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Abstract: We prove the conjecture that a triangle whose three vertices
Lie in the three sides of a larger triangle must have perimeter at least

as large as that of one of the other small triangles which are created by
its inscription there; we also give proofs of some related results.

Introduction

- On reading the abstract above, one might suspect that the title of
this article ought to have been followed by a question mark. Tom
Laffey, who first drew my attention to this conjecture, proved
below as Theorem 3, pointed out that it had been listed as an
unsolved problem by Kazarinoff [1, p78] and that, had it been
proved in the meantime, it would most likely have appeared in
the compendious work [2] — where it is not included:

It might be of interest to TEX enthusiasts if I add a little per-
sonal note here before embarking on the proof. Unlike most prob-
lems we encounter in modern mathematics, questions of this sort
can be settled quickly and almost with certainty by using a com-
puter. It is therefore worthwhile to try this avenue before expend-
ing time on possibly futile mathematical calculations. Believe it or
not, my choice of language for testing the hypothesis was Knuth's
character drawing programme METAFONT. It turns out that a
METRFONT pregramme for this type of task is shorter and cleaner
than one written in a standard all-purpose programming langnage,
-and that, provided one is careful to avoid arithmetic overflow, it
is alsa accurate and quick. My short programme tested 800 inner
triangles, chosen with partial randomness, in each of 1,000 outer
triangles, also chosen with partial randomness. The programme
took no more than a few minutes to write. It made the 800,000
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tests and failed to find a counterexample to the conjecture. Given
the nature of the conjecture, in particular the continuity involved
in it, this made it at least as likely to be true as Fermat’s Last
Theorem.

Notation If A, B and C are peints in a plane, we shall use
a(ABC) to denote the sum of the three lengths |BC], |[CA| and
|AB|. If ABC is a triangle, then AABC will denote its area;
otherwise AABC should be understood to be 0.

Perimeter theorems

It is not difficult to see that a proof of the truth of the conjecture
will follow from a few technical manceuvres, and we shall demon-
strate that such is the case, if we can establish first a related result,
which we present now as Theorem 1.

Theorem 1. Suppose ABC is a triangle and suppose X, Y and
7 are points lying on the lines BC, CA and AB respectively.
Then .

max{o(AY Z), (X BZ),0(XYC)} > %J(ABC)

with equality if and only if X, Y and Z are the mid-points of the
line segments (BC], {C A] and {AB] respectively.

C
X

A Z B

Proof: We denote by a, b and ¢ the lengths of the line segments
[BC], [CA] and {AB] respectively. When X, Y and Z are the
mid-points described, the equality is well known. We assume,
therefore, without loss of generality, that |AZ| > c.
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Now if |CY| < 1b and we denote the mid-points of [AC] and
[AB] by M and NV respectively, then we have

o(AY Z) = |AM| + |MY| +|Y Z| +|ZN| + [N A|
1
> |AM| + |MN| +|NA| = Z0(ABC)

and the required inequality follows. We may therefore assume
that [CY| > 3b. Similarly, we may assume that |[BX| > fa. We
now define r, s and ¢ to be the strictly positive real numbers given
by the equations

' 1 1 1
BX|=Za+r, [CY|=gbts,  |AZ|= e+t
Now ‘

o(4Y2) < S0(ABC)

1 1
= Sett+ob—st

oo« () =2 () (- ) s

1 1 1
< — — —
S a+25+2§

1 N 2 1 1
= (§C+t) + (ﬁb—s) -2 (EC'Ft) (Eb—s> COSA
1 2
< (§a+swt)

1
= Z(bz + ¢ — 2bccos A) + ¢t — bs'— (bt —¢cs — 2st) cos A

1
§202+sa-ta-2st

= (a+b+cj(t—s) < (bt —cs —2st)(1+ cos A)
= 2bc(t—s)<{bt—cs—2st}{b+c—a)
=>0<bt(b—c—a)+es(b—c+a)—2st(b+c—a)

b
=>0$;(b—c—a)+%(b—c+a)—-2(b+c—a).
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Similarly

o(XBZ) < $0(ABCY = 0< ¢{c—a—b)+2{c—a+b)—2{cta—b)

and

(XY C) < 1o{ABC) = 0 < 2(a—b—c)+2(a—b+c)—2(a+b—c).
That these three inequalities cannot be simultaneously sat-

isfied is clear, because their addition would lead to the absurd
0 < —2(a+ b+ ¢). The theorem follows. g

Lemma 2. Suppose ABC is a triangle and P and Q are points
on the sides AB and AC respectively, with |[PB| = |QC| > 0.
Then |PQ| < |BC|.

A P B

Proof: Set |AB! =¢, |CA| =b, |BC| = and |PQ| = d.
Then
|BC|* — |PQP?
= (c2 + b? — 2bccos A}—
{{c = d)? + (b—d)* — 2(c — d)(b — d) cos A)

= —2d* + 2ed + 2bd + 2(d® — bd — cd) cos A

= 2d(b+ ¢ —d)(1 — cos A) >0,
and the lemma. is proved. al

Theorem 3. Suppose ABC is a triangle and X, Y and Z are
points in the line segments [BC}, {CA] and [AB] respectively.
Then

o{XY Z) > min{c(AY Z),0(XBZ),c{XYC)}
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with equality if and only if X, Y and Z are the mid-points of the
line segments [BC), [CA] and [AB] respectively.

Proof: The function f defined on the compact set [BC] x [C A} x
{AB] by

f(X,Y,Z) = o(XY Z) — min{o(AY Z),6(XBZ),c(XYC)}

is continnous and therefore attains its minimum value. Suppose
this minimum vale is attained at (P, @, B). Since f has the value
0 when X, Y and Z are the mid-points of the line segments [BC],
[C A} and [AB] respectively, we have f(P,Q,R) < 0. It is easily
verified that if any of X, Y or Z coincides with any of 4, B or
C then f(X,Y.Z2) > 0. It follows that P, ¢ and R are internal
points of their respective line segments.

We want to establish firstly that the three quantities o(AQR],
e{FPEBR) and o(PQC) are equal. To this end, we accept, without
logs of generality, that e(AQR) < o(PBR) < o(PQL).

A R R B

Suppose now that ¢(AQR) < ¢(PBR) and consider an
internal point R’ of the line segment {BR] which is close enough
to R to ensure that o(AQR") < o(PBR’). Note that it is “rue in
any case that o(PBR'} < 6(PBR) < o(PQC).

So we have ‘

f(P,Q, R
=o(PQR')y - o(AQR") -
=0o(PQR) — 0(AQR) — (|PR| + |RE'| - |PR'|)
< o{(PQR) — o(AQR)
- =f{PQR)
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contradicting the minimality of f at (P, @, R). We must therefore
infer that o(AQR) = o(PBR).

Suppose now that o(AQR) < o(PQC) and consider internal
points P’ and Q' of the line segments [PC] and [QC] respect-
ively, with [PP’| = |QQ’| and this quantity being small enough
to ensure that the inequalities o(AQ'R} < o(P'Q'C) and
s(P'BR) < o(P'Q'C) hold. We note that Lemma 2 implies
that |PQ| > |P'Q'|.

Then

6(P'Q'R)—o(P'BR) = o(PQR) - o(PBR)+ |Q'R| + |P'Q'|
—|QR| - |PQ| - |PP'|
= o(PQR) — o(PBR) - (1PQ| — |P'Q"])
- (1Q'Q| +1QR| - |Q'R])
< o(PQR) - o(PBR)

= f(P,Q,R).
Similarly
o(P'Q'R) — 0(AQ'R) < o(PQR) — c(AQR)
= f(P,Q,R).

It follows that f{P',Q', R) < f(P,Q, R), so that minimality
of f at (P,Q, R) is once again contradicted. We must therefore
have ¢(PBR) = o(AQR) = o(PQC) = q, say.

Now

¢ > o(PQR) = 6(AQR) + o(PBR) + ¢(PQC) — 6(ABC)
= 39 — 0(ABC),
so that ¢ < Lo(ABC). Tt follows from Theorem 1 that equality

holds and that P, @ and R are the mid-points of the line segments
[BC], [CA] and [AB] respectively, and the theorem is proven. ©
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Area theorems

One might expect area analogues to the perimeter theorems of
the last section, and one should be right to do so. Indeed, the
analogue of Theorem 3 was known to Kazarinoff [1}, though he
simply states that it is true without giving a reference to a proof.

Theorem 4. Suppose ABC is a triangle and X, ¥ and Z are
interior points of the line segments [BC|, [C A] and [AB] respect-
ively. Then

AXYZ > min{AAY Z,AXBZ,AXYC)

with equality if and ondy if X| YV and Z are the mid-points of the
line segments [BC|, [C' A] and [AB] respectively.

A proof of Theorem 4 can be effected rather easily by setiing
up a function which attains its bound and manipulating perturb-
ations, only provided the analogne of Theorem 1 has first been
established. That analogue, given below as Theorem 5, is much
easier to demonstrate than Theorem 1. It is left to the reader to
supply a proof of Theorem 4 using Theorem 5.

Theorem 5. Suppose ABC is a triangle and suppose X, Y and
£ are points lying on the lines BC, CA4 and AB respectively.
Then

min{AAY Z, AXBZ AXYC} < %AABC

with equality if and only if X, Y and Z are the mid-points of the
line segments [BC', [CA] and [AB] respectively.

C
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Proof: EFvidently

AAYZ > %AABC = 4|AY[|AZ]| > be

AXBZ > [AABC = 4|BZ||BX| 2 ca
and
AXYC 2 —i—AABC = 4|CX||CY| > ab,

where a, b and ¢ denote the lengths of the line segments [BC],
[C A] and [AB] respectively.
Multiplying the three inequalities at the right, we get

4|AZ|1ZB| x 4AY[Y C| x 4|CX|| X B| > a®b*c*.

Since |AZ| +{ZB| =¢, |AY|+|[YC| =band [CX|+|XB|=aq,it
follows that the three inequalities at the left can be simultanecusly
satisfied only if X, Y and Z are the mid-poinis of their respective
sides. m]
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