FUNCTION ALGEBRAS

Gerard J. Murphy

i. Introduction

The theory of function algebras forms an important branch of

functional analysis. Tts central problem is to determine whether -

a given complex-valued function can be uniformly approximated
by the elements of a prescribed algebra of functions. One of the
attractive features of the subject is that it involves a beautiful
interplay of ideas and methods from a variety of sources, such
as topology and algebra, and especially from functional analysis
and the theory of apalytic functions. Moreover, it has import-
ant applications, for instance, to classical analysis and to oper-

- ator theory. Indeed, the concepts and techniques of function
algebra theory often produce new insights into the classical theory
of approximation by analytic functions, and raise new questions,
which serve to enliven and reinvigorate that subject. ‘

The theory of function algebras is so extensive that any short
account must be selective, and this is the case for the present
exposition. The intention here is to explain some of the core ideas
and problems, and to give an account of an aspect of the theory
of particular interest to the author. This aspect is the theory
of generalized Hardy H? spaces, and it is of interest in operator
theory because of its applications to the theory of Toeplitz oper-
ators. Part of its importance in the theory of function algebras
relates to one of the major problems of the subject, namely, the
determination of conditions under which it is possible to embed
analytic structure into the spectrum of a function algebra.

The paper is organized as follows: In Section 2 we discuss the
basic concepts and give an illustration of one of these concepts,
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that of a representing measure, to prove a maximality theorem of
Wermer. In Section 3, we discuss some important classes of ft}ncw
tion algebras. In Section 4 we give a b-ri.ef accoqnt of ggnerahzed
HP space theory and indicate how this theox"y is a;?plled t.o the
problem of embedding analytic structure. Finally, in Section 5,
we discuss some connections with operator theory.

2. Representing measures

A function olgebra on a compact Hausdorff space {1is a closed
subalgebra A of the algebra Q) of all contmuogs functions on
{2, that contains the constants and separates the points of 2. (The
operations on C{f2) are the usual pointwise-defined ones and the
norm is the supremum norm, given by |l¢l| = sup,eq I(p(s)].-)

Of course, C{Q2) is a function algebra, but it is not typlcz?.l of
the algebras that are of primary interest to function’ algebraists.

“Rather,-the prototypical function algebra is the disc algebra. This

is the set A of all continuous functions on the closed unit disc D
that are analytic in the interior, and it is easily seen t}_:la,t A is
indeed a function algebra. This algebra can also be realized as a
function algebra on the unit circle T, because the homo.morphis‘m
from C{D) to C(T) got by sending a function on D to its restric-
tion to T induces an isometric algebra isomorphism of A opto
the closed subalgebra of C(T) generated by the inclusion function
#:T — C (always, 2 will denote this function). It is usual to refer
to A as the disc algebra on the disc and to its image on T as the
disc algebra on the circle. It follows easily from Fejér's theorem
that the disc algebra on T is the set of all elements of C(T) wh(?se
Fourier transform is supported in the set Z* of all non-negative
integers.

We defer giving more examples of function algebras to 'Fhe
next section. Instead, we introduce the concept of a representing
measure, one of the most important ideas of the theory.

Let A be a function algebra on a compact Hausdorff space
Q. If 7 is a bounded linear functional on A, then, by the Hahn—
Banach theorem and the Riesz-Kakutani representation theorem,
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there is a regular Borel complex measure m on 3, called a repres-
enting measure for 7, such that '

T(w):fwdm {(p €A

and |7l = |lm}|, where {jm|| is the total variation norm, ||m|| =
|m|{2). (In general, the representing measure m is not unigque.)
The case of most interest for the theory of function algebras is that
in which 7 is a character of A, that is, a non-zero multiplicative
linear functional on A. Characters are automatically of norm one
and map the unit to 1, from which it follows that any representing
measure of a character is positive and of total mass one, that is,
a probability measure.

A point concerning notation is needed before we proceed fur-
ther: i g € C{NY} and g is a regular Borel complex measure on
{1, we denote by gu the regular Borel complex measure on §} cor-
responding to the bounded linear functional on C'(Q) given by
fe ffgdp

To illustrate the idea of a representing measure, let us con-
.sider again the disc algebra A on the circle. Let m be normalized
Lebesgue measure on T, s0

2
[odm=g- [Teera @ec.

Since {z"dm = O for all n > 0, it follows that [ypzdm = 0
for all ¢ € A. Now let s be a point in the unit disc D. Then
s defines a character 7, on A by setting 7,(p) = ¢(s). (Recall
that A is the isomorphic image of the disc algebra on D. We
are using this to identify elements of A with their corresponding
extensions to D.) Suppose now that |s| < 1. If ¢ € A, then
@ = @(s) + {z — s}, for some ¢ € A. Setting pp = (1 — Zs)_lm,
we have [ldp = [Y oo (sZ)"dm = Y 00 8™ [2*dm = 1, so
fwdp = ¢(s) + fv¥zdm = ¢{s). This is, of course, the Cauchy
integral formula. The norm of the measure u is not equal to 1 if s
is non-zero, so p is not a representing measure for 7, but with a
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little further manipulation we get a representing measure: Since
{1 - 5z)"! belongs to A, therefore

(s) j[ ® / ¢
= dy = dm,
ISP ST PRl TR

so p(s) = [ ¢dm,, where m, is the probability measure

_1—sf
T —sz)
Thus, m, is a representing measure for 7,. The equation ¢(s) =
[ ¢ dm, is the Poisson integral formula.
It is easily seen that for any character 7 on A, there is only
one representing measure for 7 (see Section 3). We shall now

- give an application of this to prove the following theorem due to

Wermer (the proof is due to Hoffman and Singer). First, recall
an elementary fact from Banach algebra theory: If B is a unital
abelian Banach algebra, then an element b € B is invertible if and
only if 7(b) # 0 for all characters 7 of B.

2.1. Theorem. If B is a function algebra on the circle T con-
taining the disc algebra A, then either B = A or B = C(T).

Proof. First suppose that 7{z) # 0 for all characters v of B.
Then z is invertible in B, and therefore £ = 1/z € B, so by
Fejér's theorem, B = C(T). Suppose on the other hand that for
some character 7 of B, we have 7(z) = 0. Then 7{p) = {0) for
all ¢ € A, s0 if i is a representing measure for = {as a character
of B), then for all ¢ € A we have [ @dm = ¢(0) = [ ¢dy, and
therefore g = m, by uniqueness of representing measures for A.
Hence, for all ¢ € B and for all n > 0, we have [ p2"dm =
7(pz™) = r{p)r(z)™ = 0. Thus, the Fourier transform of ¢ is
supported in Z1, and therefore ¢ € A. Hence, B=A. 0O

This maximality result for A has some interesting con-
sequences. One of them is that there are many continuous
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functions that are boundary values of analytic functions. Spe-
cifically, let B be the set of all p € C(T) for which there exists |
an analytic function ' on the open unit disc such that for almost |
all ¢ in [0,27), ¥()) converges to ¢(e™) as A converges to e™ .|
non-tangentially. Then B'is a subalgebra of C{T)} containing A. -
it can be shown that the containment 1s proper, so by Wermer's .

theorem, B is dense in C'(T). For details see [11}.

Another application of the maximality theorem asserts that
if F' is a proper closed subset of T, then every continuous function -

on F can be uniformly approximated by polynomials (loc. cit).

The concept of a representing measure may perhaps seem,
at first sight, not o be a very significant idea. The preceding -

examples and applications help to give some inlding of its power,

more particularly in the case of a unigue representing measure
for a character. In fact, in the latter setting one can generalize a .
large amount of the classical theory of H? spaces. Moreover, this:
generalization has useful applications, one of which we shall see :

in Section 4.

3. Dirichlet and logmodular algebras

Let £ be a non-empty compact subset of C™. There are a number -
of important function algebras associated with K: The algebra
A(K) is defined to be the set of all continuous functions on K &
that are holomorphic on the interior of K, and the algebra R(X)
is defined to be the set of all continuous functions on KX that are
uniformly approximable by rational functions with no poles on:
K. By P(K) we denote the algebra of all continuous functions
on K which are uniformly approximable by polynomials. Clearly, .-
P(K) € R(K) C A(K) C C(K), and a part of the theory of
function algebras is given over to the problem of determining when .

one has equality at some point in this chain of inclusions.

Another significant class of function algebras is formed by
the Arens-Singer algebras, which are generalizations of the disc:
algebra on the circle. Let G be a non-trivial subgroup of the:
additive group R, endowed with the discrete topology, so that the
Pontryagin dual group ¢ is therefore compact. Each element € .

G defines a continuous character €; on G by evaluation. Denote
by A(G) the closed linear span in C(G) of the characters e, (= €
G*), where G* = R¥NG. Then A(G) is a function algebra on G.
Tt can be shown to be isomorphic to an algebra of analytic almost-
periodic functions in the upper half-plane, see [10], for example.

As the theory of function algebras developed, analyticity, at
least in residual form, seemed to pervade the subject, and a nat-
ural question presented itself, namely, if A is a function algebra
on 0, and A # C(R2), to what extent do the functions in A behave
like analytic functions? One observes that, for example, there is a

‘shortage of real-valued functions among analytic functions, and a

shortage of real-valued functions persists whenever A # C{{1), as
a consequence of the Stone—Weierstrass theorem (A =C () if and
only if the real functions in A separate the points of 2}. Moreover,
many analytic-type phenomena, such as Jensen’s inequality and
the maximum modulus principle, were observed to appear in great
generality. Indeed, it was discovered that genuine analyticity exis-
ted in situations of a very general character.

We shall make this a little more precise: If A is a function
algebra on (I, then one can embed {2 homeomorphically into the
spectrum X of A. (As a set, X consists of the characters of A and
it is made into a compact Hausderff space by endowing it with
the relative weak*® topology induced from the dual space A*.) It
is easily seen that if 7, is defined by 7,(¢) = 9(w), then the map

D= X, wr Ty,

is a homeomorphism of {2 onto a subspace of X. At one time it
was conjectured that whenever X is larger than 2, there had to
be some analytic structure in X, in the sense that there should
be an embedding # of a disc into X such that for all ¢ € A4,
the functions ¢ o @ are analytic. (By ¢ we denote the Gelfand
transform of ¢, that is, the continuous function on § defined by
{7} = 7(¢).) Support for this conjecture came from a remarkable
theorem of Wermer, concerning embedding analytic stracture in a
certain very large class of function algebras. We shall discuss this
result in more detail presently. However, in 1963, G. Stolzenberg




34 IMS Bulletin 31, 1993 :

gave an example which falsified the conjecture and Garnett later
exhibited examples that showed that the spectrum could, in a

sense, be quite arbitrary. We shall shortly make this more precise. :

First, we discuss some positive results.

Again suppose that A is a function algebra on Q. Define the
relation ~ on the spectrum X of Aby 7 ~ o if |7 — o] < 2. This
relation is an equivalence relation on X. The search for analytic
structure in the spectrum has been conducted in terms of the

corresponding equivalence classes, called Gleason parts.

We now consider a large class of function algebras, first intro- _
duced by A. M. Gleason, called Dirichlet algebras. A function -
algebra A on {2 is such an algebra if every real-valued continuous -

function on {I can be uniformly approximated by real parts of
functions in A.

Of course, C(Q) is trivially a Dirichlet algebra, but these are :
not the interesting examples. The prototype is, as usual in this
subject, the disc algebra A. It follows easily from the density *
of the set of trigonometrical polynomials in G{T) that A + A
is dense in C(T), and hence that A is a Dirichlet algebra (A
denotes the set of complex conjugates of elements of A). It is- .
an immediate consequence of the definition that a representing
measure for a character on a Dirichlet algebra is unique, so in
particular, this applies to A, and proves the uniqueness claim we *

made in Section 2.

The Arvens—Singer algebras A{G) are Dirichlet algebras, for
the same reason as in the case of the disc algebra, namely density

of the {generalized) trigonometric polynomials.

If & is a compact subset of the plane whose complement is ':_-:_
connected, and if K is the boundary of K, then P(OK) is a_

Dirichlet algebra on 8K [3].

If A denotes the closure in C{T?) of the trigonometric poly- .
nomials ¢ = Ef:o Eﬁzo Anm27 25, then A is a function algebra -

on T? that is not a Dirichlet algebra.
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Now suppose that S is a subset of the spectrum X of a func-
tion algebra A. If S can be given the structure of a connected
complex manifold in such a way that the functions in A, or rather
their Gelfand transforms, are analytic on 5, then it can be shown
that S must lie entirely in a single Gleason part. The embedding
theorem of Wermer referred to earlier in this section asserts that
if A is a Dirichlet algebra, then for each Gleason part of X that
is not a singleton, there a homeomorphism 8 of the epen unit disc
onto the part, where the latter is endowed with the metric {norm)
topology, such that @ o f is analytic for all ¢ € A. The proof of
this theorem involves generalized Hardy space theory and a sketch
of the method of proof is given in Section 4.

Wermer’s result was extended by XK. Hoffman to a more gen-
eral class of function algebras, namely to logmodular algebras. A
function algebra A on {1 is logmodular if every real-valued continu-
ous function ¢ on §} can be uniformly approximated by elements
of the form log 1|, where ¢ is an invertible element of A. The
equation Re(yp) = loge?| shows that Dirichlet algebras are log-
modular, but the converse is false, as we shall see in Section 4.
Logmodular algebras share an important property with Dirichlet
algebras, namely, uniqueness of representing measures for charac-
ters,

Despite these positive results, Stolzenberg’s example shows
that unless restrictive hypotheses are imposed, analytic structure
may not be present in the Gleason parts of a function algebra.
Indeed, not much can be said about the structure of Gleason parts
in general, as can be seen from the following result of Garnett {8]
Given any completely regular g-compact space Y there exists a
function algebra in whose spectrum Y can be embedded as a single
Gleason part.

4. Generalized HP space theory

We motivate our considerations in this section by briefly con-
sidering the classical Hardy space theory. If p is a real num-
ber not less than 1, the Hardy space H? is defined to be the
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set of all analytic functions f oa the open umnit disc for which
SUPg<r et fu% 1f(re®)|” dt is finite. These spaces arise naturally in
the theory of Fourier series and it was realized at an early stage of
their development that many properties of H? functions belong to
real-variable theory. For, each #? function can be written as the
Poisson integral of an LP function on the boundary, or, forp =1,
of a measure. This allows some results to be deduced withont
using the theory of analytic functions, and it turned out that the
portion of the theory susceptible to this treatment is considerable.

In this approach to H? space theory the basic vehicle for the
analysis of the functions in the Hardy spaces is the disc algebra
& on the circle. The space AP is identified as the clesure of A in
the LP space of T.

In a series of papers, the Hardy space theory on the circle was
generalized by Helson and Lowdenslager to the context of certain
abelian compact groups. The great generality of their arguments
was 500D recognized and the theory was successively generalized,
in the context of function algebras, first to Dirichlet algebras and
then to logmodular algebras. It was vltimately realized that the
theory could be extended to the situation where one had a unique
representing measure for a characier of a function algebra.

Suppose that A is a function algebra on 2 compact Hausdorff
space {! and that m is the unique representing measure for some
character of A (if, for example, 4 is a logmodular algebra, then,
as observed above, every character admits a unigque representing
measure). To aveid trivialities, we shall also assume that m is not
a point mass. For 1 < p < oo, we denote by LP the Lebesgue space
L?(§2,m) and for p finite we denote by H? the norm closure of 4 in
L?. We signify by H° the weak* closure of 4 in L°° = L1", The
spaces HT are Banach spaces and, in particular, H? is a Hilbert
space and H°° is a Banach algebra.

Let €2 be the spectrum of the algebra L. Then the Gel-
fand representation induces an isometric isomorphism of L* onto
C'(§2). Moreover, the image A of the algebra H* under this repres-
entation is a function algebra on Q and it turns out that A is log-
moedular. In fact, the following is true: If ¢ is a real-valued func-
tion in L°°, then there exists an invertible element v of H° such
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that o = logly|. Since a Dirichlet algebra necessarily contains
all continuous idempotent functions, since L™ is the closed linear
span of its idempotent elements, and finally since H> # L™, it
follows that A is an example of a logmodular algebra which is not

Dirichlet.

Tn the case of the disc algebra on the circle, normalized
Lebesgue measure is the unique representing measure for a charac-
ter of 4. The corresponding algebra H* is therefore logmodular.
This enables one to embed analytic structure into the Gleason
parts of its spectrum X. Actually, X is a very complicated space.
One can naturally embed the open unit disc into X, A deep res-
ult concerning X is the well-known corona theorem of Carleson,
which asserts that the disc is dense in X. This can be reformu-
lated as follows: I fi,..., fr are bounded analytic functions on
the open unit disc such that 5 ,_, |fi| is bounded away from
zero, then there exist bounded analytic functions gi,.. ., gn such
thai figi +- -+ fagn =1

Let us return to the general situation. We give some examples
of the apalytic-type properties enjoyed by the elements of H 1,
Firstly, the only real-valued elements of I ! are the real con-
stants. In the case of the circle, this is easily seen, using the
fact that an integrable function whose Fourier transform vanishes
must itself vanish almost everywhere. In the general situation the
proof requires more work.

Analytic functions cannet vanish on “big” sets without van-
ishing identically. A similar result holds for H! space functions.
This is our second example of analyticity, and it is a consequence of
Jensen’s inequality: If f is an element of H! such that [ fdm # 0,
then log|f] is integrable with respect to m and

tog| [ fam) < [ 10g]1)dm.

Hence, f cannot vanish on a set of positive measure. In the case of
the circle, one can strengthen this to assert that if f is a non-zero
element of H 1, then f cannot vanish on a set of positive measure,
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a result known as the little F. and M. Riesz theorem, one of the

nicest results of the theory.

The little F. and M. Riesz theorem is an example of a classical:f
result that does not carry over to the general situation. There
exists an example of a “system” {3, A and m, a non-zero function
§ € HY and a set E of positive measure (with respect to m) such-
that f vanishes on £. Moreover, one may even take f to be an’

element of A and E to be an open set [19]. This counterexample

has consequences in the theory of Toeplitz operators. Incidentally, !
“systems” {1, A and m where this kind of behaviour occurs do not |

have to be pathological in any way.

In passing, one should perbaps observe that the surprising_i
thing is not that some of the classical H? space theory does not:

extend to the general situation, but that so much of it does.

Since we have referred to a little F. and M. Riesz theorem, by
implication there should be a big F. and M. Riesz theorem, and,.
of course, there is. In the case of the circle, this well known result:
asserts that if a Borel complex measure on T has Fourier—Stieltjes:
transform supported in Z, then it is absolutely continuous with
respect to Lebesgue measure on L. This theorem does extend to
the general situation, although in substantially modified form [3].

In the general context there is also a version of the celebrated
invariant subspace theorem of Beurling. A closed vector subspace
M of H? is invariant if oM C M for all ¢ € A. The general-
ized Beurling theorem agserts that if A{ is an invariant space and_':
if there exists f € M such that [ fdm # 0, then there exists:
a function ¢ € H™ such that |¢| = 1 almost everywhere with:
respect to m and M = @H? (such functions ¢ are called inner:

functions).

We now give a very brief sketch of how Wermer's embedding’
theorem is established. We shall leave out all the technical details:
of the proof, but nevertheless, the sketch should give a rea,sonablegi

cutline idea of the argument.

Let A be a Dirichlet algebra on 0. If P is a Gleason part of
the spectrum of A that is not a singleton, and m is the unique:
representing measure for a character 7 in P, then one can show'
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¢hat there is an inner function Z in H™ such that
ZH2:{fef121jffdm=0}.

If A denotes the open unit disc and s € A, one can define 7, in
. = 1
the spectrum of A by 7:(¢) = f ¢(1 —sZ) ~ dm. Observe that

To{@) = Z(]'cpzn dm)s”,.

so the function
A—C, s 1),

. is analytic. Using Schwarz’s lemma one can show that

s —7ll < 2sf <2
for all s € A; therefore, 7, € P.'One can now show that the map
8L =P, 53T

is a homeomorphism of & onto P, where P has the metric topo-
logy. For all ¢ € A, the composition ¢ o 8 is analytic, as $8(s) =
7.(¢p). Thus we have embedded analytic structure into the spec-
trum of A. For full details of this construction, see [3].

5. Applications {o operator theory

The class of Toeplitz operators is an exceptional class of operators,
for it is one of the few large classes of operators about which
we have detailed knowledge. Toeplitz operators are related to
multiplication operators, but their structure and properties are
much more difficult to analyse.

If p € L*°(T), the multiplication operator corresponding to
@ is the operator M, on L3(T) defined by M,{f) = ¢f. The com-
pression of this operator to the Hardy space H? is the correspond-
ing Toeplitz operator. Explicitly, if P is the projection of L? onto
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H?, then the Toeplitz operator T, is defined by T,,(f) = P(of).
The fact that the map, ¢ — M, is an algebra homomorphism
helps enormously in the analysis of the operators M. For Toep-
litz operators the corresponding map, ¢ — T, can be easily seen
tc be linear and to preserve involutions (that is, T = T;), but
it is not multiplicative, a fact that makes the analysis of Toeplitz
operators very different from that of multiplication operators.

Before proceeding to discuss Toeplitz operators in mere
detail, let us say a few words about the significance of this class
of operators. As indicated above, they are important in operator
theory, because they provide a highly nen-trivial class of operators
accessible to detailed analysis. There are beautiful connections
with function theory, specifically H? space theory. Amongst other
applications, there are applications to the analysis of boundary-
value problems, to information theory and to time-series analysis
in statistics. For more information on applications, see {2].

Suppose now that £ is a compact Hausdorff space, A is a
function algebra on {3, and m is the unique representing measure
for a character of A. As before, we denote the corresponding
Lebesgue and Hardy spaces by L? and HP, respectively. Given
¢ € L, one can define the Toeplitz operator T, in the same
way as in the case of the circle. Tt is obvious that ||T,|| < |l¢l...
and, in fact, equality holds, but this is very non-obvious. One
can derive this from a stronger result, a spectral inclusion result
which says that the spectrum of T, contains the spectrum of .
(The spectrum is an important invariant. For an element ¢ of a
unital Banach algebra, its spectrum is the set of all scalars A such
that @ — A is not invertible.) This spectral inclusion result is due
to Hartman and Wintner [8] in the case of the circle and to the
author [17] in the general case, where the proof is quite different
to that of the classical case. The proof uses the fact that every
real-valued function in L™ is the logarithm of the modulus of an
element of H*°.

Cne of the deepest results concerning Toeplitz operators on
the circle is the theorem of Widom [6] which asserts that they have
connected spectra. In the general situation the author has shown
connectedness of the spectrum still persists for two important sub-
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classes of Toeplitz operators namely, for Hermitian Toeplitz oper-
ators T, (where ¢ = ) and for analytic Toeplitz operators (where
© € H™), see [17].

Let us illusirate the interplay of operator theory and func-
tion theory by considering a special simple result: A non-scalar
Hermitian Toeplitz operator on the circle has no eigenvalues. The
proof is easily reduced to showing that zero is not an eigenvalue.
Suppose then  is a real-valued element of L™ and that f is ap ele-
ment of F2 such that T,(f) = 0. Then P(pf) =0, s0 ¢ f belongs
to H?. Hence, @ff is » real-valued element of H*, and there-
fore it is almost everywhere equal to a constant, ¢ say. However,
¢c= fedm= foffdn = (T, (), fy = 0. Thus, off =0 ae.
Now the assumption that T, is non-scalar assures us that on some
set of positive measure, @ does not vanish. Hence, f does vanish

_ on a set of positive measure. Therefore, by the F. and M. Riesz

theorem, f = O a.e.

We mentioned earlier that the little F. and M. Riesz theorem
does not hold in the general situation. One way that this is reflec-
ted in the theory of Toeplitz operators is that non-scalar Her-
mitian Toeplitz operators on generalized Hardy spaces may have
eigenvalues. Even here, however, a striking result is true. Non- -
zero eigenspaces must be infinite dimensional. For more details,
see {17].

Limitations of space have allowed us to give no more than
an inkling of the scope of the theory of Toeplitz operators and its
profound connections with function theory. Some of the classical
theory is covered in [6]. Both the classical and generalized the-
ories are now so extensive that the bibliography that follows can
indicate only a few of the many possibilities for further reading
for the interested reader. : e :

Toeplitz theory also has connections with the theory of
C*_algebras and with K-theory. This aspect of the subject
involves index theory, one of the most active areas of modern
operator theory. Some references for this are: [4], [6], [12], [13],
[16], [18] and [21].

As an introduction to function algebras, Browder’s book [3]
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probably cannot be surpassed. For a more detailed treatme

of the subject see the books of Gamelin [7] and Leibowitz [11]

each of which contains extensive bibliographies. Two other books{
which may be consulted are [19] and [20].
that are particularly readable are [1] and [10].
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