- [6] M. González and J. M. Gutiérrez, Unconditionally converging polynomials on Banach spaces (to appear).
- [7] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. Math. J. 5 (1953), 129–173.
- [8] A. Pelczyński, A property of multilinear operations, Studia Math 16 (1957), 173-182.
- [9] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641-648.
- [10] A. Pełczyński, On weakly compact polynomial operators on B-spaces with Dunford-Pettis property, Bull. Acad. Polon. Sci. 11 (1963), 371– 378.
- [11] R. A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. 27 (1979), 373-379.
- [12] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, (Ph. D. Thesis, Trinity College, Dublin, 1980), 1980.
- [13] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), 179-190.
- [14] B. S. Tsirelson, Not every Banach space contains an embedding of ℓ_p or c_0 , Functional Anal. Appl. 8 (1974), 138-141.

Manuel González
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Cantabria
Avda. de Los Castros s.n.
E-39071 Santander (Spain)

60

Joaquín M. Gutiérrez
Departamento de Matemática Aplicada
ETS de Ingenieros Industriales
Universidad Politécnica de Madrid
José Gutiérrez Abascal 2
E-28006 Madrid (Spain)

Research Announcement

TAYLOR-MONOMIAL EXPANSIONS OF HOLOMORPHIC FUNCTIONS ON FRÉCHET SPACES

Seán Dineen

Let $\lambda := \lambda(A)$ denote a Fréchet nuclear spaces with Köthe matrix A and let $\{E_n\}_n$ denote a sequence of Banach spaces. Let $E := \lambda(\{E_n\}_n) := \{(x_n)_n : x_n \in E_n \text{ and } (\|x_n\|)_n \in \lambda(A)\}$ and endow E with the topology generated by the semi-norms

$$||(x_n)_n||_k := \sum_{n=1}^{\infty} a_{n,k} ||x_n||, \quad k = 1, 2, ...$$

E is a Fréchet space and $\{E_n\}_n$ is an unconditional Schauder decomposition of E. Examples of spaces which can be represented in this fashion, include all Banach spaces and all Fréchet nuclear (and some Fréchet-Schwartz) spaces with basis. Let H(E) denote the space of all C-valued holomorphic functions on E and for $m \in N^{(N)}$, $m = (m_1, \ldots, m_n, 0 \ldots)$ let

$$P_m(x) = \frac{1}{(2\pi i)^n} \int_{\substack{|\lambda_i|=1}} \frac{f(\sum_{i=1}^n \lambda_i x_i)}{\lambda_1^{m_1+1} \dots \lambda_n^{m_n+1}} d\lambda_1 \dots d\lambda_n$$

We have

$$f = \sum_{m \in N^{(N)}} P_m \tag{*}$$

in the τ_0 , τ_w , τ_δ topologies on H(E).

The expansion (*) reduces to the Taylor series expansion in the case of a Banach space (i.e. if $E_1 = E$, $E_n = 0$, n > 1) and to the monomial expansion for Fréchet nuclear spaces with a basis (when dim $(E_n) = 1$ all n).

If $(E_n)_n$ is an unconditional Schauder decomposition for the Fréchet space E then the topology of E is generated by semi-norms satisfying

 $\left\| \sum_{n=1}^{\infty} x_n \right\| = \sup_{|\lambda_n \le 1} \left\| \sum_{n=1}^{\infty} \lambda_n x_n \right\| \tag{**}$

If $(\beta_n)_{n=1}^{\infty}$ is a sequence of real numbers, $\beta_n \geq 1$ all n, let

$$\left\| \sum_{n=1}^{\infty} x_n \right\|_{\beta,j} = \left\| \sum_{n=1}^{j} x_n + \sum_{n=j+1}^{\infty} \beta_n x_n \right\|.$$

If $m \in N^{(N)}$ we let $\mathcal{P}_e(^m E)$ denote the set of all |m|-homogeneous polynomials on E which are homogeneous in the even variables i.e. if $m = (m_1, m_2, \ldots, m_n, \ldots)$ then $P \in \mathcal{P}_e(^m E)$ if and only if (i) $P(\lambda x) = \lambda^{|m|} P(x)$ for all $x \in E$, $\lambda \in \mathbb{C}$.

(ii) $P\left(\lambda x_{2i} + \sum_{n=1}^{\infty} x_n\right) = \lambda^{m_{2i}} P\left(\sum_{n=1}^{\infty} x_n\right)$ for all i, all $x \in E$

Our main technical tool is the following proposition.

Proposition. Let $\{E_n\}_n$ denote an unconditional Schauder decomposition for the Fréchet space E, let F denote a Banach space and let T denote an F-valued linear function on H(E) which is bounded on the locally bounded subsets of H(E). Let

 $\beta_n \ge 1$ all n, $\beta_{2n-1} = 2$ all n and suppose $\sum_{n=1}^{\infty} x_n \in E$ implies $\sum_{n=1}^{\infty} \beta_n^p x_n \in E$ for all p > 0. Let $\|\cdot\|$ denote a continuous

semi-norm satisfying (**) and suppose there exists C > 0 such that

 $||T(P)|| \le C||P||$ for all $P \in \mathcal{P}_e(^m E)$ and all $m \in N^{(N)}$

where $||P|| = \sup\{|P(x)|; ||x|| \le 1\}$. Then, for any $\delta > 1$, there exists $C_1 > 0$ and a positive integer j such that

$$||T(P)|| \leq C_1 \delta^{|m|} ||P||_{\beta,j}$$

for all $P \in \mathcal{P}_e(^m E)$ and all $m \in N^{(N)}$ where

$$||P||_{\beta,j} = \sup\{|P(x)|; ||x||_{\beta,j} \le 1\}.$$

Theorem. Let $\lambda(A)$ denote a Fréchet-nuclear space with DN and let $\{E_n\}_n$ denote a sequence of Banach spaces each of which admits an unconditional finite dimensional Schauder decomposition. Then $\tau_w = \tau_\delta$ on $\mathcal{H}\Big(\lambda\big(\{E_n\}_n\big)\Big)$.

A Fréchet nuclear space has DN if and only if it is isomorphic to a subspace of s. The above theorem includes the known cases where E is a Banach space with an unconditional basis and the case where E is a Fréchet-nuclear space with basis and DN. It also includes Fréchet-Schwartz spaces which are not nuclear. By considering complemented subspaces, we find that $\tau_w = \tau_\delta$ on $\mathcal{H}(E)$, where E is any reflexive subspace, with the approximation property, of a Banach space with an unconditional finite dimensional Schauder decomposition. This includes spaces which do not have a finite dimensional Schauder decomposition.

Seán Dineen, Department of Mathematics, University College Dublin, Belfield, Dublin 4.