- [10] A. E. McCluskey, Minimality with respect to separation axioms and sobriety, including their induced order characterizations, (Ph.D. thesis). Queen's University Belfast, 1990.
- [11] A. E. McCluskey and S. D. McCartan, Minimal sober spaces (submitted).
- [12] A. E. McCluskey and S. D. McCartan, The minimal structures for T_A, Ann. New York Acad. Sci. 659 (1992), 138-155.
- [13] A. E. McCluskey and S. D. McCartan, Minimality with respect to Young's axiom (submitted).
- [14] J. van Mill and G. M. Reed (eds.), Open problems in topology. North-Holland: Amsterdam-New York-Oxford-Tokyo, 1990.

P. T. Matthews and T. B. M. McMaster Department of Pure Mathematics The Queen's University of Belfast Belfast BT7 1NN

EPIMORPHISMS ACTING ON BURNSIDE

Des MacHale and Robert Sheehy

The Burnside group B(r,n) is the group of exponent n, generated by r elements x_1, x_2, \ldots, x_r . It is well known that B(r,n) is finite for n = 2, 3, 4 and 6 for all r but that for $n \geq 665$ and n odd, B(r,n) is infinite when r > 1. In addition, it has recently been shown that for $n \geq 2^{48}$, B(r,n) is infinite for r > 1, [1].

Let \mathcal{B} be the set of all positive integers n for which B(r,n) is finite for all r. Since the relation $g^n = 1$ can be written as $g^{n+1} = g = (g)I$ where I is the identity automorphism, we ask the following question.

Suppose G is a finitely generated group and the map α given by $g\alpha = g^k$ for all $g \in G$ and a fixed positive integer k, is an automorphism of G. What values of k force G to be finite?

In fact, in what follows, we can replace 'automorphism' by 'epimorphism', that is, an endomorphism of G onto G, and prove the following result.

Theorem. Suppose that n belongs to \mathcal{B} and that G is a finitely generated group such that the map α given by $g\alpha = g^{n+1}$ for all $g \in G$ is an epimorphism of G. Then G is finite.

Proof: For all a and b in G, $(ab)\alpha = (ab)^{n+1} = a^{n+1}b^{n+1}$, so by cancellation $(ba)^n = a^nb^n$. Then $(ba)^{n+1} = (ba)^nba = a^nb^nba$, whence $b^{n+1}a^n = a^nb^{n+1}$. Since α is onto, $ga^n = a^ng$ for all a and g in G, and so $a^n \in Z(G)$ for all $a \in G$, where Z(G) denotes the centre of G.

Now G/Z(G), being a factor group of a finitely generated group, is finitely generated of exponent n and since $n \in \mathcal{B}$, G/Z(G) is finite. Thus Z(G), being a subgroup of finite index in a finitely generated group, is a finitely generated abelian group.

If Z(G) is finite we are finished, so assume that Z(G) is infinite. Then

$$Z(G) \simeq T \times C_{\infty} \times \cdots \times C_{\infty}$$

is the direct product of a finite group T and finitely many infinite cyclic groups. Now Z(G) is invariant under all epimorphisms of G onto G, but clearly $\alpha: x \to x^{n+1}$ is not onto on any of the infinite cyclic factors. This contradiction establishes the result.

Reference

 S. V. Ivanov, On the Burnside problem on periodic groups, Bull. Amer. Math. Soc. 27 (1992), 257-260.

Des MacHale and Robert Sheehy Department of Mathematics University College Cork

THE POISSON KERNEL AS AN EXTREMAL FUNCTION

D. H. Armitage

It has long been known that for certain classical inequalities involving positive harmonic functions on the open unit ball B of \mathbb{R}^N the Poisson kernel of B (with some fixed pole on ∂B) is extremal (that is, a function for which equality holds in the inequalities). In recent years several new inequalities for positive harmonic functions on B have been discovered; again the Poisson kernel and functions related to it appear in extremal roles. This article, which is based on part of a talk given at the Society's Meeting at Waterford in September 1992, surveys some such inequalities, both old and new.

1. Harmonic functions and the Poisson kernel

1.1. Harmonic functions

A real-valued function h is harmonic on a non-empty open subset Ω of the Euclidean space \mathbb{R}^N , where $N \geq 2$, if h is smooth (that is, $h \in C^2(\Omega)$) and satisfies Laplace's equation (that is, $\Delta h \equiv 0$ on Ω , where $\Delta = \partial^2/\partial x_1^2 + \ldots + \partial^2/\partial x_N^2$). Harmonic functions are also characterized by Gauss' mean value property: h is harmonic on Ω if and only if h is continuous on Ω and, for each closed ball $\beta \subset \Omega$, the value of h at the centre of β is equal to its average value over the boundary $\partial \beta$ of β (see, e.g., Hayman and Kennedy [13, §1.5.5]).