjoint
preserves colimits, while a right adjoint preserves limits, is a useful
computational tool in many aspects of algebra and even combin-
atorics. Graduate books will probably have to give initial sections
on basic concepts of category theory, in the same way as they have
given basic sections on set theory, algebra and topology.

Category theory has been found useful for

e a global approach: i.e. constructions are defined by universal
properties, which give the relation of the constructed object

. to all other objects;

e formulating definitions and theorems;
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s carrying out proofs;
e discovering and exploiting analogies between various fields of
mathematics.

Grothendieck’s work on the foundations of algebraic geometry led
him to develop a vast range of new categorical concepts. It is signi-
ficant that his first important work was in analysis, and he brought
to algebraic geometry a local-to-global approach. In algebraic
geometry, it seems that “local” means “at a given prime p”, and
“global” means “over the integers”. His approach was also to take
concepts seriously, recognizing the effort required to “bring new
concepts out of the dark” ([7]), and to spend a lot of effort in
turning difficult results into a series of tautologies.

As one other recent example, and an indication of a wide
literature, the paper by Joyal and Street, [8], illustrates how an
algebraic development initially formulated for metamathematical
reasons, and almost for its own sake, namely the notion of mon-
oidal, or tensored, category, has found striking applications in
concrete problems in knot theory, and string theory in physics.

One of the attractions of category theory is that the same
algebraic tools are found applicable at several levels, and in a
variety of areas. This feature is also found in groupoid theory, of
which a survey was given by me in [3]. This notion has allowed
the formulation of important extensions of group theory and of
notions of symmetry.

Thus category theory is par ercellence the method which
enables the recognition and exploitation of many forms of ana-
logy and comparison of structures. The point is that the algebraic
study of the structure of a theory involves studying the categories
and functors associated to the theory, and such a study leads to
new algebraic notions of interest in their own right.

Applications to graph theory.

There are several unfamiliar aspects of this approach as applied
to graph theory.

1) In this approach, it is essential to use a category of graphs and
their morphisms. By contrast, it is not so easy to find a book en
graph theory which defines a morphism of graphs.
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2).An important categorical method used is that of universal prop-
erty. In our setting, this defines a construction on graphs by the
relation of the construction to all graphs. This may seem curious
and far from logical. In fact, a construction by universal prop-
erties is analogous to a program, which when given an input of
particular graphs, or graphs and morphisms between them, gives
an output, namely new graphs and new morphisms. This analogy
t6 programming is one reason why computer scientists have found
the methods of category theory useful.
3) We lift to the category of graphs standard methods available
in the category of seis and funciicns.

There are many possible definitions of graph and morphism
of graph. We take one which gives for our purposes the “best”

properties of the correspending category. This again is an example

of a “global” approach, and is simply a step or so up from a
common approach in mathematics of considering for example all
numbers, or all the symmetries of a square.
We deal here only with directed graphs. So for us a graph will
mean a set Ap of edges, a set Ay of vertices and three functions
t: Ag — Ay, e: Ay — Ag such that se = 1, te = 1. Here s
and ¢ are the source and target maps. If z,y € Ay, then A(z,y)
denotes the set of edges with source = and target y. Such an edge
a is also written @ : z — y. A [oop is an edge with the same source
and target.
This defines in essence a directed graph in which each vertex
v has an associeted loop ev at that vertex. This extra structure
makes no difference to the combinatorics of an individual graph,
but makes a considerable difference to the allowable graph morph-
isms. The associated loop at a vertex v is often written » and given
the vertex label v. Thus cne of the simplest graphs, denoted I, is
pictured as

Os —3 el,

A morphism of graphs f : A = B is a pair of functions
fe: Ag — Bg, and fy : Ay — By preserving the source and
target maps, and e. The implication is that f maps edges to
edges, vertices to vertices, and f can map a general edge to the
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loop associated to a vertex. In effect, this means edges may be
mapped to vertices.

The category DG of directed graphs has objects the graphs
and arrows the morphisms, and DG (A4, B) denotes the set of graph
morphisms A — B. Lawvere in [12] calls this the category of
reflerive graphs.

This category has a terminal object, written e, with the prop-
erty that, for any graph A, the vertices of 4 are naturally bijective
with DG (s, A). The edges of any graph A are naturally bijective
with DG{I, A). '

Continuing with the categorical approach, we define the
product of graphs. :

A product of graphs A and B consists of a graph 4 x B with
morphisms p: Ax B —+ 4, g: Ax B — B such that for any graph
C the function .

DG(C, A x B) = DG(C, 4) x DG(C, B)
[ (pf,af)

is a bijection. This says that a morphism te 4 x B is completely
described by its component morphisms to 4 and B. The definition
s also analogous to the law for numbers (ab)® = a®b°.

It may be proved from the definition that the vertices of Ax B
are pairs of vertices from 4 and B, and the edges of A x B are pairs
of edges from A and B. One way of proving this is to show that
if SETS denotes the category of sets and functions, then the two
functors DG — SET'S given by the edges and the vertices have left
adjoints, and so preserve limits, and in particular products. This
deduction is one example of the “comparison” of environments
referred to earlier. An important aspect of this procedure is that
the product is defined by the universal property, which is the
property that is most often used, and then a specific construction
is deduced from the universal property. This verifies existence of
the product. '

As a typical example of the product of graphs, associated
with the simplest graph 7 we have the preduct 7 x F, illustrated
by the following diagram:
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Given sets B and C there is a set C? of functions B — C.
In our category of graphs, the analogous construction is of course
a graph of morphisms DIGRPH(B, ).

In the category of sets we have the standard exponential low

CAXB =~ (CB)A.

This corresponds to the law for numbers ¢** = (¢*)°.
theory, we have the analogous law:

For graphs A, B and C, there is ¢ natural bijection

In graph

DG(A x B, C) = DG(A, DIGRPH(B, C)).

Here the morphism graph DIGRPH(B, C) is in effect defined
by this formula. From this formula, we can deduce the specific
construction as follows.

Let B and C be graphs. The graph DIGRPH(B, C) is to have
vertices the morphisms of graphs B — C and to have edges the
triples (p, f,g) such that f and g are morphisms of graphs B — C
and p: B — C is a function from edges to edges such that if b is
an edge of B then

spb = fsb, tpb= gth.
Define

sio, L) =f e fg)=g €f)Y=(F1)
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Then each edge b of B yields the diagram

pesh

fsb gsb

fib gtb

peth

Comments.

1. If you define a directed graph by omitting €, then product and
morphism graph are defined, but the vertices of the morphism
graph are not the morphisms of graphs. Instead, the morphisms
correspond to the loops at vertices. From the categorical view-
point, this is not surprising. The morphisms B — € should cor-
respond to the morphisms » —+ DIGRPH(B, C), where e is the
terminal object in the category, i.e. the graph such that there is
exactly one morphism 4 — e for any graph A. If the associated
loop is omitted from the definition of graph, then the terininal
object again has one vertex and one lcop, and the morphisms of
graphs are then not the vertices of the morphism graph, but are
instead the loops of this morphism graph. The relations between
these two categories of directed graphs are considered by Lawvere
in [12].

2. There is another analogy between the category PG and the
category of sets and functions. We can define in DG a graph O

and a morphism of graphs

true.

® —p 0,
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called the sub-object classifier because it classifies subgraphs in a
manner analogous to the way the inclusion '

{1} = {0, 1}

in sets classifies subsets via the characteristic function of a subset,.

With this sub-object classifier, with the constructions defined
earlier, and with the construction of limits (a more general notion
than product), PG becomes what is called a fopos. The name is
due to Grothendieck, and was envisaged by him as a replacement
of the notion of topological space by the category of sheaves on
that space.

For our purposes, the idea is to carry out arguments in the
topos DG as if it were the category of sets and functions, but never
to use the law of the excluded middle. The reason for this is that
the lattice of subgraphs of a given graph is not Boolean, since for
example the complement A\ (A \ B) of the complement A\ B of
a subgraph B is usually not the original subgraph B. Thus this
theory is intuitionistic, an approach which is seen in this context
as a practical mathematical tool for dealing with situations where
the notion of membership is not the primary aspect. In the case of
graphs, the “elements” have to be the vertices, but these capture
only a small part of the structure. For more information on this
approach in graph theory, see [12], while for the general body of
theory, see the book by Mac Lane and Moerdijk, [14].

The exponential law in DG has a number of consequences.
One is that there is a composition morphism

DIGRPH(B, C) x DIGRPH(A, B} - DIGRPH(4,C)
which is associative and with identity. Hence *
END(A) = DIGRPH(A, A)

has the structure of both a monoid and a graph. In the category

of sets, monoids have maximal subgroups. This is also true in a

topos. In the case of graphs, the maximal subgroup of the monoid

END(A) is called ‘ '
AUT(A).
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It is a group which is also a graph, or a graph which is also a
group. Its set of vertices is the group Aut(A) of automorphisms
of A.

Example: Let A, be the complete graph on n vertices, and let
Dy be the discrete graph on n vertices. These graphs have the
same automorphism group, S,, the symmetric group on n letters.
But AUT(A,) is the complete graph, while AUT(D,,) is discrete.

In the graph AUT(A), the automorphisms adjacent to the
identity form a normal subgroup of Aut{A): these automorphisms
are called the inner automorphisms of 4.

This raises the problem of describing the inner automorph-
isins of a graph in terms of internal properties of the graph. The
solution is given by Shrimpton, [19, 20], in terms of the notion of
inner subgraph.

A subgraph B of a graph A is inner if it is maximal with
respect to the following properties:

1. complete (i.e. the sets B(z,y) have the same cardinality for
all z,y4 € By);

2. full (ie. B(z,y) = A(z,y) for all z,y € By);

3. any auwtomorphism of B extends to an automorphism of A

which is the identity on the complement A\ B of B in A.

Claim [19, 20}. Any vertex belongs to s unique inner subgraph.

Theorem [19, 20]. An automorphism of a graph is inner if and
oniy if it restricts to an automorphism of each inner subgraph.

This suggests that the inner subgraphs are a kind of atom of
symmetry of the graph.

The comsideration of group-graphs leads to another new
notion; the centre of a graph.

A group-graph is defined by Ribenboim in [17] to consist of
groups &G and Gy and morphisms 3,1 : Gg — Gy, e: Gy =+ Gg
such that se = ¢ = 1. This concept has occurred elsewhere,
for example as a 1-truncated simplicial group [13], and as part
of the structure of a group-groupoid, as in Brown and Spencer,
[4], where this is called a §-groupoid. Loday in [13] found it
natural to consider the subgroup. [ker s, ker ] and to say that the
group-graph is a cat! -group if this subgroup is trivial. If it is not
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trivial, we can form the quotient vG g = Gg/[ker s, ker i] with the
induced morphisms to Gy giving G the structure of cat!-group.
We call

(ker s) N (ker t) C vGEg

the second homotopy group of G and write it (¥,

In particular, if G = AUT(A4), then 72{G) is called the centre
Z(A) of the graph 4. The centre is always an abelian group, and
in fact is a module over Qut(A4) = Aut(A4)/Inn(A). The aim is to
describe this centre, in the case that A is finite, in terms of the
structure of A.

To this end, we iniroduce in the following proposition an
equivalence relation on the edges of a graph.

Proposition [19, 20]. If A is a graph, then there is an equivalence

relation on the edges of A given by z is equivalent to y if and only
if there are inner subgraphs I and J of A such that sz, sy hein I
and tx, ty lie in J.

Theorem [19, 20]. If A is finite, then the centre Z{A) of A is a
direct sum of copies of the cyclic group of order 2, the number of
copies being the number of equivalence classes of edges of A which
contain multiple edge sets.

Conclusion.

We have now shown that the study of categorical aspects of graph
theory can lead to new problems, questions, and insights, and that
it gives an interesting example of the relative viewpoint on set
theory as exemplified by topos theory. Further work that might
be done is in the area of “actions” of group-graphs, as well as the
investigation of higher dimensional versions of AUT(A), such as
the notion of automorphisms of ordered simplicial complexes.
The category DG is an example of what is called a presheaf
category, namely a functor category ¢ = (SETSYC™ for a small
category C. The specific constructions outlined above for directed
graphs are special cases of the fact that any such presheaf category
€ is a topos (see Mac Lane and Moerdijk, [14]) These and other
topoi yield a range of cther “environments” for mathematics, or
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for a particular study, while types of categories other than topoi
may be more suitable for other aims,
The notion of an internal group object in a category or in a

-topos is quite old. Thus the surprise is that the detailed study of

this particular example, and the elucidation of the properties of
the automorphism group-graph, had not been considered earlier.
This suggests that there may be considerable mileage to be had
from applying in new ways and in new places these and other
concepts and methods of category theory.
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