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Research Announcement

TAYLOR-MONOMIAL EXPANSIONS
OF HOLOMORPHIC FUNCTIONS
OM FRECHET SPACES

Seén Dineen

Let X := A(A) denote a Fréchet nuclear spaces with Kothe matrix
A and let {E,}. denote a sequence of Banach spaces. Let £ :=
M{En}n) = {(@n)n : Tn € E, and (Jlz.]]), € A(A)} and endow
E with the topology generated by the semi-norms

@a)nlle =3 anslizall, k=1,2,...
n=1

E is a Fréchet space and {E,}, is an unconditional Schander
decomposition of E. Examples of spaces which can be represented
in this fashion, include all Banach spaces and all Fréchet nuclear
(and some Fréchet-Schwartz) spaces with basis. Let H(E) denote
the space of all C-valued holomorphic functions on F and for
meNY m=(my,...,mn,0..) let

Plz) = 1 jf M—dAl-“dAn

(2mi)” APFL gl
[Asl=1
We have
f= Z P, (*)
meENIN)

in the 79, 7w, 75 topologies on H(E).

The expansion () reduces to the Taylor series expansion in
the case of a Banach space (l.e. if B3y = E, E, =0, n > 1) and to
the monomial expansion for Fréchet nuclear spaces with a basis
(when dim (E,,) = 1 all n).
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]

If (E,)n is an unconditional Schauder decomposition for the
Fréchet space ¥ then the topology of E is generated by semi-norms

satisfying
a0 o0
Z Tn Z AnTn

n=1 n=1

= sup
[An<l

(xx)

I (8.)52, is a sequence of real numbers, 3, > 1 all p, let

o 7 5]
E Tan = z Ty + 5 Brnn
n=1 8,7 n=1 n=j+1

Ifm e NV} wetet P.(™E) denote the set of all |mi-homogeneous

polynomials on £ which are homogeneous in the even variables

te f m=(my, ma,...,My,...) then P € P,(™E) if and only if
(i) P(Az) =A™ P(z) forall z € E, A e C.

(ii} P (Aiﬁgi + Zmn) = \"up (Z mn) forall: allz € F
n=1 n=]
and all A e C.
Our main technical tool is the following preposition.

Proposition. Let {E,}, denote an unconditional Schauder
decomposition for the Fréchet space E, let F denote a Banach
space and let T denote an F-valued linear function on H(E)
which is bounded on the locally bounded subsets of H(E). Let

Bn > 1 alln, op_1 = 2 all n and suppose Zxﬂ € E implies
n=1

S BPx, € E for all p > 0. Let || - || denote a continuous

semi-norm satisfying (=*) and suppose there exists C > 0 such

that

\T(P)|| < CliPl| for all P € P.(™E) and all m € N1V

where [|P|| = sup{|P(z){; ||z}l < 1}. Then, for any § > 1, there
exists Cy > 0 and a positive integer j such that

TP} < C16™ 1Py,
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for all P € P.(™E) and all m € NV) where

1Plls,; = sup{|P(z)} lllg; < 1}-

Theorem. Let AMA) denote a Fréchet-nuclear space with DN
and let {E,}. denote a sequence of Banach spaces each of which
admits an unconditional finite dimensional Schander decomposi-

tion. Then 7, = 75 on 'H(A ({E,,}n))

A Fréchet nuclear space has DN if and only if it is isomorphic
to a subspace of s. The above theorem includes the known cases
where E is a Banach space with an unconditional basis and the
case where E is a Fréchet-nuclear space with basis and DN. It
also includes Fréchet-Schwartz spaces which are not nuclear. By
considering complemented subspaces, we find that 7, = 75 on
H(E), where E is any reflexive subspace, with the approximation
property, of a Banach space with an unconditional finite dimen-
sional Schauder decomposition. This includes spaces which do not
have a finite dimensional Schaunder decompesition. -
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