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1. Introduction

A recent coffee-room conversation at Rose-Hulman about an old
number theory gem — two randomly chosen integers are relatively
prime with probability 6/72 — led to the following exchange.

A group theorist: “You know, §/#% sounds a lot like the 5/8
Bound for commutativity to me.”

2 -
or at most 5/8 for finite groups [2].

is either one

A topologist: “Oh no! What are you going to do, turn that
one into a group theory problem too?”

Here’s a try: If = and y are group elements instead of integers,
then “are relatively prime” should mean there does not exist an
element g in the group such that g “divides” both z and y. Unfor-
tunately (at least for this interpretation) the equations gz = x and
gz = y each have solutions for any ¢ in the group. Another try —
6 and 9 are not relatively prime because they generate a proper
(cyclic, of course) subgroup of the integers, — suggests the title
of this paper.

More formally, let G be a finite group and set

) G? | {z,y) is cyclic
pmcyc(G):J{(-’E y) € {IG(IZ’ y) is cyclic}

The work of each of the authors was supported by NSF grant
number DMS-910059

22

%] Generating a cyclic subgroup 23

ezl

If {z,y) is cyclic, we say the ordered pair (z,y) is cyclic. The
purpose of this note is to show that if G is not cyclic, then
Pr:Cyc(G) < 5/8. A generalization to cyclic n-tuples —ann-
tuple (71,22, .., %) for which {z1,%3,...,Tn) 18 cyclic — is also
established.

Tt is well known that the 5/8 bound for commutativity can be
replaced by (p% +p— 1)/p® where pis the smallest prime dividing
the order of G. Rewriting our results in terms of p is left as an
exercise for the reader.

2. Cyclic Ordered Pairs

Theorem 1. ProCye(G) = 1 if G is cyclic; in every other case,
PryCyc(G) < 5/8.

Our proof is woven from the 5/8 bound for commutativity
and a sequence of lemmas. Suppose firstly that G is non-abelian.
Then, since two elements that generate a cyclic subgroup must
commiite,

PryCye(G) < PrzComm(G) < 5/8
by the result of {2]. And fortunately,
Lemma 1. ProCye(G) =1 if, and only if, G is ¢yclic.
Proof: ¥ G is cyclic, certainly each subgroup of G is cyclic; i.eﬂ.,
Pry;Cyc(G) = 1. On the other hand, if PryCyc(G) = 1, then G is
certainly abelian and PraCyc(S,) = 1 for each p-Sylow subgroup

of G. This means each p-Sylow subgroup is cyclic and, therefore,
that G is cyclic.

Now we may restrict our attention to non-cyclic abelian
groups.
Lemma 2. FG =2 Ho K, then
PryCyc{G) < ProCyc(H) - PryCyc(K);
i.e., PraCyc(G) is submultiplicative.
Proof: If the pair ({x1,91), (®2,¥y2)) is cyclic, then there exists
(z,y) in H @ K and there exist non-negative integers s; and s

such that (z,%)% = (%:,w); le., both (x1,72) and (31,y2) are
cyclic.
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In view of Lemma 2,

PrCye(G) < H Pr2Cye(5,).
pHG|

where p denotes a prime and 5, is the p-Sylow subgroup of G.

Thus, if ProCye(5,) € 5/8 for at least one p, the theorem follows.
: Since & is non-cyclic, there exists at least one prime, say g,
for which S; is non-cyclic. This means that S, is of the form
Zyp ©Zgm D AWith1 <k <m.

Lemma 3. PryCyc(Z @ Z) < 5/8.

Proof: Let ({a,b),(c,d)} be a cyclic ordered pair in Zpx ® Zpx.
We proceed by cases.

Case: The order of {a,}) is ¢*. Since g* is the maximum
order of an element of &, ® Z, it follows that {c,d) € {{a,))).
Thus there are ¢?* — ¢2*=2 choices for {a,b) and ¢* choices for
(¢, d); Le., there are (g% — g**2)g¢* choices for ((a,d)}, {c,d)).

Case: The order of (a,b) is less than ¢*. The number of
choices for (a,b) is 4*~2 and the number of choices for (c,d) is
certainly bounded above by ¢2%; i.e., there are at most g?* 2. g%
chaoices for {(a, ), (¢, d)).

Therefore,

2k 2k—24,.k 2k—2 2k
 PraCye(Bg @) < & —¢ )T e g

q4k

1 1 1
q° ( q2)(9"“)
1 3 1
<45 =
=3t13
5
=2

It is easy to check that PraCyc(Zz @ Zg) = 5/8.

Lemma 4. Pr;Cyc(Z,x ©2Z,») < 5/8 implies that PraCyc(Z . @
qu+1) S 5/8

Proof: - Let ({a,b), (c,d)} be a cyclic ordered pair in Z & & Zm+1.
Again, we proceed by cases.
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Case: |(a,b)], (¢, d)| € m. Let’s collect all such cyclic ordered
pairs in a set, say C = {{(a,b),(c.d)) | |(a,B)],[(c,d}} < m},
and collect the components of elements of C in a set, say H =
Ue{(a, ), (e, d)}. Now denoting the projecticn of # onto Zgm+1
by B, we have H C {4) @ {B). Thus {B) is a cyclic subgroup
of Z,m+: containing no elements of order g™ 1. Therefore (B} =
Z,;, where j < m, which implies that {4} & {B) is isomorphic
to a subgroup of Zyn ® Zgm. Our inductive hypothesis yields
€] < (5/8)2.

Case: |(a,B)] = ¢™*!. There are g**™F — g**™ choices for
(a,b) and g™ choices for (c,d) since {¢,d) € ((a,b)). Therefore,
there are " 212 _ g2+ choices for {(a,5), (¢, d)).

Case: |(a,b)| < g™ and |(c,d)| = ¢™*1. There are ¢**" 1! —
¢“t™ choices for (c,d) and g™ choices for (a,d) since {(a,b) €
{(c,d)) and has order less than ¢™*'. Therefore, there are
geHImtL gkt Im choices for ((a,b), (¢, d)).

Now we have

(5/8)q2(k+m) + q,I«:+2m+2 _ qk+2m

PryCyc(Zgx @ Zgm+1) <

g2(ktm+1)
5 1 1 1
TEeTE
5 1 1 i
Sty g
<5 1+1 1
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Therefore ProCyc(S,) < 5/8 and the proof of the theorem is com-
plete.

3. Cyclic n-tuples

Does the theorem generalize to cyclic n-tuples? It hinges on
the availability of a 5/8-like bound for Pr,Comm(G), the pro-
portion of mutually commutative n-tuples (x;x; = x;z; for all ¢
and j) in G. Erdés and Strauss [1] established a lower bound for
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Pr.Comm(G) but the following upper bound does not appear to
be well-known. Indeed, to the best of our knowledge, this upper
bound has appeared only in an unpublished note (Testing Laws
in Groups) of John D. Dixon’s which circulated in the late 1970%.
We include #t here with our elementary proof.

Lemma 5. If G is nonabelian, then

3 1
Pr,,Comm(G) < 2 P
Proof:  Given the 5/8 bound for n == 2, one observes that either
the first component of a mutually commutative n-tuple is in the
center, Z = Z(G), of G (with probability |Z]/|G|) or it isn’t (with
probability 1 —1Z|/|Gl). Thas, :

om0 < (5t ) o

3 1 1 1
271— 22n —3 - 2n—1 + 2nw1

because |Z|/1G] < 1/4 and each component must be in the cent-
ralizer of the first component. We remark that Pr,Comm(G)
assumes the bound if, and only if, G/Z = Zy & Zs.

With Lemma 5 in hand one can generalize the proof of the
Theorem 1 to cyclic n-tuples by replacing each occurrence of 5/8
3
with

on ~ 92a—1°

1
Theorem 2. Pr,,Cyc(G) is either one or it is at most — —

an 2211—1 "

1]
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