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EPIMORPHISMS ACTING ON BURNSIDE
Des MacHale and Robert Sheehy

The Burnside group B(r, n) is the group of exponent n, generated
by r elements z;, ¥2, . .., Z.. It is well known that B(r, n) is finite
for n = 2, 3, 4 and 6 for all r but that for n > 865 and n odd,
B(r,n) is infinite when r > 1. In addition, it has recently been
shown that for n > 248, B(r,n) is infinite for r > 1, [1].

Let B be the set of all positive integers n for which B{r,n}
is finite for all v. Since the relation ¢® = 1 can be written as
g™t = g = (¢)] where T is the identity antomorphism, we ask
the following question.

Suppose & is a finitely generated group and the map o given
by go = g* for all g € G and a fixed positive integer &, is an
automorphism of G. What values of k force G to be finite?

In fact, in what follows, we can replace ‘automorphism’ by
‘epimorphism’, that is, an endomorphismn of G onto &, and prove
the following resulit.

Theorem. Suppose that n belongs to B and that G is a finitely
generated group such that the map o given by ga = g™ for all
g € G Is an epimorphism of G. Then G is finite.

Proof: For all @ and b in G, (ab)a = (ab)*t! = a™*1p™+1, s0 by
cancellation (ba)™ = a™b™. Then (ba)"*! = (ba)"ba = a™b"ba,
whence b™a™ = g™b"t1. Since « is onto, ga™ = a"g for all @
and ¢ in G, and so a™ € Z(G) for all a € G, where Z((7) denotes
the centre of G.

Now G/Z(G), being a factor group of a finitely generated
group, is finitely generated of exponent n and since n € B, G/Z(G)
is finite. Thus Z(G), being a subgroup of finite index in a finitely
generated group, is a finitely generated abelian group.
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If Z(G) is finite we are finished, so assume that Z(G) is infin-
ite. Then
Z(@) 2T x Cpo X % Cx

is the direct product of a finite group T and finitely many infinite
cyclic groups. Now Z(G) is invariant under all epimorphisms of G
onto &, but clearly o : £ — z™1! is not onto on any of the infinite
cyclic factors. This contradiction establishes the result.
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THE POISSON KERNEL
AS AN EXTREMAL FUNCTION

D. H. Armitage

It has long been known that for certain classical inequalities

involving positive harmonic functions on the open unit ball B

of RV the Poisson kernel of B (with some fixed pole on 9B)
is extremal (that is, a function for which equality holds in the
inequalities}. In recent years several new inequalities for positive
harmonic functions on B have been discovered; again the Poisson
kernel and functions related to it appear in extremal roles. This
article, which is based on part of a talk given at the Society’s
Meeting at Waterford in September 1992, surveys some such
inequalities, both old and new.

i. Harmonic functions and the Poisson kernel

1.1. Harmonic functions

A real-valued function b is harmonic cn a non-empty open subset
Q of the Euclidean space RY, where N > 2, if h is smooth (that
is, h € C%(f2)) and satisfies Laplace’s equation (that is, AL = 0
on 2, where A = 82/9z2 +...+8%/8z%). Harmonic functions are
also characterized by Gauss’ mean value property: h is harmonie
on {1 if and only if h is continuous on {1 and, for each closed ball
B C 11, the value of h at the centre of J is equal to its average
value over the boundary 88 of 3 (see, e.g., Hayman and Kennedy
[13, §1.5.5]).
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