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If Z(G) is finite we are finished, so assume that Z(G) is infin-
ite. Then
Z(@) 2T x Cpo X % Cx

is the direct product of a finite group T and finitely many infinite
cyclic groups. Now Z(G) is invariant under all epimorphisms of G
onto &, but clearly o : £ — z™1! is not onto on any of the infinite
cyclic factors. This contradiction establishes the result.
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THE POISSON KERNEL
AS AN EXTREMAL FUNCTION

D. H. Armitage

It has long been known that for certain classical inequalities

involving positive harmonic functions on the open unit ball B

of RV the Poisson kernel of B (with some fixed pole on 9B)
is extremal (that is, a function for which equality holds in the
inequalities}. In recent years several new inequalities for positive
harmonic functions on B have been discovered; again the Poisson
kernel and functions related to it appear in extremal roles. This
article, which is based on part of a talk given at the Society’s
Meeting at Waterford in September 1992, surveys some such
inequalities, both old and new.

i. Harmonic functions and the Poisson kernel

1.1. Harmonic functions

A real-valued function b is harmonic cn a non-empty open subset
Q of the Euclidean space RY, where N > 2, if h is smooth (that
is, h € C%(f2)) and satisfies Laplace’s equation (that is, AL = 0
on 2, where A = 82/9z2 +...+8%/8z%). Harmonic functions are
also characterized by Gauss’ mean value property: h is harmonie
on {1 if and only if h is continuous on {1 and, for each closed ball
B C 11, the value of h at the centre of J is equal to its average
value over the boundary 88 of 3 (see, e.g., Hayman and Kennedy
[13, §1.5.5]).
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¥or ease of reference, we list the classes of harmonic functions
that we shall consider:

Hy = {h: his harmonic on B},
Hi={heHy:h>0o0n B h(0) =1},
HHp, n = {h: his a homogeneous harmonic polynomial
of degree m cn RV},
Hm,n = {h: his a harmonic polynomial of degree at
most m on RV},

H:;,N ={h€Hyn:h>00onBA0)=1}

Clearly the spaces Hy, HH,, v and H,, y are real vector spaces
(0 € HH,, v by convention). The normalization h({(0) = 1 in the
definitions of H; and H;t‘ w s convenient and involves no real
loss of generality.

1.2 The Poisson kernel

The Poisson integral and hence implicitly the Poisson kernel for
B were introduced in the 1820’s (Poisson {186], {17]) for N = 2,3
in a construction aimed at solving (what later became known as)

the Dirichlet problem for B. The Poisson kernel K of B is defined
on B x 0B by

K(z,y) = 1 - fl=[*)lix -~ y||7", (1.2.1)

where || - || is the Euclidean norm on RY. A calculation (see, e.g.,
(13, p.32]) shows that if y € 8B is fixed, then K(-,y) € H¥. If u
is a finite signed measure on 8B, then the Poisson integral P, of
4 is defined on B by

Pu(e) = ]8 _ Kag)duty).  (122)

Passing the operator A under the integral sign in (1.2.2), we
deduce from the harmonicity of the functions K(-,y) that
P, € Hy; if, further, p is a probability measure on 9B (that
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is 4 > 0 and u(8B) = 1), then P, € Hf. The importance of the
Poisson integral lies partly in the converse result which, following
Doob [7, 1.IL4}, we call the Riesz-Herglotz representation theorem:
if h € H;, then h = P, for some probability measure p on
aB.
(A proof can also be found, e.g., in Helms [14, Theorem 2.13].)
We explain in passing the connection between Poisson integ-
rals and the Dirichlet problem, mentioned above. ¥ g = fo,
where f : 3B - R is continuous on 8B and ¢ is surface meas-
ure on &5 normalized so that o(8B) = 1, then P, € Hy and
P,(z) - f(y) as ¢ — y for all y € B; that is to say, P, solves
the classical Dirichiet problem for B with boundary function f.
Our aim here is to illustrate the extremal role of the Pois-
son kernel in relation to inequalities involving three classes of

functions.

2. Inequalities for positive harmonic functions

We mention three inequalities (two classical, one recent) for func-
tions of class Hy.

2.1 Harnack’s inequalities
It is easv to see that

(-l a+|zI) Y < K(z,9) < Q+|laiDL-lal) Y (2.01)

for all z € B and all y € 8B. If A € HY, then, by the Riesz-
Herglotz theorem, kh = P, for some probability measure g on
AB. Integrating each member of (2.1.1) with respect to du(y), we
obtain the Harnack inequalities [12]: '

For h€ HY,z € B,

(1—II$II)(i+lI$II)1‘N < hz) < (14 el - l=l) 7. (2-1.2)

For (2.1.2) the Poisson kernel is extremal: more precisely, examin-
ing cases of equality in {2.1.1), we find that if z € B\{0}, the
left-hand (respectively, right-hand) inequality in (2.1.2) is strict
unless h = K{-,y) for some y € 8B and £ = —oy (respectively,
z = ay) for some a € {0,1).
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2.2 A corollary of Harnack’s inequaolities
From (2.1.2) it follows easily that if » € H;, then

llzllalz) — R(O)] < N+ O(|2ll)  as||=il > 0,

whence
IVAO) SN (he HE), (2.2.1)

where V is the gradient operator: V = (9/0z,,...,8/8zy). In
particular,

[(Br/z)O)| <N (he HE). (2:2.2)

Calculations show that equality holds inn (2.2.1) if h.€ K(-,y) for
some y € 08 and in (2.2.2) if h = K(-,y) with y = (£1,0,...,0);
with a little more trouble one can show that these are the only
cases of equality.

2.3 A generalization of (2.2.2.)

Goldstein and Kuran [10] generalized (2.2.1) and (2.2.2). As a
sample of their work, we state a generalization of {2.2.2) in the
case N=3 form=1,2,... '

—ml(2m+1) < (™k/0zT)(0) < m!(2m+1) (he H}): (2.3.1)

moreover, equality holds on the right hand side if and only if
h=K(-(1,0,0}). (The question of sharpness in the left-hand
inequality is another story; see [3].) A proof of (2.3.1) is out of
the question here, but the idea is to write h as a Poisson integral,
pass the operator 8™ /9z7 under the integral sign in (1.2.2), and
then (the hard part) estimate (6™ /8z7*)K(z,y) at x = 0. In §4.1
we indicate the significance of the factor 2m + 1 in (2.3.1).
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3. Inegqualities for trigonometric polynomials

3.1 Trigonometric polynomials and harmonic polynomials

To study trigonometric polynomials is essentially to study plane
harmonic polynomials, as we now explain. We identify R? with
C in the usual way. For a positive integer 7, the functions Re(z?)
and Im{z7)} span HH;,. Thus a typical element » of H,, o bas
the form

h(re®®) = ap + Erj(aj cos j8 + b; sin j8), (3.1.1)

j=t

where the coefficients are real. Let T, denote the space of real-
valued trigonometric polynomials (defined on the unit circle) of
degree at most m. A typical element f of T\, can be written as

fle?®) =ag + z(aj cos j@ + b; sin 36). - (31.2)
=1

The isomorphism & : T, = H,, 2 mapping the function in (3.1.2)
to that in (3.1.1) clearly maps each f € T, to the solution of the
Dirichlet problem in the unit disc D with boundary function f.
Let

2m
TH={feT,:f>00ndD, f(e%) df = 2x}.
¢

Note that the elements of Hjhg and T} are normalized so that
ag = 1 in the representations (3.1.1) and (3.1.2) respectively. It
follows from the well-known minimum principle for harmonic fune-
tions that ®(T5) = H, ,. Thus results for T, can be interpreted

for H, ,.

3.2 An inequality of Fejér
Fejér [8] proved that

supf<m+1 (feTh. (3.2.1)
aD ,
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Here is a quick proof. Write f € T} in the form (3.1.2). Since
Ff > 0on 8D and ap = 1, for all # we have

F(e®) < Zf(ei(ﬂ+2k1r/(m+1}) (3.2.2)
k=0
=m+1+
EZ{ajcos(jB—f— Jﬂ)—‘rbjsin(jﬁ-}- zjkﬂ)}
F=1 k=0 m+1 mtl
=m+ 1;

the last step uses the equation

m
Do) =g (j=1,...,m).
k=0

It is easy to see that in working with f € Tf, there is no
real loss of generality in supposing that sup f = f(1). It was
ab

also shown by Fejér that there is exactly one f € T.} such that
sup f = f{1) = m + 1, and this function is
ap '

Fm(e®)y=1+2(m+ 1)7! f:(m +1—j)cosjh.
g=1

{A proof can be based on the observations that equality holds

in (3.2.2) with 8 = 0 if and only if f(e**7/(m+1)) = 0 for all

k=1,...,m and that f,, has this property, since
fm(€?) = (m+1) T sin®((m+1)8/2)/sin(8/2) (0 <8 < 2m).)
Interpreted for harmonic polynomials, these results say that

suph<m+1 (heH,) (3.2.3)
aD !
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and

hon(re®) =1+ 2(m + 1)~ z(m +1—Hrfcosj®  (3.24)
Jj=1
is the only element of I} + 4 Tor which sup h=h(1l) =m+1. Tosee

how the extremal functmns h,, are related to the Poisson kernel
of D, note that writing N = 2,z = re’®,y = 1 in (1.2.1) gives

o]
Kre® 1) =(1—r)(1+7* - 2rcos®) ' =1+ Z2rj cos j8
j=1

(3.2.5)

and that h., (re®®) is the mth Cesaro (that is, (C, 1)) mean of this

series (including the term 1); in particular, b, — K-, 1) locally
uniformly on D as m — 0.

3.3 An inequality of Szegd
If f € T is given by (3.1.2) (so that ap = 1), how big can the
individual coefficients a;,b; be? For simplicity consider only a;.
A crude estimate is casy:

2m
o<t A (1 cosj8)f(e?)dd = 2 £ aj,

so that |a;| < 2. Szegd's sharp result {18, p.625] is
la;| < 2cos(n/(2 + [m/3])), (3.3.1)
where [-] is the integer part function. Much later Kuran and I

(unpublished) rediscovered the harmonic polynomial version : if
h € H} , and h is given by (3.1.1), then a; satisfies (3.3.1); note

that jla; = (& h/Bz{)(O). We were also able to say something
about extremal functions. For example, with j = 1:

(0h/02:)(0)} < 2eos(n/(2+m))  (h€ HE,)  (33.2)
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(compare (2.2.2) with N == 2), and there is exactly one function
h € H;, 5 for which equality holds in (3.3.2) with the medulus
sign suppressed; further A, — K (-, 1) locally uniformly on D as
m — 00,

3.4 A recent result and an open question
A question of Holland [1, Problem 4.26] essenma.}ly asks for the
value of

21 2
A = sup — (e o= sup i (h(c™®))? db.
ferd 2 heH} , 2w

No general formula for A,, has been found, but it is known that
the suprema are attained (Goldstein and McDonald [11])and that
lim Ay, /m exists and equals 0.68698 . .. (Garsia et al. [9]; see also
Brown et al. [6]).° It would be interesting to know whether the
extremal functions are again related to the Poisson kernel of D:
if h., € H}, 5 is such that supsp by = 1 and

Am = if%(h (e*))? db
m T 27T o T

do we have h,,, & K(-,1) on D as m — oo? The conjecture that
{Am/m) is decreasing also seems to be open.

4. Inequalities for harmenic polynomials

4.1 General remarks about harmonic polynomials

In their guise as questions about harmonic polynomials, the prob-
lems discussed in §3 can be posed in all dimensions. They are
generally more difficult in higher dimensions, since complex vari-
able techniques are not readily available and representations of
harmonic polynomials on R” are not as simple as (3.1.1) when
N > 3.

We need to quote some well-known facts; Brelot and Choquet .

(5] give an excellent account of most of these. Let u denote the
unit vector (1,0,...,0) in RY. There is exactly one element Lo N
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of HH,, y such that I, v is z1-axial (that is, I, y depends only
on zj and |iz|]} and I, n{u) = 1. Writing cos@ = z;/||z}| when
z € RY\{0}, we have, for example,

Ima(z) = ||z||™ cosm8, Ims = ||z||™Pmlcos8),

where P, is the Legendre polynomial of degree . Also, we have
|[Zm,n] <1 cn 8B and

/ 2,y do = 1/dmn, (4.1.1)
o8B

where

N-2
don n = dimHHy y = 2t ¥ 2 (””’N

-2
— o | N_2 ) (4.1.2)

so that for m > 1

dn2 =2, dma=2m+1, dms=(m+1)°

The N-dimensional generalization of (3.2.5) is

K(z,u) =1+ id-,Nr-,N(m) (z € B) (4.1.3)

=1

(see Miiller [15, Lemma 17]). It is the appearance of the coef-
ficients d; n(= 27 + 1 when N = 3) in (4.1.3) that ultimately
accounts for the factor 2m +1 in (2.3.1).

4.2 An aziclization technique

We explain a device which greatly simplifies some extremal prob-
lems for harmonic polynomials. If f : RY — R is continuous, then
we define its x) -aziolization f* : RY — R by writing f*(x) = f(z)
if z lies on the z,-axis and otherwise defining f*(z) to be the aver-
age value of f on the set {y : y; = z1, ||y}l = ||z]{}. It turns out
that if h is harmonic, then so also is A*; moreover if h € HH,, n,
then A* = h(u)lm, ~ (see {2, Lemma] for details). This observation
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allows us to reduce the preofs of several inequalities for harmonic
polynomials to consideration of z;-axial harmonic polynomials.

4.3 A generalization of (3.2.3)
Kuran and 1 [4] obtained explicit, best possible constants T n
such that

suph < Cp n (th'I:'l N
a8 ’

We have Cyp o = m + 1 (see (3.2.3)) and
Con,v ~ 2N = D)) ™

as m — +o0 with N fixed. Cur proof depends on the technique of
§4.2 and known quadrature formulae for nltraspherical (Legendre
when N = 3) polynomials. Ag in the plane case (§3.2), thereis a
unique extremal element &, of H:L » which satisfies the equation
suph = hp(u) = Cp v, We have no simple formula, correspond-
5

B
ing to (3.2.4), for A,, when N > 3, but it remains true in all

dimensions that h,, —+ £ (-, u) locally uniformly on £ as m — oo,

4.4 A generalization of (5.2.2)
Szegd [18, p.626] obtained the following analogue of (3.3.2) for the
case N = 3

(OR/Oz1)(O) € 3rn (R E HLY), (4.4.1)

where 7., is the greatest zero of Fin2)/2 0 Fmy1y/2 + Pimis)/2
according as m is even or odd. Note that 7, € [0,1) and 7, = 1
as m — oo, and compare (4.4.1) with the case NV = 3 of (2.2.2).
Techniques like those menticned in §4.3 (axialization and quadrat-
ure formulae) can be used to generalize (4.4.1) to ail dimensions.
Again the extremal polynomials for the N-dimensional generaliz-
ation of (4.4.1) are related to the Poisson kernel.
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4.5 Two norms on Hp N
For polynomials P,Q on RY, let

<PQ>=| PQdo,
EY:
liPlls =< P,P >,
|IPlloe = sup | P].
8B
Note that < -,- > is not an inner product and || - ||2,]| - ||lec are

not norms on the space of all such polynomials, for a polynomial
may vanish on dB but be not identically zero. However < -,- >
is an inner product and || - [|z2,!] - ||cc are norms on H,, . Clearly
iP|l2 < ||P||s for all polynomials P. An inequality in the oppos-
ite direction for polynomials of degree at most m is

HPlloo € A/ Em, w41l P2, (4.5.1)

and this is sharp. We briefly explain how the constant /dm N1
comes to appear in {4.5.1). First note that [|P||z and ||P||w
involve only the values of P on @B, and theré is an element of
H,, n which agrees with P on 88 (see [5]). Hence we may suppose
that P € H,, n. By a rotation of axes, we may further suppose
that ||P||lee = |P{u)|, and an argument based on the observations
in §4.2 allows us to suppose that P is z;-axial. Then P has the
representation

P= t].oIo”N + GlI],'N + ... +avm.Im,N:

so that
1P|eo = |P(u)] = lao + ... + am|. (4.5.2)

Further, by (4.1.1) and the orthogonality relation
<Lin,en>=0 (0<j<k),
we obtain

1P}z = (4.5.3)
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In view of (4.5.2) and (4.5.3), the Cauchy-Schwarz inequality gives

HPloo < /oy + - - + dun, Wil P2

A calculation using (4.2.2) shows that do y +. . .+ dm,N = dm, N41,
and (4.5.1) now follows.

Checking for cases of equality at each stage of the argument,
we find without much difficulty that if P € H,, y and equality
holds in (4.5.1), then P = oK, for some real o, where i, is the
mith partial sum of the series expansion (4.1.3) of A (-, u), that is

K = 1+idj,Nf',N-

j=1

It is hoped that details of (4.5.1) and some related inequalities
will appear elsewhere. ' '
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